tidy corrrelation
library(inspectdf)
inspect_cor(iris)
## # A tibble: 6 × 7
## col_1 col_2 corr p_value lower upper pcnt_nna
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Petal.Width Petal.Length 0.963 1.73e-31 0.949 0.973 100
## 2 Petal.Length Sepal.Length 0.872 4.13e-26 0.827 0.906 100
## 3 Petal.Width Sepal.Length 0.818 3.51e-23 0.757 0.865 100
## 4 Petal.Length Sepal.Width -0.428 2.05e- 7 -0.551 -0.288 100
## 5 Petal.Width Sepal.Width -0.366 9.04e- 6 -0.497 -0.219 100
## 6 Sepal.Width Sepal.Length -0.118 1.54e- 1 -0.273 0.0435 100
Summary and comparison of memory usage of dataframe columns
inspect_imb(iris)
## # A tibble: 1 × 4
## col_name value pcnt cnt
## <chr> <chr> <dbl> <int>
## 1 Species setosa 33.3 50
inspect_cat(iris)
## # A tibble: 1 × 5
## col_name cnt common common_pcnt levels
## <chr> <int> <chr> <dbl> <named list>
## 1 Species 3 setosa 33.3 <tibble [3 × 3]>
inspect_mem(iris)
## # A tibble: 5 × 4
## col_name bytes size pcnt
## <chr> <int> <chr> <dbl>
## 1 Sepal.Length 1248 1.22 Kb 20
## 2 Sepal.Width 1248 1.22 Kb 20
## 3 Petal.Length 1248 1.22 Kb 20
## 4 Petal.Width 1248 1.22 Kb 20
## 5 Species 1248 1.22 Kb 20
summary missing value
inspect_na(iris)
## # A tibble: 5 × 3
## col_name cnt pcnt
## <chr> <int> <dbl>
## 1 Sepal.Length 0 0
## 2 Sepal.Width 0 0
## 3 Petal.Length 0 0
## 4 Petal.Width 0 0
## 5 Species 0 0
summary numeric columns
inspect_num(iris)
## # A tibble: 4 × 10
## col_name min q1 median mean q3 max sd pcnt_na hist
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <named list>
## 1 Sepal.Length 4.3 5.1 5.8 5.84 6.4 7.9 0.828 0 <tibble>
## 2 Sepal.Width 2 2.8 3 3.06 3.3 4.4 0.436 0 <tibble>
## 3 Petal.Length 1 1.6 4.35 3.76 5.1 6.9 1.77 0 <tibble>
## 4 Petal.Width 0.1 0.3 1.3 1.20 1.8 2.5 0.762 0 <tibble>
summary type
inspect_types(iris)
## # A tibble: 2 × 4
## type cnt pcnt col_name
## <chr> <int> <dbl> <named list>
## 1 numeric 4 80 <chr [4]>
## 2 factor 1 20 <chr [1]>
graphical inspection of dataframe
show_plot(inspect_cor(iris))
