In this lab, you will explore and visualize the data using the tidyverse suite of packages. The data can be found in the companion package for OpenIntro resources, openintro.
Let’s load the packages.
library(tidyverse)
library(openintro)
data('hfi', package='openintro')
The data we’re working with is in the openintro package and it’s
called hfi, short for Human Freedom Index.
dim(hfi)
## [1] 1458 123
pf_score, and one of the other
numerical variables? Plot this relationship using the variable
pf_expression_control as the predictor. Does the
relationship look linear? If you knew a country’s
pf_expression_control, or its score out of 10, with 0 being
the most, of political pressures and controls on media content, would
you be comfortable using a linear model to predict the personal freedom
score?If the relationship looks linear, we can quantify the strength of the relationship with the correlation coefficient.
The appropriate plot would be a scatter plot. The relationship looks linear, so I would be comfortable using a linear regression here.
ggplot(hfi, aes(x=pf_score, y=pf_expression_control)) +
geom_point()
hfi %>%
summarise(cor(pf_expression_control, pf_score, use = "complete.obs"))
## # A tibble: 1 × 1
## `cor(pf_expression_control, pf_score, use = "complete.obs")`
## <dbl>
## 1 0.796
Here, we set the use argument to “complete.obs” since
there are some observations of NA.
Looking at your plot from the previous exercise, describe the relationship between these two variables. Make sure to discuss the form, direction, and strength of the relationship as well as any unusual observations.
The plot shows that the relationship looks positive linear. And, after calculating the correlation there is a correlation between the two.
hfi %>%
summarise(cor(pf_expression_control, pf_score, use = "complete.obs"))
## # A tibble: 1 × 1
## `cor(pf_expression_control, pf_score, use = "complete.obs")`
## <dbl>
## 1 0.796
The most common way to do linear regression is to select the line
that minimizes the sum of squared residuals. To visualize the squared
residuals, you can rerun the plot command and add the argument
showSquares = TRUE.
DATA606::plot_ss(x = hfi$pf_expression_control, y = hfi$pf_score, showSquares = TRUE)
Note that the output from the plot_ss function provides
you with the slope and intercept of your line as well as the sum of
squares.
plot_ss, choose a line that does a good job of
minimizing the sum of squares. Run the function several times. What was
the smallest sum of squares that you got? How does it compare to your
neighbors?The sum of squares is 952. ## The linear model
It is rather cumbersome to try to get the correct least squares line,
i.e. the line that minimizes the sum of squared residuals, through trial
and error. Instead, you can use the lm function in R to fit
the linear model (a.k.a. regression line).
df <- hfi %>% select(pf_expression_control, pf_score) %>% drop_na()
m1 <- lm(pf_score ~ pf_expression_control, data = hfi)
The first argument in the function lm is a formula that
takes the form y ~ x. Here it can be read that we want to
make a linear model of pf_score as a function of
pf_expression_control. The second argument specifies that R
should look in the hfi data frame to find the two
variables.
The output of lm is an object that contains all of the
information we need about the linear model that was just fit. We can
access this information using the summary function.
summary(m1)
##
## Call:
## lm(formula = pf_score ~ pf_expression_control, data = hfi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8467 -0.5704 0.1452 0.6066 3.2060
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.61707 0.05745 80.36 <2e-16 ***
## pf_expression_control 0.49143 0.01006 48.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8318 on 1376 degrees of freedom
## (80 observations deleted due to missingness)
## Multiple R-squared: 0.6342, Adjusted R-squared: 0.634
## F-statistic: 2386 on 1 and 1376 DF, p-value: < 2.2e-16
pf_expression_control to
predict hf_score, or the total human freedom score. Using
the estimates from the R output, write the equation of the regression
line. What does the slope tell us in the context of the relationship
between human freedom and the amount of political pressure on media
content?The model create a linear model to predict hf_score gives us the function: hf_score = 5.15 + 0.35*pf_expression_control
m1 <- lm(pf_score ~ pf_expression_control, data = hfi)
summary(m1)
##
## Call:
## lm(formula = pf_score ~ pf_expression_control, data = hfi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8467 -0.5704 0.1452 0.6066 3.2060
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.61707 0.05745 80.36 <2e-16 ***
## pf_expression_control 0.49143 0.01006 48.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8318 on 1376 degrees of freedom
## (80 observations deleted due to missingness)
## Multiple R-squared: 0.6342, Adjusted R-squared: 0.634
## F-statistic: 2386 on 1 and 1376 DF, p-value: < 2.2e-16
m2 <- lm(hf_score ~ pf_expression_control, data = hfi)
summary(m2)
##
## Call:
## lm(formula = hf_score ~ pf_expression_control, data = hfi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6198 -0.4908 0.1031 0.4703 2.2933
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.153687 0.046070 111.87 <2e-16 ***
## pf_expression_control 0.349862 0.008067 43.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.667 on 1376 degrees of freedom
## (80 observations deleted due to missingness)
## Multiple R-squared: 0.5775, Adjusted R-squared: 0.5772
## F-statistic: 1881 on 1 and 1376 DF, p-value: < 2.2e-16
Let’s create a scatterplot with the least squares line for
m1 laid on top.
ggplot(data = hfi, aes(x = pf_expression_control, y = pf_score)) +
geom_point() +
stat_smooth(method = "lm", se = FALSE)
Here, we are literally adding a layer on top of our plot.
geom_smooth creates the line by fitting a linear model. It
can also show us the standard error se associated with our
line, but we’ll suppress that for now.
This line can be used to predict \(y\) at any value of \(x\). When predictions are made for values of \(x\) that are beyond the range of the observed data, it is referred to as extrapolation and is not usually recommended. However, predictions made within the range of the data are more reliable. They’re also used to compute the residuals.
pf_expression_control? Is this an
overestimate or an underestimate, and by how much? In other words, what
is the residual for this prediction?The personal freedom score is 7.9 ## Model diagnostics
To assess whether the linear model is reliable, we need to check for (1) linearity, (2) nearly normal residuals, and (3) constant variability.
Linearity: You already checked if the relationship
between pf_score and `pf_expression_control’ is linear
using a scatterplot. We should also verify this condition with a plot of
the residuals vs. fitted (predicted) values.
ggplot(data = m1, aes(x = .fitted, y = .resid)) +
geom_point() +
geom_hline(yintercept = 0, linetype = "dashed") +
xlab("Fitted values") +
ylab("Residuals")
Notice here that m1 can also serve as a data set because
stored within it are the fitted values (\(\hat{y}\)) and the residuals. Also note
that we’re getting fancy with the code here. After creating the
scatterplot on the first layer (first line of code), we overlay a
horizontal dashed line at \(y = 0\) (to
help us check whether residuals are distributed around 0), and we also
reanme the axis labels to be more informative.
ggplot(data = m1, aes(x = .fitted, y = .resid)) +
geom_point() +
geom_hline(yintercept = 0, linetype = "dashed") +
xlab("Fitted values") +
ylab("Residuals")
Nearly normal residuals: To check this condition, we can look at a histogram
ggplot(data = m1, aes(x = .resid)) +
geom_histogram(binwidth = 0.5) +
xlab("Residuals")
or a normal probability plot of the residuals.
ggplot(data = m1, aes(sample = .resid)) +
stat_qq()
Note that the syntax for making a normal probability plot is a bit
different than what you’re used to seeing: we set sample
equal to the residuals instead of x, and we set a
statistical method qq, which stands for
“quantile-quantile”, another name commonly used for normal probability
plots.
Constant variability: