Data

The variables were collected from two main data sources For the Venture Capital (VC) data we used Venture Express. The original data start at 1960 and has all the investments made by VC firms in start ups. We aggregated the data at MSA level creating the following variables

VC_sum = All the investments made in all the companies at the same MSA

Investors = Total number of investment firms at the same MSA

sum_round_numbers = Total amount of investment rounds at the same MSA

num_comp_per_aggreg = Amount of invested companies aggregated at the same MSA

treated = 1 if the MSA is treated

post = 1 if year = to year treated and above

years_to_treat = -1000 if never treated otherwise the remaining periods before the year that is treated

year_treated = 1000 if never treated otherwise the number of years to treat starting from the first year in the dataset (2002)

round_year = years starting from 2002

year = number of the year 1 if 2002, 18 if 2019 - just counting the years

The second data source was the Media closures

We manually checked all the data and convert from county level to MSA, for that we had to drop 4 data points that had no matching with MSA. We use Media Closure as the exogenous shock to analyse if any of the VC variables would be affected by.

#preprocessing
a <- cbind( news_MSA_VC$post, news_MSA_VC$treated ,news_MSA_VC$pop ,news_MSA_VC$GDP)
news_MSA_VC$GDP_per <- news_MSA_VC$GDP/news_MSA_VC$pop
library(knitr)  # for making table (optional)
library(fastDummies)  # main package
## Warning: package 'fastDummies' was built under R version 4.1.3
## Making dummy variables for a SPECIFIC categorical variable ##
#news_MSA_VC <- fastDummies::dummy_cols(news_MSA_VC, select_columns = "MSA")   # create dummy variables for year
#news_MSA_VC <- fastDummies::dummy_cols(news_MSA_VC, select_columns = "round_year")   # create dummy variables for year

Analysis

We analyzed several variables, but we dropped the ones that were a clear spurious correlation.

The 3 analysis below are significant and the 2 additional not significant variables were mentioned at the end.

Venture Capital Investments

TWFE Difference in Differences

Venture Capital

Regular OLS with FE DID

fit <- plm(log(vc_sum) ~ I(post*treated)+ treated + GDP_per, data=news_MSA_VC,index=c("MSA", "round_year"), model="pooling", effect="individual")
#options(max.print=1000000)

fit <- plm(log(vc_sum) ~ I(post*treated)+ treated + GDP_per, data=news_MSA_VC,index=c("MSA", "round_year"), model="within", effect="individual")

fit <- plm(log(vc_sum) ~ I(post*treated)+ treated + GDP_per, data=news_MSA_VC,index=c("MSA", "round_year"), model="within", effect="twoways")

summary(fit) 
## Twoways effects Within Model
## 
## Call:
## plm(formula = log(vc_sum) ~ I(post * treated) + treated + GDP_per, 
##     data = news_MSA_VC, effect = "twoways", model = "within", 
##     index = c("MSA", "round_year"))
## 
## Balanced Panel: n = 236, T = 18, N = 4248
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -16.49656  -1.74869  -0.18943   0.92269  17.71184 
## 
## Coefficients:
##                    Estimate Std. Error t-value Pr(>|t|)   
## I(post * treated) -0.243263   0.523300 -0.4649 0.642055   
## GDP_per           -0.055900   0.020546 -2.7207 0.006542 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    94558
## Residual Sum of Squares: 94377
## R-Squared:      0.001912
## Adj. R-Squared: -0.061578
## F-statistic: 3.82462 on 2 and 3993 DF, p-value: 0.021907

TWFE

# "Naive" TWFE DiD (note that the time to treatment for the never treated is -1000)
# (by using ref = c(-1, -1000) we exclude the period just before the treatment and 
# the never treated)

res_twfe = feols(vc_sum ~  i(years_to_treat, ref = c(-1, -1000)) + GDP_per | MSA + year, news_MSA_VC)
summary(res_twfe, vcov = "twoway")
## OLS estimation, Dep. Var.: vc_sum
## Observations: 4,248 
## Fixed-effects: MSA: 236,  year: 18
## Standard-errors: Clustered (MSA & year) 
##                       Estimate Std. Error   t value Pr(>|t|)    
## years_to_treat::-17 -325257610  192460949 -1.689993 0.109282    
## years_to_treat::-16 -339368911  196785540 -1.724562 0.102740    
## years_to_treat::-15 -314322033  179783751 -1.748334 0.098440 .  
## years_to_treat::-14 -668111544  595991135 -1.121009 0.277870    
## years_to_treat::-13 -392516008  275510044 -1.424689 0.172347    
## years_to_treat::-12 -313193681  193325399 -1.620034 0.123625    
## years_to_treat::-11 -425176002  218690392 -1.944192 0.068612 .  
## years_to_treat::-10 -364726659  194839902 -1.871930 0.078524 .  
## years_to_treat::-9  -634898995  352727396 -1.799971 0.089637 .  
## years_to_treat::-8  -553119259  341278050 -1.620729 0.123475    
## years_to_treat::-7  -296150115  349677581 -0.846923 0.408803    
## years_to_treat::-6  -313333164  213419127 -1.468159 0.160321    
## years_to_treat::-5  -297795848  225524018 -1.320462 0.204183    
## years_to_treat::-4  -143717313  204207553 -0.703781 0.491098    
## years_to_treat::-3  -176211186  129333190 -1.362459 0.190832    
## years_to_treat::-2   -85548694   65594555 -1.304204 0.209547    
## years_to_treat::0    124564011  118416564  1.051914 0.307563    
## years_to_treat::1    530241608  378330366  1.401531 0.179048    
## years_to_treat::2    349867433  284328294  1.230505 0.235263    
## years_to_treat::3    814474419  537105252  1.516415 0.147789    
## years_to_treat::4    911758057  699423943  1.303584 0.209754    
## years_to_treat::5   1043704935  678206219  1.538920 0.142229    
## years_to_treat::6   1255697171  927402175  1.353994 0.193465    
## years_to_treat::7   1811456461 1493695675  1.212735 0.241815    
## years_to_treat::8   2487700319 2167261188  1.147854 0.266926    
## years_to_treat::9    554558261  463206601  1.197216 0.247651    
## years_to_treat::10   578144145  467225509  1.237399 0.232759    
## years_to_treat::11   816201323  546804978  1.492674 0.153849    
## years_to_treat::12   963252457  543765128  1.771449 0.094410 .  
## years_to_treat::13   750764156  611040969  1.228664 0.235936    
## years_to_treat::14   958416380  673141182  1.423797 0.172601    
## GDP_per               48423416   24911889  1.943787 0.068664 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 633,309,507.0     Adj. R2: 0.654397
##                       Within R2: 0.144399

Staggered difference-in-differences (Sun and Abraham, 2020)

# To implement the Sun and Abraham (2020) method,
# we use the sunab(cohort, period) function
res_sa20 = feols(vc_sum ~  sunab(year_treated, year) + GDP_per| MSA + year, news_MSA_VC) # specifying the cluster here doesn't change anything
summary(res_sa20, vcov = "twoway")
## Variance contained negative values in the diagonal and was 'fixed' (a la Cameron, Gelbach & Miller 2011).
## OLS estimation, Dep. Var.: vc_sum
## Observations: 4,248 
## Fixed-effects: MSA: 236,  year: 18
## Standard-errors: Clustered (MSA & year) 
##               Estimate Std. Error   t value   Pr(>|t|)    
## year::-17    6762088.4   55417504  0.122021 9.0431e-01    
## year::-16     155323.6   64296798  0.002416 9.9810e-01    
## year::-15  -10580001.3   40729384 -0.259763 7.9817e-01    
## year::-14 -516763850.8   64588736 -8.000835 3.6447e-07 ***
## year::-13 -245998949.2   33079668 -7.436560 9.7222e-07 ***
## year::-12 -123533409.4   65612633 -1.882769 7.6961e-02 .  
## year::-11 -237698565.9   44539637 -5.336787 5.4502e-05 ***
## year::-10 -244149218.2   66201250 -3.687985 1.8248e-03 ** 
## year::-9  -356056678.7  193248949 -1.842477 8.2916e-02 .  
## year::-8  -278262083.1  206804258 -1.345534 1.9613e-01    
## year::-7  -149734192.0  160625615 -0.932194 3.6429e-01    
## year::-6  -213568372.8  132827590 -1.607862 1.2628e-01    
## year::-5  -221037647.1  104328450 -2.118671 4.9148e-02 *  
## year::-4   -97037291.3   90224615 -1.075508 2.9718e-01    
## year::-3  -171092670.4   60376201 -2.833777 1.1460e-02 *  
## year::-2   -85792707.4  102954478 -0.833307 4.1623e-01    
## year::0    125685084.4   75327860  1.668507 1.1353e-01    
## year::1    523026895.9  134469053  3.889571 1.1781e-03 ** 
## year::2    338551600.6   90735099  3.731209 1.6613e-03 ** 
## year::3    779769425.2  339184353  2.298955 3.4459e-02 *  
## year::4    891523062.8  530039312  1.681994 1.1085e-01    
## year::5    994344518.2  562826015  1.766700 9.5226e-02 .  
## year::6   1066863223.7  703836935  1.515782 1.4795e-01    
## year::7   1636418188.0 1056079929  1.549521 1.3967e-01    
## year::8   2346784406.6 1428712419  1.642587 1.1884e-01    
## year::9    -22375578.9   42777043 -0.523074 6.0767e-01    
## year::10     4769657.4   53502373  0.089149 9.3001e-01    
## year::11    74847284.9   39386587  1.900324 7.4487e-02 .  
## year::12   297931186.3   19821022 15.031071 2.9961e-11 ***
## year::13   -17657917.6   54543848 -0.323738 7.5009e-01    
## year::14    71339868.6   72927882  0.978225 3.4168e-01    
## GDP_per     35895167.5   15666551  2.291198 3.4996e-02 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 491,383,681.9     Adj. R2: 0.782443
##                       Within R2: 0.484913
# Plot the two TWFE results
iplot(list(res_twfe, res_sa20), sep = 0.5)
legend("topleft", col = c(1, 2), pch = c(20, 17), 
       legend = c("TWFE", "Sun & Abraham (2020)"))

### ATT agregated

# The full ATT
summary(res_sa20, agg = "att")
## OLS estimation, Dep. Var.: vc_sum
## Observations: 4,248 
## Fixed-effects: MSA: 236,  year: 18
## Standard-errors: Clustered (MSA) 
##          Estimate Std. Error t value  Pr(>|t|)    
## ATT     689288892  363394733 1.89680 0.0590800 .  
## GDP_per  35895168   13261352 2.70675 0.0072931 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 491,383,681.9     Adj. R2: 0.782443
##                       Within R2: 0.484913
# Full disaggregation (you could have used summary instead of etable)
#head(etable(res_sa20, agg = FALSE), 100)
#summary(res_sa20, agg = FALSE)

fixed-effects additional specifications using FEOLS function

est_comb = feols(vc_sum~ I(post*treated)+ treated + GDP_per | treated^year_treated , news_MSA_VC )
## The variable 'treated' has been removed because of collinearity (see $collin.var).
summary(est_comb, vcov = "twoway")
## OLS estimation, Dep. Var.: vc_sum
## Observations: 4,248 
## Fixed-effects: treated^year_treated: 13
## Standard-errors: Clustered (treated^year_treated) 
##                    Estimate Std. Error t value Pr(>|t|)    
## I(post * treated) 984310610  634091637 1.55232 0.146550    
## GDP_per            31401262   14850525 2.11449 0.056082 .  
## ... 1 variable was removed because of collinearity (treated)
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 871,593,539.8     Adj. R2: 0.387156
##                       Within R2: 0.170276
#fixef(est_comb)[[1]]

Poisson, generalized linear models and negative binomial fixed-effect estimations Venture Capital Summary

news_MSA_VC['postxtreatment']=news_MSA_VC$post*news_MSA_VC$treated
res_fepois_vc = fepois(vc_sum ~  postxtreatment +GDP_per| MSA + round_year , data=news_MSA_VC)
res_feols_vc = feols(vc_sum~ postxtreatment+ GDP_per| MSA + round_year, news_MSA_VC )
res_feglm_vc = feglm(vc_sum ~  postxtreatment +GDP_per| MSA + round_year , data=news_MSA_VC)
res_fenegbin_vc = fenegbin(vc_sum ~  postxtreatment +GDP_per| MSA + round_year , data=news_MSA_VC)

etable(res_fepois_vc, res_feols_vc, res_feglm_vc,res_fenegbin_vc,  cluster = "MSA",
         headers = c("Poisson","Poisson", "GLM", "binomial"))
##                      res_fepois_vc                  res_feols_vc
##                            Poisson                       Poisson
## Dependent Var.:             vc_sum                        vc_sum
##                                                                 
## postxtreatment  0.6394*** (0.1897) 980,836,291.3 (610,024,338.4)
## GDP_per            0.0030 (0.0049)  49,266,092.6. (25,395,424.5)
## Fixed-Effects:  ------------------ -----------------------------
## MSA                            Yes                           Yes
## round_year                     Yes                           Yes
## _______________ __________________ _____________________________
## Family                     Poisson                           OLS
## S.E.: Clustered            by: MSA                       by: MSA
## Observations                 4,248                         4,248
## Squared Cor.               0.91234                       0.66500
## Pseudo R2                  0.91717                       0.02457
## BIC                       3.62e+11                     186,531.2
## Over-dispersion                 --                            --
## 
##                                  res_feglm_vc  res_fenegbin_vc
##                                           GLM         binomial
## Dependent Var.:                        vc_sum           vc_sum
##                                                               
## postxtreatment  980,836,291.3 (610,024,338.4)  0.3148 (0.3527)
## GDP_per          49,266,092.6. (25,395,424.5) -0.0087 (0.0154)
## Fixed-Effects:  ----------------------------- ----------------
## MSA                                       Yes              Yes
## round_year                                Yes              Yes
## _______________ _____________________________ ________________
## Family                   gaussian("identity")        Neg. Bin.
## S.E.: Clustered                       by: MSA          by: MSA
## Observations                            4,248            4,248
## Squared Cor.                          0.66500          0.74756
## Pseudo R2                             0.02457          0.05354
## BIC                                 186,533.2         94,106.6
## Over-dispersion                            --          0.14325
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Additional controls for Venture Capital

news_MSA_VC['postxtreatment']=news_MSA_VC$post*news_MSA_VC$treated
res_fepois = fepois(num_comp_per_aggreg ~  postxtreatment +GDP_per| MSA + year , data=news_MSA_VC)
## NOTE: 18/0 fixed-effects (324 observations) removed because of only 0 outcomes.
res_fenegbin = fepois(Investors ~ postxtreatment +GDP_per| MSA + year, data=news_MSA_VC)
## NOTE: 18/0 fixed-effects (324 observations) removed because of only 0 outcomes.
res_feols = fepois(sum_round_numbers ~ postxtreatment +GDP_per| MSA + year, data=news_MSA_VC)
## NOTE: 18/0 fixed-effects (324 observations) removed because of only 0 outcomes.
#summary(res_sa20, cluster = "MSA")
etable(res_fepois,res_fenegbin,res_feols,  cluster = "MSA",
         headers = c("Poisson","Poisson", "Poisson"))
##                          res_fepois      res_fenegbin           res_feols
##                             Poisson           Poisson             Poisson
## Dependent Var.: num_comp_per_aggreg         Investors   sum_round_numbers
##                                                                          
## postxtreatment      0.1539 (0.1243)  0.3209. (0.1759)     0.0298 (0.1207)
## GDP_per          -0.0082** (0.0026) -0.0064. (0.0036) -0.0144*** (0.0019)
## Fixed-Effects:  ------------------- ----------------- -------------------
## MSA                             Yes               Yes                 Yes
## year                            Yes               Yes                 Yes
## _______________ ___________________ _________________ ___________________
## S.E.: Clustered             by: MSA           by: MSA             by: MSA
## Observations                  3,924             3,924               3,924
## Squared Cor.                0.97967           0.96534             0.97559
## Pseudo R2                   0.94451           0.96775             0.96640
## BIC                        14,868.1          28,291.7            38,976.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sum Rounds

res_fepois = fepois(sum_round_numbers ~  postxtreatment | MSA + year, data=news_MSA_VC)
## NOTE: 18/0 fixed-effects (324 observations) removed because of only 0 outcomes.
res_fenegbin = fenegbin(sum_round_numbers ~ postxtreatment | MSA + year, data=news_MSA_VC)
## NOTE: 18/0 fixed-effects (324 observations) removed because of only 0 outcomes.
res_feols = feols(sum_round_numbers ~ postxtreatment | MSA + year, data=news_MSA_VC)
#summary(res_sa20, cluster = "MSA")
etable(res_fepois,res_fenegbin,res_feols,  cluster = "MSA",
         headers = c("Poisson","Negative Binomial", "Gaussian"))
##                        res_fepois      res_fenegbin         res_feols
##                           Poisson Negative Binomial          Gaussian
## Dependent Var.: sum_round_numbers sum_round_numbers sum_round_numbers
##                                                                      
## postxtreatment    0.0910 (0.1423)  -0.0227 (0.1580)     105.7 (65.43)
## Fixed-Effects:  ----------------- ----------------- -----------------
## MSA                           Yes               Yes               Yes
## year                          Yes               Yes               Yes
## _______________ _________________ _________________ _________________
## Family                    Poisson         Neg. Bin.               OLS
## S.E.: Clustered           by: MSA           by: MSA           by: MSA
## Observations                3,924             3,924             4,248
## Squared Cor.              0.95627           0.88151           0.92286
## Pseudo R2                 0.96258           0.24652           0.18419
## BIC                      43,175.0          23,110.1          50,328.6
## Over-dispersion                --            1.7935                --
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Investors

res_fepois = fepois(Investors ~  postxtreatment | MSA + year, data=news_MSA_VC)
## NOTE: 18/0 fixed-effects (324 observations) removed because of only 0 outcomes.
res_fenegbin = fenegbin(Investors ~ postxtreatment | MSA + year, data=news_MSA_VC)
## NOTE: 18/0 fixed-effects (324 observations) removed because of only 0 outcomes.
res_feols = feols(Investors ~ postxtreatment | MSA + year, data=news_MSA_VC)
#summary(res_sa20, cluster = "MSA")
etable(res_fepois,res_fenegbin,res_feols,  cluster = "MSA",
         headers = c("Poisson","Negative Binomial", "Gaussian"))
##                       res_fepois      res_fenegbin     res_feols
##                          Poisson Negative Binomial      Gaussian
## Dependent Var.:        Investors         Investors     Investors
##                                                                 
## postxtreatment  0.3598* (0.1775)   0.0576 (0.1140) 78.66 (63.71)
## Fixed-Effects:  ----------------   --------------- -------------
## MSA                          Yes               Yes           Yes
## year                         Yes               Yes           Yes
## _______________ ________________   _______________ _____________
## Family                   Poisson         Neg. Bin.           OLS
## S.E.: Clustered          by: MSA           by: MSA       by: MSA
## Observations               3,924             3,924         4,248
## Squared Cor.             0.96295           0.93662       0.91541
## Pseudo R2                0.96701           0.29096       0.18387
## BIC                     28,892.4          20,485.6      48,693.5
## Over-dispersion               --            3.6591            --
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Matching

PSM

#The numbers changed after we drop some MSA due to the merge process with POP and GDP
library("MatchIt")
## Warning: package 'MatchIt' was built under R version 4.1.3
#m.out0 <- matchit(treated ~ vc_sum , data=news_MSA_VC,index=c("MSA", "round_year"),
#                 method = NULL, distance = "glm")
#summary(m.out0)

#all it once
m.PSM <- matchit(treated ~ vc_sum+Investors+sum_round_numbers+num_comp_per_aggreg+GDP_per, data=news_MSA_VC,index=c("MSA", "round_year"),
                 method = NULL, distance = "glm")
summary(m.PSM)
## 
## Call:
## matchit(formula = treated ~ vc_sum + Investors + sum_round_numbers + 
##     num_comp_per_aggreg + GDP_per, data = news_MSA_VC, method = NULL, 
##     distance = "glm", index = c("MSA", "round_year"))
## 
## Summary of Balance for All Data:
##                      Means Treated  Means Control Std. Mean Diff. Var. Ratio
## distance                    0.1682         0.1030          0.3317    19.3641
## vc_sum              821651853.5641 112237125.6032          0.2432    29.1936
## Investors                 175.4915        23.6225          0.3075    19.9411
## sum_round_numbers         231.6004        37.7368          0.3240    14.9439
## num_comp_per_aggreg        50.5000         8.1161          0.3217    18.1540
## GDP_per                    49.3726        46.0226          0.2761     1.0568
##                     eCDF Mean eCDF Max
## distance               0.1048   0.1538
## vc_sum                 0.1932   0.2554
## Investors              0.1128   0.2640
## sum_round_numbers      0.1210   0.2540
## num_comp_per_aggreg    0.1017   0.2665
## GDP_per                0.0825   0.1468
## 
## 
## Sample Sizes:
##           Control Treated
## All          3780     468
## Matched      3780     468
## Unmatched       0       0
## Discarded       0       0
plot(m.PSM, type = "qq", interactive = FALSE,
     which.xs = c("vc_sum","Investors", "sum_round_numbers", "num_comp_per_aggreg","GDP_per"))

m.dataCem <- match.data(m.PSM)
plot(summary(m.PSM))

### Coarsened Exact Matching (method = “cem”)

m.Cem <- matchit(treated ~ vc_sum+GDP_per, data=news_MSA_VC,index=c("MSA", "round_year"),
                 method = "cem", distance = "mahvars")
## Warning: The argument 'distance' is not used with method = "cem" and will be
## ignored.
#summary(m.Cem)

m.dataCem <- match.data(m.Cem)

fit.cem <- lm(vc_sum ~  treated + factor(MSA) + factor(round_year),index=c("MSA", "round_year"), data = m.dataCem, weights = weights)
## Warning: In lm.wfit(x, y, w, offset = offset, singular.ok = singular.ok, 
##     ...) :
##  extra argument 'index' will be disregarded
#coeftest(fit.cem, vcov. = vcovCL, cluster = ~subclass)

Nearest m.data1

m.nearest <- matchit(treated ~ vc_sum+Investors+sum_round_numbers+num_comp_per_aggreg, data=news_MSA_VC,index=c("MSA", "round_year"),
                 method = "nearest", distance = "glm")
summary(m.nearest)
## 
## Call:
## matchit(formula = treated ~ vc_sum + Investors + sum_round_numbers + 
##     num_comp_per_aggreg, data = news_MSA_VC, method = "nearest", 
##     distance = "glm", index = c("MSA", "round_year"))
## 
## Summary of Balance for All Data:
##                      Means Treated  Means Control Std. Mean Diff. Var. Ratio
## distance                    0.1654         0.1033          0.3289    16.3627
## vc_sum              821651853.5641 112237125.6032          0.2432    29.1936
## Investors                 175.4915        23.6225          0.3075    19.9411
## sum_round_numbers         231.6004        37.7368          0.3240    14.9439
## num_comp_per_aggreg        50.5000         8.1161          0.3217    18.1540
##                     eCDF Mean eCDF Max
## distance               0.1837   0.2680
## vc_sum                 0.1932   0.2554
## Investors              0.1128   0.2640
## sum_round_numbers      0.1210   0.2540
## num_comp_per_aggreg    0.1017   0.2665
## 
## 
## Summary of Balance for Matched Data:
##                      Means Treated  Means Control Std. Mean Diff. Var. Ratio
## distance                    0.1654         0.1397          0.1363     2.5713
## vc_sum              821651853.5641 418678120.6581          0.1382     5.9291
## Investors                 175.4915        98.0470          0.1568     2.9993
## sum_round_numbers         231.6004       147.5085          0.1405     2.4760
## num_comp_per_aggreg        50.5000        31.0235          0.1478     2.9573
##                     eCDF Mean eCDF Max Std. Pair Dist.
## distance               0.0020   0.0577          0.1366
## vc_sum                 0.0254   0.0491          0.1903
## Investors              0.0335   0.0769          0.1874
## sum_round_numbers      0.0216   0.0662          0.1906
## num_comp_per_aggreg    0.0294   0.0662          0.1703
## 
## Sample Sizes:
##           Control Treated
## All          3780     468
## Matched       468     468
## Unmatched    3312       0
## Discarded       0       0