Implementar el modelo de árbol de clasificación con datos relacionados a una condición de salud de las personas para predecir anomalías de corazón y evaluar la exactitud del modelo mediante la matriz de confusión.
Se cargan librerías y se descargan los datos: https://raw.githubusercontent.com/rpizarrog/Analisis-Inteligente-de-datos/main/datos/heart_2020_cleaned.csv
Los datos están relacionados con aspectos médicos y son valores numéricos de varias variables que caracterizan el estado de salud de 319,795 personas.
Se construye un modelo supervisado basado en el algoritmo de árbol de clasificación para resolver la tarea de clasificación binaria e identificar si una persona padece del corazón o no.
Se construyen datos de entrenamiento y validación al 80% y 20% cada uno.
Se desarrollan los modelos de:
Regresión Logística binaria
Árbol de Clasificación tipo class
K Means
SVM Lineal
SVM Polinomial
SVM Radial
Los modelo se aceptan si tienen un valor de exactitud por encima del 70%..
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(rpart)
library(rpart.plot)
library(knitr)
library(e1071) # Vectores de Soporte SVM
library(rpart) # Arboles de clasificación
Cargar datos de manera local.
datos <- read.csv("https://raw.githubusercontent.com/rpizarrog/Machine-Learning-con-R/main/datos/heart_2020_cleaned.csv")
Explorar datos
str(datos)
## 'data.frame': 319795 obs. of 18 variables:
## $ HeartDisease : chr "No" "No" "No" "No" ...
## $ BMI : num 16.6 20.3 26.6 24.2 23.7 ...
## $ Smoking : chr "Yes" "No" "Yes" "No" ...
## $ AlcoholDrinking : chr "No" "No" "No" "No" ...
## $ Stroke : chr "No" "Yes" "No" "No" ...
## $ PhysicalHealth : num 3 0 20 0 28 6 15 5 0 0 ...
## $ MentalHealth : num 30 0 30 0 0 0 0 0 0 0 ...
## $ DiffWalking : chr "No" "No" "No" "No" ...
## $ Sex : chr "Female" "Female" "Male" "Female" ...
## $ AgeCategory : chr "55-59" "80 or older" "65-69" "75-79" ...
## $ Race : chr "White" "White" "White" "White" ...
## $ Diabetic : chr "Yes" "No" "Yes" "No" ...
## $ PhysicalActivity: chr "Yes" "Yes" "Yes" "No" ...
## $ GenHealth : chr "Very good" "Very good" "Fair" "Good" ...
## $ SleepTime : num 5 7 8 6 8 12 4 9 5 10 ...
## $ Asthma : chr "Yes" "No" "Yes" "No" ...
## $ KidneyDisease : chr "No" "No" "No" "No" ...
## $ SkinCancer : chr "Yes" "No" "No" "Yes" ...
summary(datos)
## HeartDisease BMI Smoking AlcoholDrinking
## Length:319795 Min. :12.02 Length:319795 Length:319795
## Class :character 1st Qu.:24.03 Class :character Class :character
## Mode :character Median :27.34 Mode :character Mode :character
## Mean :28.33
## 3rd Qu.:31.42
## Max. :94.85
## Stroke PhysicalHealth MentalHealth DiffWalking
## Length:319795 Min. : 0.000 Min. : 0.000 Length:319795
## Class :character 1st Qu.: 0.000 1st Qu.: 0.000 Class :character
## Mode :character Median : 0.000 Median : 0.000 Mode :character
## Mean : 3.372 Mean : 3.898
## 3rd Qu.: 2.000 3rd Qu.: 3.000
## Max. :30.000 Max. :30.000
## Sex AgeCategory Race Diabetic
## Length:319795 Length:319795 Length:319795 Length:319795
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## PhysicalActivity GenHealth SleepTime Asthma
## Length:319795 Length:319795 Min. : 1.000 Length:319795
## Class :character Class :character 1st Qu.: 6.000 Class :character
## Mode :character Mode :character Median : 7.000 Mode :character
## Mean : 7.097
## 3rd Qu.: 8.000
## Max. :24.000
## KidneyDisease SkinCancer
## Length:319795 Length:319795
## Class :character Class :character
## Mode :character Mode :character
##
##
##
No es necesario alguna transformación
Todas las variables son de entrada o variables independientes:
“BMI”: Indice de masa corporal con valores entre 12.02 y 94.85.
“Smoking”: Si la persona es fumadora o no con valores categóritos de ‘Yes’ o ‘No’.
“AlcoholDrinking” : Si consume alcohol o no, con valores categóricos de ‘Yes’ o ‘No’.
“Stroke”: Si padece alguna anomalía cerebrovascular, apoplejia o algo similar, con valores categóricos de ‘Yes’ o ‘No’.
“PhysicalHealth” Estado físico en lo general con valores entre 0 y 30.
“MentalHealth”. Estado mental en lo general con valores entre 0 y 30.
“DiffWalking” . Que si se le dificulta caminar o tiene algún padecimiento al caminar, con valores categóritoc de ‘Yes’ o ‘No’.
“Sex”: Género de la persona, con valores de ‘Female’ y ‘Male’ para distinguir al género femenino y masculino respectivamente.
“AgeCategory”: Una clasificación de la edad de la persona de entre 18 y 80 años. La primera categoría con un rango de edad entre 18-24, a partir de 25 con rangos de 5 en 5 hasta la clase de 75-80 y una última categoría mayores de 80 años.
“Race”. Raza u origen de la persona con valores categóricos de ‘American Indian/Alaskan Native’, ’Asian’,’Black’, ’Hispanic’, ’Other’ y’White’.
“Diabetic”. Si padece o ha padecido de diabetes en cuatro condiciones siendo Yes y No para si o no: ‘No’, ‘borderline diabetes’ condición antes de detectarse diabetes tipo 2, ‘Yes’, y ‘Yes (during pregnancy)’ durante embarazo.
“PhysicalActivity” que si realiza actividad física, con valores categóricos de ‘Yes’ o ‘No’.
“GenHealth”: EStado general de salud de la persona con valores categóricos de ‘Excellent’, ‘Very good’, ’Good’, ’Fair’ y ’Poor’ con significado en español de excelente, muy buena, buena, regular y pobre o deficiente.
“SleepTime”: valor numérico de las horas de sueño u horas que duerme la persona con valores en un rango entre 1 y 24.
“Asthma”: si padece de asma o no, con valores categóricos de ‘Yes’ o ‘No’.
“KidneyDisease”: si tiene algún padecimiento en los riñones, con valores categóricos de ‘Yes’ o ‘No’.
“SkinCancer”: si padece algún tipo de cáncer de piel, con valores categóricos de ‘Yes’ o ‘No’.
La variable de interés como dependiente o variable de salida es la de daño al corazón (HeartDisease), con valores categóricos de ‘Yes’ o ‘No’.
Se parten los datos en en datos de entrenamiento con el 80% y datos de validación con el 20%.
set.seed(1550)
entrena <- createDataPartition(y = datos$HeartDisease,
p = 0.8,
list = FALSE,
times = 1)
# Datos entrenamiento
datos.entrenamiento <- datos[entrena, ] # [renglones, columna]
# Datos validación
datos.validacion <- datos[-entrena, ]
Se muestran los primeros 20 registros datos de entrenamiento
kable(head(datos.entrenamiento, 20), caption = "Primeros 20 registros de datos de entrenamiento")
| HeartDisease | BMI | Smoking | AlcoholDrinking | Stroke | PhysicalHealth | MentalHealth | DiffWalking | Sex | AgeCategory | Race | Diabetic | PhysicalActivity | GenHealth | SleepTime | Asthma | KidneyDisease | SkinCancer | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | No | 20.34 | No | No | Yes | 0 | 0 | No | Female | 80 or older | White | No | Yes | Very good | 7 | No | No | No |
| 4 | No | 24.21 | No | No | No | 0 | 0 | No | Female | 75-79 | White | No | No | Good | 6 | No | No | Yes |
| 5 | No | 23.71 | No | No | No | 28 | 0 | Yes | Female | 40-44 | White | No | Yes | Very good | 8 | No | No | No |
| 7 | No | 21.63 | No | No | No | 15 | 0 | No | Female | 70-74 | White | No | Yes | Fair | 4 | Yes | No | Yes |
| 8 | No | 31.64 | Yes | No | No | 5 | 0 | Yes | Female | 80 or older | White | Yes | No | Good | 9 | Yes | No | No |
| 9 | No | 26.45 | No | No | No | 0 | 0 | No | Female | 80 or older | White | No, borderline diabetes | No | Fair | 5 | No | Yes | No |
| 10 | No | 40.69 | No | No | No | 0 | 0 | Yes | Male | 65-69 | White | No | Yes | Good | 10 | No | No | No |
| 11 | Yes | 34.30 | Yes | No | No | 30 | 0 | Yes | Male | 60-64 | White | Yes | No | Poor | 15 | Yes | No | No |
| 12 | No | 28.71 | Yes | No | No | 0 | 0 | No | Female | 55-59 | White | No | Yes | Very good | 5 | No | No | No |
| 15 | No | 29.29 | Yes | No | No | 0 | 30 | Yes | Female | 60-64 | White | No | No | Good | 5 | No | No | No |
| 16 | No | 29.18 | No | No | No | 1 | 0 | No | Female | 50-54 | White | No | Yes | Very good | 6 | No | No | No |
| 17 | No | 26.26 | No | No | No | 5 | 2 | No | Female | 70-74 | White | No | No | Very good | 10 | No | No | No |
| 18 | No | 22.59 | Yes | No | No | 0 | 30 | Yes | Male | 70-74 | White | No, borderline diabetes | Yes | Good | 8 | No | No | No |
| 19 | No | 29.86 | Yes | No | No | 0 | 0 | Yes | Female | 75-79 | Black | Yes | No | Fair | 5 | No | Yes | No |
| 20 | No | 18.13 | No | No | No | 0 | 0 | No | Male | 80 or older | White | No | Yes | Excellent | 8 | No | No | Yes |
| 21 | No | 21.16 | No | No | No | 0 | 0 | No | Female | 80 or older | Black | No, borderline diabetes | No | Good | 8 | No | No | No |
| 22 | No | 28.90 | No | No | No | 2 | 5 | No | Female | 70-74 | White | Yes | No | Very good | 7 | No | No | No |
| 24 | No | 25.82 | Yes | No | No | 0 | 30 | No | Male | 80 or older | White | Yes | Yes | Fair | 8 | No | No | No |
| 25 | No | 25.75 | No | No | No | 0 | 0 | No | Female | 80 or older | White | No | Yes | Very good | 6 | No | No | Yes |
| 26 | No | 29.18 | Yes | No | No | 30 | 30 | Yes | Female | 60-64 | White | No | No | Poor | 6 | Yes | No | No |
Se muestran los primeros 20 registros de datos de validación.
kable(head(datos.entrenamiento, 20), caption = "Primeros 20 registros de datos de entrenamiento")
| HeartDisease | BMI | Smoking | AlcoholDrinking | Stroke | PhysicalHealth | MentalHealth | DiffWalking | Sex | AgeCategory | Race | Diabetic | PhysicalActivity | GenHealth | SleepTime | Asthma | KidneyDisease | SkinCancer | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | No | 20.34 | No | No | Yes | 0 | 0 | No | Female | 80 or older | White | No | Yes | Very good | 7 | No | No | No |
| 4 | No | 24.21 | No | No | No | 0 | 0 | No | Female | 75-79 | White | No | No | Good | 6 | No | No | Yes |
| 5 | No | 23.71 | No | No | No | 28 | 0 | Yes | Female | 40-44 | White | No | Yes | Very good | 8 | No | No | No |
| 7 | No | 21.63 | No | No | No | 15 | 0 | No | Female | 70-74 | White | No | Yes | Fair | 4 | Yes | No | Yes |
| 8 | No | 31.64 | Yes | No | No | 5 | 0 | Yes | Female | 80 or older | White | Yes | No | Good | 9 | Yes | No | No |
| 9 | No | 26.45 | No | No | No | 0 | 0 | No | Female | 80 or older | White | No, borderline diabetes | No | Fair | 5 | No | Yes | No |
| 10 | No | 40.69 | No | No | No | 0 | 0 | Yes | Male | 65-69 | White | No | Yes | Good | 10 | No | No | No |
| 11 | Yes | 34.30 | Yes | No | No | 30 | 0 | Yes | Male | 60-64 | White | Yes | No | Poor | 15 | Yes | No | No |
| 12 | No | 28.71 | Yes | No | No | 0 | 0 | No | Female | 55-59 | White | No | Yes | Very good | 5 | No | No | No |
| 15 | No | 29.29 | Yes | No | No | 0 | 30 | Yes | Female | 60-64 | White | No | No | Good | 5 | No | No | No |
| 16 | No | 29.18 | No | No | No | 1 | 0 | No | Female | 50-54 | White | No | Yes | Very good | 6 | No | No | No |
| 17 | No | 26.26 | No | No | No | 5 | 2 | No | Female | 70-74 | White | No | No | Very good | 10 | No | No | No |
| 18 | No | 22.59 | Yes | No | No | 0 | 30 | Yes | Male | 70-74 | White | No, borderline diabetes | Yes | Good | 8 | No | No | No |
| 19 | No | 29.86 | Yes | No | No | 0 | 0 | Yes | Female | 75-79 | Black | Yes | No | Fair | 5 | No | Yes | No |
| 20 | No | 18.13 | No | No | No | 0 | 0 | No | Male | 80 or older | White | No | Yes | Excellent | 8 | No | No | Yes |
| 21 | No | 21.16 | No | No | No | 0 | 0 | No | Female | 80 or older | Black | No, borderline diabetes | No | Good | 8 | No | No | No |
| 22 | No | 28.90 | No | No | No | 2 | 5 | No | Female | 70-74 | White | Yes | No | Very good | 7 | No | No | No |
| 24 | No | 25.82 | Yes | No | No | 0 | 30 | No | Male | 80 or older | White | Yes | Yes | Fair | 8 | No | No | No |
| 25 | No | 25.75 | No | No | No | 0 | 0 | No | Female | 80 or older | White | No | Yes | Very good | 6 | No | No | Yes |
| 26 | No | 29.18 | Yes | No | No | 30 | 30 | Yes | Female | 60-64 | White | No | No | Poor | 6 | Yes | No | No |
Se construye el modelo con los datos de entrenamiento mediante la función rpart().
El árbol no se puede visualizar cn todos los registros de los datos de entrenamiento, se hicieron las pruebas y se logra visualizar aproximadamente con 2000 registros de una muestra a partir de los datos de entrenamiento.
Si se construye el modelo con todos los registros de los datos de entrenamiento, pero no se puede observar la visualización del árbol y sus ramificaciones, razón por la cual se hace con una muestra de los datos de entrenamiento.
muestra <- sample(x = 1:nrow(datos.entrenamiento), size = 2000, replace = FALSE)
modelo.ac = rpart(data = datos.entrenamiento[muestra,],formula = HeartDisease ~ .)
El resumen del modelo muestra algunos estadísticos importantes:
summary(modelo.ac)
## Call:
## rpart(formula = HeartDisease ~ ., data = datos.entrenamiento[muestra,
## ])
## n= 2000
##
## CP nsplit rel error xerror xstd
## 1 0.01481481 0 1.0000000 1.000000 0.07110243
## 2 0.01388889 6 0.9111111 1.066667 0.07319178
## 3 0.01111111 8 0.8833333 1.077778 0.07353130
## 4 0.01000000 10 0.8611111 1.083333 0.07370016
##
## Variable importance
## DiffWalking GenHealth BMI AgeCategory
## 29 17 9 9
## PhysicalHealth SleepTime PhysicalActivity KidneyDisease
## 8 7 5 4
## Race Diabetic SkinCancer MentalHealth
## 4 3 1 1
##
## Node number 1: 2000 observations, complexity param=0.01481481
## predicted class=No expected loss=0.09 P(node) =1
## class counts: 1820 180
## probabilities: 0.910 0.090
## left son=2 (1735 obs) right son=3 (265 obs)
## Primary splits:
## DiffWalking splits as LR, improve=21.01656, (0 missing)
## GenHealth splits as LRLRL, improve=20.65783, (0 missing)
## AgeCategory splits as LLLLLLLLLRRRR, improve=19.60608, (0 missing)
## PhysicalHealth < 8.5 to the left, improve=13.59914, (0 missing)
## Stroke splits as LR, improve=11.36104, (0 missing)
## Surrogate splits:
## GenHealth splits as LLLRL, agree=0.878, adj=0.083, (0 split)
## PhysicalHealth < 20.5 to the left, agree=0.875, adj=0.053, (0 split)
## SleepTime < 15 to the left, agree=0.868, adj=0.004, (0 split)
##
## Node number 2: 1735 observations
## predicted class=No expected loss=0.06167147 P(node) =0.8675
## class counts: 1628 107
## probabilities: 0.938 0.062
##
## Node number 3: 265 observations, complexity param=0.01481481
## predicted class=No expected loss=0.2754717 P(node) =0.1325
## class counts: 192 73
## probabilities: 0.725 0.275
## left son=6 (129 obs) right son=7 (136 obs)
## Primary splits:
## GenHealth splits as LRLRL, improve=10.379400, (0 missing)
## PhysicalHealth < 8.5 to the left, improve= 4.554472, (0 missing)
## Stroke splits as LR, improve= 4.330766, (0 missing)
## AgeCategory splits as LLLLRLRRLRRRR, improve= 3.488679, (0 missing)
## KidneyDisease splits as LR, improve= 3.354429, (0 missing)
## Surrogate splits:
## PhysicalHealth < 7.5 to the left, agree=0.736, adj=0.457, (0 split)
## PhysicalActivity splits as RL, agree=0.626, adj=0.233, (0 split)
## Diabetic splits as LLRR, agree=0.585, adj=0.147, (0 split)
## SleepTime < 6.5 to the right, agree=0.581, adj=0.140, (0 split)
## AgeCategory splits as LLLLRLRRRLRRR, agree=0.570, adj=0.116, (0 split)
##
## Node number 6: 129 observations
## predicted class=No expected loss=0.1317829 P(node) =0.0645
## class counts: 112 17
## probabilities: 0.868 0.132
##
## Node number 7: 136 observations, complexity param=0.01481481
## predicted class=No expected loss=0.4117647 P(node) =0.068
## class counts: 80 56
## probabilities: 0.588 0.412
## left son=14 (38 obs) right son=15 (98 obs)
## Primary splits:
## AgeCategory splits as ---LRLLRLRRRR, improve=4.271182, (0 missing)
## Stroke splits as LR, improve=2.134265, (0 missing)
## BMI < 42.225 to the right, improve=1.912372, (0 missing)
## Race splits as LLRLLL, improve=1.648831, (0 missing)
## KidneyDisease splits as LR, improve=1.557552, (0 missing)
## Surrogate splits:
## BMI < 48.445 to the right, agree=0.743, adj=0.079, (0 split)
## Race splits as LRRRRR, agree=0.735, adj=0.053, (0 split)
##
## Node number 14: 38 observations
## predicted class=No expected loss=0.2105263 P(node) =0.019
## class counts: 30 8
## probabilities: 0.789 0.211
##
## Node number 15: 98 observations, complexity param=0.01481481
## predicted class=No expected loss=0.4897959 P(node) =0.049
## class counts: 50 48
## probabilities: 0.510 0.490
## left son=30 (13 obs) right son=31 (85 obs)
## Primary splits:
## Race splits as RLRLLR, improve=2.011266, (0 missing)
## BMI < 42.225 to the right, improve=1.814757, (0 missing)
## Stroke splits as LR, improve=1.646259, (0 missing)
## SleepTime < 6.5 to the right, improve=1.641661, (0 missing)
## Asthma splits as LR, improve=1.514386, (0 missing)
## Surrogate splits:
## BMI < 17.6 to the left, agree=0.888, adj=0.154, (0 split)
##
## Node number 30: 13 observations
## predicted class=No expected loss=0.2307692 P(node) =0.0065
## class counts: 10 3
## probabilities: 0.769 0.231
##
## Node number 31: 85 observations, complexity param=0.01481481
## predicted class=Yes expected loss=0.4705882 P(node) =0.0425
## class counts: 40 45
## probabilities: 0.471 0.529
## left son=62 (68 obs) right son=63 (17 obs)
## Primary splits:
## BMI < 24.735 to the right, improve=2.352941, (0 missing)
## GenHealth splits as -L-R-, improve=2.137887, (0 missing)
## SleepTime < 6.5 to the right, improve=1.941513, (0 missing)
## Asthma splits as LR, improve=1.742843, (0 missing)
## Stroke splits as LR, improve=1.145698, (0 missing)
## Surrogate splits:
## Diabetic splits as LRLL, agree=0.812, adj=0.059, (0 split)
##
## Node number 62: 68 observations, complexity param=0.01481481
## predicted class=No expected loss=0.4705882 P(node) =0.034
## class counts: 36 32
## probabilities: 0.529 0.471
## left son=124 (39 obs) right son=125 (29 obs)
## Primary splits:
## SleepTime < 6.5 to the right, improve=2.278463, (0 missing)
## Diabetic splits as L-RR, improve=1.798142, (0 missing)
## BMI < 30.975 to the left, improve=1.526642, (0 missing)
## KidneyDisease splits as LR, improve=1.325831, (0 missing)
## PhysicalHealth < 2.5 to the left, improve=1.144764, (0 missing)
## Surrogate splits:
## BMI < 39.7 to the left, agree=0.647, adj=0.172, (0 split)
## MentalHealth < 3.5 to the left, agree=0.632, adj=0.138, (0 split)
## AgeCategory splits as ----R--L-RLLL, agree=0.632, adj=0.138, (0 split)
## Race splits as L-R--L, agree=0.632, adj=0.138, (0 split)
## Asthma splits as LR, agree=0.632, adj=0.138, (0 split)
##
## Node number 63: 17 observations
## predicted class=Yes expected loss=0.2352941 P(node) =0.0085
## class counts: 4 13
## probabilities: 0.235 0.765
##
## Node number 124: 39 observations, complexity param=0.01388889
## predicted class=No expected loss=0.3589744 P(node) =0.0195
## class counts: 25 14
## probabilities: 0.641 0.359
## left son=248 (9 obs) right son=249 (30 obs)
## Primary splits:
## SleepTime < 7.5 to the left, improve=1.4376070, (0 missing)
## BMI < 34.735 to the left, improve=1.2564100, (0 missing)
## AgeCategory splits as -------L-LLRL, improve=0.7701465, (0 missing)
## PhysicalHealth < 8.5 to the left, improve=0.6802969, (0 missing)
## Diabetic splits as L-RR, improve=0.6802969, (0 missing)
## Surrogate splits:
## BMI < 25.44 to the left, agree=0.795, adj=0.111, (0 split)
## AgeCategory splits as -------L-RRRR, agree=0.795, adj=0.111, (0 split)
##
## Node number 125: 29 observations, complexity param=0.01111111
## predicted class=Yes expected loss=0.3793103 P(node) =0.0145
## class counts: 11 18
## probabilities: 0.379 0.621
## left son=250 (21 obs) right son=251 (8 obs)
## Primary splits:
## KidneyDisease splits as LR, improve=3.1789820, (0 missing)
## Diabetic splits as L-R-, improve=2.3814880, (0 missing)
## PhysicalActivity splits as LR, improve=1.3824450, (0 missing)
## Smoking splits as RL, improve=1.0397880, (0 missing)
## MentalHealth < 2 to the right, improve=0.9784047, (0 missing)
## Surrogate splits:
## SkinCancer splits as LR, agree=0.793, adj=0.25, (0 split)
##
## Node number 248: 9 observations
## predicted class=No expected loss=0.1111111 P(node) =0.0045
## class counts: 8 1
## probabilities: 0.889 0.111
##
## Node number 249: 30 observations, complexity param=0.01388889
## predicted class=No expected loss=0.4333333 P(node) =0.015
## class counts: 17 13
## probabilities: 0.567 0.433
## left son=498 (21 obs) right son=499 (9 obs)
## Primary splits:
## BMI < 34.735 to the left, improve=3.0507940, (0 missing)
## AgeCategory splits as -------R-LLRL, improve=2.1878790, (0 missing)
## PhysicalHealth < 8.5 to the left, improve=1.1440480, (0 missing)
## GenHealth splits as -L-R-, improve=0.8015152, (0 missing)
## MentalHealth < 1.5 to the left, improve=0.3482402, (0 missing)
## Surrogate splits:
## MentalHealth < 1.5 to the left, agree=0.733, adj=0.111, (0 split)
## AgeCategory splits as -------L-LRLL, agree=0.733, adj=0.111, (0 split)
## Race splits as R-L--L, agree=0.733, adj=0.111, (0 split)
## Diabetic splits as L-LR, agree=0.733, adj=0.111, (0 split)
##
## Node number 250: 21 observations, complexity param=0.01111111
## predicted class=No expected loss=0.4761905 P(node) =0.0105
## class counts: 11 10
## probabilities: 0.524 0.476
## left son=500 (14 obs) right son=501 (7 obs)
## Primary splits:
## PhysicalActivity splits as LR, improve=1.1904760, (0 missing)
## AgeCategory splits as ----R--L-RRRL, improve=0.7619048, (0 missing)
## MentalHealth < 2 to the right, improve=0.6428571, (0 missing)
## GenHealth splits as -L-R-, improve=0.5723443, (0 missing)
## BMI < 31.59 to the left, improve=0.2216450, (0 missing)
## Surrogate splits:
## AgeCategory splits as ----R--L-LLLL, agree=0.762, adj=0.286, (0 split)
## BMI < 26.21 to the right, agree=0.714, adj=0.143, (0 split)
## MentalHealth < 12.5 to the left, agree=0.714, adj=0.143, (0 split)
## SkinCancer splits as LR, agree=0.714, adj=0.143, (0 split)
##
## Node number 251: 8 observations
## predicted class=Yes expected loss=0 P(node) =0.004
## class counts: 0 8
## probabilities: 0.000 1.000
##
## Node number 498: 21 observations
## predicted class=No expected loss=0.2857143 P(node) =0.0105
## class counts: 15 6
## probabilities: 0.714 0.286
##
## Node number 499: 9 observations
## predicted class=Yes expected loss=0.2222222 P(node) =0.0045
## class counts: 2 7
## probabilities: 0.222 0.778
##
## Node number 500: 14 observations
## predicted class=No expected loss=0.3571429 P(node) =0.007
## class counts: 9 5
## probabilities: 0.643 0.357
##
## Node number 501: 7 observations
## predicted class=Yes expected loss=0.2857143 P(node) =0.0035
## class counts: 2 5
## probabilities: 0.286 0.714
Entonces una posible predicción sería siguiendo las reglas de asociación y condicionales del modelo.
prp(modelo.ac, main = "Arbol de Clasificación")
Se generan predicciones con datos de validación con el argumento class de clasificación, es decir, Yes o No.
prediciones_ac = predict(object = modelo.ac,newdata = datos.validacion, type = "class")
Head(predicciones, 20) los primeros 20 predicciones
head(prediciones_ac, 20)
## 1 3 6 13 14 23 31 40 52 55 60 67 69 79 84 87 88 89 94 96
## No No No No No No No No No No No No No No No No No No No No
## Levels: No Yes
Se construye una tabla comparativa con los valores de interés
t_comparativa = data.frame("real" = datos.validacion[,c('HeartDisease')],"prediccion"= prediciones_ac)
# t_comparativa <- t_comparativa %>%
# mutate(heartDiseasePred =
top20 = head(t_comparativa,20)
kable(top20,caption = 'Primeros 20 registros')
| real | prediccion | |
|---|---|---|
| 1 | No | No |
| 3 | No | No |
| 6 | Yes | No |
| 13 | No | No |
| 14 | No | No |
| 23 | No | No |
| 31 | No | No |
| 40 | No | No |
| 52 | No | No |
| 55 | No | No |
| 60 | No | No |
| 67 | No | No |
| 69 | No | No |
| 79 | Yes | No |
| 84 | No | No |
| 87 | No | No |
| 88 | No | No |
| 89 | No | No |
| 94 | No | No |
| 96 | No | No |
Una matriz de confusión es una herramienta que permite evaluación de un modelo de clasificación
Cada columna de la matriz representa el número de predicciones de cada clase, mientras que cada fila representa a las instancias en la clase real.
Uno de los beneficios de las matrices de confusión es que facilitan ver si el sistema está confundiendo las diferentes clases o resultados.
Hay que encontrar a cuantos casos se le atinaron utilizando los datos de validación y con ello encontrar el porcentaje de aciertos.
Se puede evaluar el modelo con la matriz de confusión interpretando algunos estadísticos:
Se evalúa el modelo de acuerdo a estas condiciones:
Accuracy o exactitud
accuracy=VP+VNVP+FP+FN+VNn=VP+FP+FN+VNaccuracy=VP+VNVP+FP+FN+VNn=VP+FP+FN+VN
Precision o precisión
precision=VPVP+FPprecision=VPVP+FP
Recall o recuperación
recall=VPVP+FNrecall=VPVP+FN
Especificity o especificidad (tasa de verdaderos negativos)
especificity=VNVN+FPespecificity=VNVN+FP
Factorizar las columnas
Factorizar en R significa categorizar con la función “as.factor” o “factor”
Se muestra a tabla con las columnas de interés para interpretar las predicciones.
t_comparativa$real = as.factor(t_comparativa$real)
t_comparativa$prediccion = as.factor(t_comparativa$prediccion)
kable(head(t_comparativa, 20), caption = "Tabla comparativa, primeros 20 registros")
| real | prediccion | |
|---|---|---|
| 1 | No | No |
| 3 | No | No |
| 6 | Yes | No |
| 13 | No | No |
| 14 | No | No |
| 23 | No | No |
| 31 | No | No |
| 40 | No | No |
| 52 | No | No |
| 55 | No | No |
| 60 | No | No |
| 67 | No | No |
| 69 | No | No |
| 79 | Yes | No |
| 84 | No | No |
| 87 | No | No |
| 88 | No | No |
| 89 | No | No |
| 94 | No | No |
| 96 | No | No |
Creando de la matriz de confusión con la función confusionMatrix() de la librería caret con las variables de interés: “real” y “prediccion”, que representan los valores reales y las predicciones respectivamente.
matrixConfusion <- confusionMatrix(t_comparativa$real,t_comparativa$prediccion)
matrixConfusion
## Confusion Matrix and Statistics
##
## Reference
## Prediction No Yes
## No 57549 935
## Yes 5019 455
##
## Accuracy : 0.9069
## 95% CI : (0.9046, 0.9091)
## No Information Rate : 0.9783
## P-Value [Acc > NIR] : 1
##
## Kappa : 0.1014
##
## Mcnemar's Test P-Value : <2e-16
##
## Sensitivity : 0.91978
## Specificity : 0.32734
## Pos Pred Value : 0.98401
## Neg Pred Value : 0.08312
## Prevalence : 0.97827
## Detection Rate : 0.89979
## Detection Prevalence : 0.91441
## Balanced Accuracy : 0.62356
##
## 'Positive' Class : No
##
El valor estadístico de Accuracy = Exactitud igual a 0.9069 significa un valor aproximado del 90.69; se interpreta que de cada 100 el modelo acierta en la predicción el 90.69% de las ocasiones.
El modelo se construyó solo con una muestra de 2000 registros de los datos de entrenamiento.
Si la métrica era que debiera tener un valor por encima del 70% el modelo se acepta pero debe compararse contra otro modelo de clasificación para ver cual es más eficiente en relación tan solo en el estadístico de exactitud.
Este valor de Accuracy = Exactitud deberá compararse contra otros modelos.
Se crea un registro de una persona con ciertas condiciones de salud.
BMI <- 38
Smoking <- 'Yes'
AlcoholDrinking = 'Yes'
Stroke <- 'Yes'
PhysicalHealth <- 2
MentalHealth = 5
DiffWalking = 'Yes'
Sex = 'Male'
AgeCategory = '70-74'
Race = 'Black'
Diabetic <- 'Yes'
PhysicalActivity = "No"
GenHealth = "Fair"
SleepTime = 12
Asthma = "Yes"
KidneyDisease = "Yes"
SkinCancer = 'No'
persona <- data.frame(BMI,Smoking, AlcoholDrinking, Stroke, PhysicalHealth, MentalHealth, DiffWalking, Sex, AgeCategory, Race, Diabetic, PhysicalActivity, GenHealth, SleepTime, Asthma, KidneyDisease, SkinCancer)
persona
## BMI Smoking AlcoholDrinking Stroke PhysicalHealth MentalHealth DiffWalking
## 1 38 Yes Yes Yes 2 5 Yes
## Sex AgeCategory Race Diabetic PhysicalActivity GenHealth SleepTime Asthma
## 1 Male 70-74 Black Yes No Fair 12 Yes
## KidneyDisease SkinCancer
## 1 Yes No
Se hace la predicción con estos valores:
prediccion <- predict(object = modelo.ac, newdata = persona, type = "class")
prediccion
## 1
## Yes
## Levels: No Yes
# prediccion <- prediccion$fit
# prediccion
Entonces la predicción es:
Si la predicción es ‘No’ entonces no tienen afección del corazón, en caso contrario de ‘Yes’ entonces implica que si tiene daño del corazón.
Se utilizará la semilla 1550 para la ejecución de los modelos de predicción.
prp(modelo.ac)
Según el árbol de clasificación saqué las siguientes conclusiones.
La persona seguramente tendrá problemas de corazón si se cumplen los siguientes casos;
Si tiene problemas para caminar, su salud es decente (fair) o peor, si es mayor a 35 años y si su índice de masa corporal es mayor o igual a 25.
Si tiene problemas para caminar, su salud es decente (fair) o peor, si es mayor a 35 años, si su índice de masa corporal es menor a 25, si duerme 7 o menos horas y si tiene problemas de riñón.
Si tiene problemas para caminar, su salud es decente (fair) o peor, si es mayor a 35 años, si su índice de masa corporal es menor a 25, si duerme 7 o menos horas, si tiene problemas de riñón y si no realiza actividades físicas.
Si tiene problemas para caminar, su salud es decente (fair) o peor, si es mayor a 35 años y si su índice de masa corporal es menor a 25, si duerme menos de 8 horas y si su índice de masa corporal es mayor a 35.
Según la matriz de confusión, el modelo tiene una certeza de .9069, osea, el modelo es eficaz el 90.69% de los casos. Obtuviendo un total de 57549 verdaderos positivos, 935 falsos positivos, 5019 verdaderos negativos y 455 falsos negativos.