list.files()
library(readxl)
station_data_fix <- read_excel("C:/Users/Admin/Downloads/station_data_fix.xlsx")
station_data_fix = as.data.frame(station_data_fix)
station_data_fix
NA
Y<-station_data_fix$`dollars`
X1<-station_data_fix$`kwhTotal`
X2<-station_data_fix$`chargeTimeHrs`
data1 <- data.frame(Y,X1,X2)
#Uji Multikolinearitas
library(car)
vif(lm(Y~X1+X2, data=data1))
X1 X2
1.018421 1.018421
#Model Poisson
model_poisson <- glm(formula=Y~X1+X2, family=poisson(link="log"), data=data1)
summary(model_poisson)
Call:
glm(formula = Y ~ X1 + X2, family = poisson(link = "log"), data = data1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.2262 -0.6042 -0.5826 -0.5304 2.3845
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.07081 0.30473 -6.796 1.08e-11 ***
X1 0.03136 0.04013 0.781 0.435
X2 0.05361 0.01183 4.530 5.90e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 179.28 on 249 degrees of freedom
Residual deviance: 168.30 on 247 degrees of freedom
AIC: 257.21
Number of Fisher Scoring iterations: 6
library(AER)
dispersiontest(model_poisson)
#ZIP
library(pscl)
model_zip <- zeroinfl(formula=Y~X1+X2, data=data1)
Warning: glm.fit: algorithm did not convergeWarning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(model_zip)
Call:
zeroinfl(formula = Y ~ X1 + X2, data = data1)
Pearson residuals:
Min 1Q Median 3Q Max
-3.573e-01 -1.120e-08 -1.100e-08 -1.083e-08 7.193e-01
Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.330e-02 5.205e-01 -0.026 0.980
X1 3.234e-02 7.526e-02 0.430 0.667
X2 1.108e-05 1.904e-02 0.001 1.000
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) 6742.861 342760.102 0.020 0.984
X1 -3.787 1632.564 -0.002 0.998
X2 -1682.611 84061.990 -0.020 0.984
Number of iterations in BFGS optimization: 11
Log-likelihood: -43.68 on 6 Df
library(VGAM)
#Membangkitkan Respon
p<-predict(model_zip,type="zero")
lambda<-predict(model_zip,type="count")
koef<-model_zip$coefficients[2]
beta0<-koef$zero[1]
beta1<-koef$zero[2]
beta2<-koef$zero[3]
#Simulasikan
simul <-function(X1,X2,Y) {
model_zip1<-zeroinfl(Y~X1+X2)
beta<-model_zip1$coefficients[2]
beta_z<-beta$zero
}
iterasi <- 600
betaduga0<-rep(0,iterasi)
betaduga1<-rep(0,iterasi)
betaduga2<-rep(0,iterasi)
for (i in 1:iterasi) {
Y<-rzipois(250,lambda = lambda, pstr0 = p)
betaduga0[i] <-simul(X1,X2,Y)[1]
betaduga1[i] <-simul(X1,X2,Y)[2]
betaduga2[i] <-simul(X1,X2,Y)[3]
}
#Mentaksir Koefisien
betaduga<-data.frame(betaduga0, betaduga1, betaduga2)
names(betaduga)<-c("beta0","beta1","beta2")
head(betaduga)
#Plot (Hasil Simulasi)
plot(betaduga0, main=expression(paste("Hasil penaksiran ", beta[0])),
ylab=expression(beta[0]), xlab="Iterasi")

plot(betaduga1, main=expression(paste("Hasil penaksiran ", beta[1])),
ylab=expression(beta[1]), xlab="Iterasi")

plot(betaduga2, main=expression(paste("Hasil penaksiran ", beta[2])),
ylab=expression(beta[2]), xlab="Iterasi")

LS0tDQp0aXRsZTogIlN0YXRpb24gQ2hhcmdlIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQpgYGB7cn0NCg0KbGlzdC5maWxlcygpDQoNCmBgYA0KDQoNCmBgYHtyfQ0KDQpsaWJyYXJ5KHJlYWR4bCkNCg0KDQpzdGF0aW9uX2RhdGFfZml4IDwtIHJlYWRfZXhjZWwoIkM6L1VzZXJzL0FkbWluL0Rvd25sb2Fkcy9zdGF0aW9uX2RhdGFfZml4Lnhsc3giKQ0KDQoNCnN0YXRpb25fZGF0YV9maXggPSBhcy5kYXRhLmZyYW1lKHN0YXRpb25fZGF0YV9maXgpDQoNCg0Kc3RhdGlvbl9kYXRhX2ZpeA0KDQpgYGANCg0KDQpgYGB7cn0NCg0KWTwtc3RhdGlvbl9kYXRhX2ZpeCRgZG9sbGFyc2ANClgxPC1zdGF0aW9uX2RhdGFfZml4JGBrd2hUb3RhbGANClgyPC1zdGF0aW9uX2RhdGFfZml4JGBjaGFyZ2VUaW1lSHJzYA0KDQpkYXRhMSA8LSBkYXRhLmZyYW1lKFksWDEsWDIpDQoNCmBgYA0KDQoNCmBgYHtyfQ0KDQojVWppIE11bHRpa29saW5lYXJpdGFzDQpsaWJyYXJ5KGNhcikNCnZpZihsbShZflgxK1gyLCBkYXRhPWRhdGExKSkNCg0KYGBgDQoNCg0KYGBge3J9DQoNCiNNb2RlbCBQb2lzc29uDQptb2RlbF9wb2lzc29uIDwtIGdsbShmb3JtdWxhPVl+WDErWDIsIGZhbWlseT1wb2lzc29uKGxpbms9ImxvZyIpLCBkYXRhPWRhdGExKQ0Kc3VtbWFyeShtb2RlbF9wb2lzc29uKQ0KDQpgYGANCg0KDQpgYGB7cn0NCg0KbGlicmFyeShBRVIpDQpkaXNwZXJzaW9udGVzdChtb2RlbF9wb2lzc29uKQ0KDQpgYGANCg0KDQpgYGB7cn0NCg0KI1pJUA0KbGlicmFyeShwc2NsKQ0KbW9kZWxfemlwIDwtIHplcm9pbmZsKGZvcm11bGE9WX5YMStYMiwgZGF0YT1kYXRhMSkNCnN1bW1hcnkobW9kZWxfemlwKQ0KDQpgYGANCg0KDQpgYGB7cn0NCg0KbGlicmFyeShWR0FNKQ0KDQpgYGANCg0KDQpgYGB7cn0NCg0KI01lbWJhbmdraXRrYW4gUmVzcG9uDQpwPC1wcmVkaWN0KG1vZGVsX3ppcCx0eXBlPSJ6ZXJvIikNCmxhbWJkYTwtcHJlZGljdChtb2RlbF96aXAsdHlwZT0iY291bnQiKQ0Ka29lZjwtbW9kZWxfemlwJGNvZWZmaWNpZW50c1syXQ0KYmV0YTA8LWtvZWYkemVyb1sxXQ0KYmV0YTE8LWtvZWYkemVyb1syXQ0KYmV0YTI8LWtvZWYkemVyb1szXQ0KDQpgYGANCg0KDQpgYGB7cn0NCg0KI1NpbXVsYXNpa2FuDQpzaW11bCA8LWZ1bmN0aW9uKFgxLFgyLFkpIHsNCiAgbW9kZWxfemlwMTwtemVyb2luZmwoWX5YMStYMikNCiAgYmV0YTwtbW9kZWxfemlwMSRjb2VmZmljaWVudHNbMl0NCiAgYmV0YV96PC1iZXRhJHplcm8NCn0NCg0KaXRlcmFzaSA8LSA2MDANCmJldGFkdWdhMDwtcmVwKDAsaXRlcmFzaSkNCmJldGFkdWdhMTwtcmVwKDAsaXRlcmFzaSkNCmJldGFkdWdhMjwtcmVwKDAsaXRlcmFzaSkNCg0KZm9yIChpIGluIDE6aXRlcmFzaSkgew0KICBZPC1yemlwb2lzKDI1MCxsYW1iZGEgPSBsYW1iZGEsIHBzdHIwID0gcCkNCiAgYmV0YWR1Z2EwW2ldIDwtc2ltdWwoWDEsWDIsWSlbMV0NCiAgYmV0YWR1Z2ExW2ldIDwtc2ltdWwoWDEsWDIsWSlbMl0NCiAgYmV0YWR1Z2EyW2ldIDwtc2ltdWwoWDEsWDIsWSlbM10NCn0NCg0KYGBgDQoNCg0KYGBge3J9DQoNCiNNZW50YWtzaXIgS29lZmlzaWVuDQpiZXRhZHVnYTwtZGF0YS5mcmFtZShiZXRhZHVnYTAsIGJldGFkdWdhMSwgYmV0YWR1Z2EyKQ0KbmFtZXMoYmV0YWR1Z2EpPC1jKCJiZXRhMCIsImJldGExIiwiYmV0YTIiKQ0KaGVhZChiZXRhZHVnYSkNCg0KYGBgDQoNCg0KYGBge3J9DQoNCiNQbG90IChIYXNpbCBTaW11bGFzaSkNCnBsb3QoYmV0YWR1Z2EwLCBtYWluPWV4cHJlc3Npb24ocGFzdGUoIkhhc2lsIHBlbmFrc2lyYW4gIiwgYmV0YVswXSkpLA0KICAgICB5bGFiPWV4cHJlc3Npb24oYmV0YVswXSksIHhsYWI9Ikl0ZXJhc2kiKQ0KcGxvdChiZXRhZHVnYTEsIG1haW49ZXhwcmVzc2lvbihwYXN0ZSgiSGFzaWwgcGVuYWtzaXJhbiAiLCBiZXRhWzFdKSksDQogICAgIHlsYWI9ZXhwcmVzc2lvbihiZXRhWzFdKSwgeGxhYj0iSXRlcmFzaSIpDQpwbG90KGJldGFkdWdhMiwgbWFpbj1leHByZXNzaW9uKHBhc3RlKCJIYXNpbCBwZW5ha3NpcmFuICIsIGJldGFbMl0pKSwNCiAgICAgeWxhYj1leHByZXNzaW9uKGJldGFbMl0pLCB4bGFiPSJJdGVyYXNpIikNCg0KYGBgDQoNCg0KDQoNCg0KDQoNCg0K