# A tibble: 36 × 4
   `Plant Parts`   TAA   TPC   TFC
   <chr>         <dbl> <dbl> <dbl>
 1 Leaves        1365.  125.  466.
 2 Leaves        1371.  121.  467.
 3 Leaves        1426.  117.  471.
 4 Leaves        1529.  128.  494.
 5 Leaves        1404.  123.  474.
 6 Leaves        1450.  120.  482.
 7 Leaves        1402.  124.  505.
 8 Leaves        1400.  119.  486.
 9 Leaves        1426.  124.  476.
10 Rhizomes      1400. 1367.  144.
# … with 26 more rows
# ℹ Use `print(n = ...)` to see more rows

Descriptive Statistics on TAA


Attaching package: 'dplyr'
The following object is masked from 'package:gridExtra':

    combine
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
# A tibble: 4 × 4
  `Plant Parts` count  mean     sd
  <chr>         <int> <dbl>  <dbl>
1 Leaves            9 1419.  49.1 
2 Pericarp          9  100.   2.59
3 Rhizomes          9 1341.  67.1 
4 Seeds             9 4109. 237.  

Descriptive Statistics on TPC

# A tibble: 4 × 4
  `Plant Parts` count   mean     sd
  <chr>         <int>  <dbl>  <dbl>
1 Leaves            9   122.  49.1 
2 Pericarp          9   339.   2.59
3 Rhizomes          9  1343.  67.1 
4 Seeds             9 15038. 237.  

Descriptive Statistics on TAA

# A tibble: 4 × 4
  `Plant Parts` count  mean     sd
  <chr>         <int> <dbl>  <dbl>
1 Leaves            9 480.   49.1 
2 Pericarp          9  14.9   2.59
3 Rhizomes          9 145.   67.1 
4 Seeds             9 217.  237.  

Significant Difference Among Plant Parts based on TAA

                      Df   Sum Sq  Mean Sq F value Pr(>F)    
Barriga$`Plant Parts`  3 77061769 25687256    1628 <2e-16 ***
Residuals             32   504984    15781                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post Hoc Test

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = Barriga$TAA ~ Barriga$`Plant Parts`)

$`Barriga$`Plant Parts``
                         diff        lwr         upr     p adj
Pericarp-Leaves   -1318.87640 -1479.3207 -1158.43208 0.0000000
Rhizomes-Leaves     -78.52684  -238.9712    81.91748 0.5536158
Seeds-Leaves       2689.66599  2529.2217  2850.11031 0.0000000
Rhizomes-Pericarp  1240.34956  1079.9052  1400.79388 0.0000000
Seeds-Pericarp     4008.54239  3848.0981  4168.98671 0.0000000
Seeds-Rhizomes     2768.19283  2607.7485  2928.63715 0.0000000

Significant Difference Among Plant Parts based on TPC

                      Df    Sum Sq   Mean Sq F value Pr(>F)    
Barriga$`Plant Parts`  3 1.414e+09 471493445   21363 <2e-16 ***
Residuals             32 7.063e+05     22071                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post Hoc Test

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = Barriga$TPC ~ Barriga$`Plant Parts`)

$`Barriga$`Plant Parts``
                        diff         lwr       upr     p adj
Pericarp-Leaves     217.0526    27.30819   406.797 0.0199631
Rhizomes-Leaves    1220.2242  1030.47983  1409.969 0.0000000
Seeds-Leaves      14915.9438 14726.19937 15105.688 0.0000000
Rhizomes-Pericarp  1003.1716   813.42725  1192.916 0.0000000
Seeds-Pericarp    14698.8912 14509.14679 14888.636 0.0000000
Seeds-Rhizomes    13695.7195 13505.97515 13885.464 0.0000000

Significant Difference Among Plant Parts based on TFC

                      Df  Sum Sq Mean Sq F value Pr(>F)    
Barriga$`Plant Parts`  3 1037450  345817    5319 <2e-16 ***
Residuals             32    2081      65                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post Hoc Test

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = Barriga$TFC ~ Barriga$`Plant Parts`)

$`Barriga$`Plant Parts``
                        diff        lwr       upr p adj
Pericarp-Leaves   -465.37099 -475.66964 -455.0724     0
Rhizomes-Leaves   -335.00208 -345.30072 -324.7034     0
Seeds-Leaves      -263.51202 -273.81066 -253.2134     0
Rhizomes-Pericarp  130.36891  120.07027  140.6676     0
Seeds-Pericarp     201.85897  191.56033  212.1576     0
Seeds-Rhizomes      71.49006   61.19142   81.7887     0

Correlation between TAA and TPC

[1] 0.9356174

Correlation between TAA and TFC

[1] 0.2759627

Correlation between TPC and TFC

[1] -0.02135804
# A tibble: 36 × 4
   `Plant Parts`   TAA   TPC   TFC
   <chr>         <dbl> <dbl> <dbl>
 1 Leaves        1365.  125.  466.
 2 Leaves        1371.  121.  467.
 3 Leaves        1426.  117.  471.
 4 Leaves        1529.  128.  494.
 5 Leaves        1404.  123.  474.
 6 Leaves        1450.  120.  482.
 7 Leaves        1402.  124.  505.
 8 Leaves        1400.  119.  486.
 9 Leaves        1426.  124.  476.
10 Rhizomes      1400. 1367.  144.
# … with 26 more rows
# ℹ Use `print(n = ...)` to see more rows

Correlation For Leaves, etc Correlation

For Leaves

# A tibble: 9 × 4
  `Plant Parts`   TAA   TPC   TFC
  <chr>         <dbl> <dbl> <dbl>
1 Leaves        1365.  125.  466.
2 Leaves        1371.  121.  467.
3 Leaves        1426.  117.  471.
4 Leaves        1529.  128.  494.
5 Leaves        1404.  123.  474.
6 Leaves        1450.  120.  482.
7 Leaves        1402.  124.  505.
8 Leaves        1400.  119.  486.
9 Leaves        1426.  124.  476.

Correlation between TAA and TPC

[1] 0.3491988

Correlation between TAA and TFC

[1] 0.480656

Correlation between TPC and TFC

[1] 0.3232221

For Rhizomes

# A tibble: 9 × 4
  `Plant Parts`   TAA   TPC   TFC
  <chr>         <dbl> <dbl> <dbl>
1 Rhizomes      1400. 1367.  144.
2 Rhizomes      1381. 1317.  138.
3 Rhizomes      1440. 1289.  138.
4 Rhizomes      1367. 1377.  149.
5 Rhizomes      1363. 1394.  147.
6 Rhizomes      1258. 1387.  150.
7 Rhizomes      1338. 1339.  157.
8 Rhizomes      1267. 1306.  145.
9 Rhizomes      1254. 1306.  140.

Correlation between TAA and TPC

[1] -0.02764104

Correlation between TAA and TFC

[1] -0.2879499

Correlation between TPC and TFC

[1] 0.5754173

For Seeds

# A tibble: 9 × 4
  `Plant Parts`   TAA    TPC   TFC
  <chr>         <dbl>  <dbl> <dbl>
1 Seeds         3883. 15446.  221.
2 Seeds         3629. 15183.  215.
3 Seeds         4302. 15493.  208.
4 Seeds         4309. 15152.  219.
5 Seeds         4031. 14749.  213.
6 Seeds         4287. 14873.  231.
7 Seeds         4027. 14811.  213.
8 Seeds         4290. 14935.  211.
9 Seeds         4223. 14702.  219.

Correlation between TAA and TPC

[1] -0.1723348

Correlation between TAA and TFC

[1] 0.1015215

Correlation between TPC and TFC

[1] -0.1818465

For Pericarp

# A tibble: 9 × 4
  `Plant Parts`   TAA   TPC   TFC
  <chr>         <dbl> <dbl> <dbl>
1 Pericarp      102.   348.  13.0
2 Pericarp       95.4  327.  12.6
3 Pericarp       99.6  338.  12.6
4 Pericarp      102.   343.  14.8
5 Pericarp      100.   337.  16.0
6 Pericarp      101.   344.  17.1
7 Pericarp       97.6  351.  15.1
8 Pericarp      104.   329.  16.9
9 Pericarp      102.   336.  15.7

Correlation between TAA and TPC

[1] 0.1125879

Correlation between TAA and TFC

[1] 0.5376003

Correlation between TPC and TFC

[1] 0.02218679