datadf <- data.frame(xvalues=c(5.6, 6.3, 7, 7.7, 8.4), yvalues=c(8.8, 12.4, 14.8, 18.2, 20.8))
print (datadf)
## xvalues yvalues
## 1 5.6 8.8
## 2 6.3 12.4
## 3 7.0 14.8
## 4 7.7 18.2
## 5 8.4 20.8
library(ggplot2)
ggplot(data=datadf, aes(x=xvalues, y=yvalues)) + geom_point()
m1 = lm(yvalues ~ xvalues, data=datadf)
summary(m1)
##
## Call:
## lm(formula = yvalues ~ xvalues, data = datadf)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## xvalues 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
ggplot(datadf, aes(xvalues, yvalues)) + geom_point(colour="blue", size=2) +
geom_abline(aes(slope=round(m1$coefficients[2], 2), intercept=round(m1$coefficients[1], 2))) +
xlab("xvalues") + ylab("yvalues") + labs(title = "xvalues vs. yvalues")
Partial Derivative
f_x=24−6y^2 f_y=−12xy−24y^2
Critical Points Set f_x=0
24−6y^2=0 24=6y^2 4=y^2 ±2=y
Substitute y-values into f_y=0
−12xy−24y^2=0 xy+2y^2=0 Substitute y=2
x(2)+2(2)^2=0
2x+8=0 2x=−8 x=−4
Substitute y=-2
x(−2)+2(−2)^2=0
−2x+8=0 −2x=−8 x=4 Substitute (x,y) values for z
f(x,y)=24x−6xy2−8y3
Substitute (-4,2)
z=24(−4)−6(−4)(2)2−8(2)3
z=−96+96−64 z=−64 Substitute (4,-2)
z=24(4)−6(4)(−2)2−8(−2)3 z=96−96+64 z=64 Critical points are (-4,2,-64) and (4,-2,64)
fxx=0 fyy=−12x−48y fxy=−12y
Plug into formula
D=f_xx(x,y)∗f_yy(x,y)−f_xy^2(x,y)
D=0(x,y)∗(−12x−48y(x,y))−(−12y)^2(x,y) D=0−144y^2(x,y) D=−144y^2(x,y) f we plug in y=2 or y=-2, we get D<0 concluding critical points (-4,2,-64) and (4,-2,64) are both saddle points. 3. A grocery store sells two brands of a product, the “house” brand and a “name” brand. The manager estimates that if she sells the “house” brand for x dollars and the “name” brand for y dollars, she will be able to sell 81 - 21x + 17y units of the “house” brand and 40 + 11x - 23y units of the “name” brand.
Step 1. Find the revenue function R ( x, y ).
House brand: R(x)=x∗(81−21x+17y)
Name brand: R(y)=y∗(40+11x−23y)
Total = $R(x,y)=x∗(81−21x+17y)+y∗(40+11x−23y) -> - 21x^2 - 23y^2 + 28xy + 81x + 40y $
Step 2. What is the revenue if she sells the “house” brand for $2.30 and the “name” brand for $4.10?
x = 2.3
y = 4.1
total <- -21*x^2 - 23*y^2 + 28*x*y + 81*x + 40*y
print(total)
## [1] 116.62
4.A company has a plant in Los Angeles and a plant in Denver. The firm is committed to produce a total of 96 units of a product each week. The total weekly cost is given by C(x, y) = 1/6 x^2 + 1/6 y^2 + 7x + 25y + 700, where x is the number of units produced in Los Angeles and y is the number of units produced in Denver. How many units should be produced in each plant to minimize the total weekly cost?
Solution Consider x+y=96, then x=96−y.
C(x,y)=C(96−y,y)=
= 1/6x2+1/6y2+7x+25y+700
= 1/6(96−y)2+16y2+7×(96−y)+25y+700
= 1/6(y2−192y+9216)+1/6y2+672−7y+25y+700
= 1/6(y^2−32y+1536+1/6y2+18y+1372
= 13y^2−14y+2908
= C1(y)
C′1(y) = 2/3y−14
Finding minimal value by considering C′1(y)=2/3y−14=0, then y=21. Then x=96−y=75.
There will be production of 75 units in Los Angeles and 21 units in Denver.
Evaluate the double integral on the given region.
_R (e^{8x+3y}) dA ; R: 2 £ x £ 4 and 2 £ y £ 4
Write your answer in exact form without decimals.
Answer: _24_24 (e^{8x+3y}) dy dx &= _2^4
(e^{8x+3y})|_2^4 dx
&= _2^4 ((e{8x+12})-(e{8x+6})) dx
&= _2^4 e{8x+6}(e6-1) dx
&= e{8x+6}(e6-1) |_2^4
&= e{32+6}(e6-1)-e{16+6}(e6-1)
&= (e6-1)(e{38}-e^{22})
&= (e^{44} - e^{38} - e^{28} + e^{22})