Dado

Seed_rain_origins<-read_csv("base_geral.csv", locale = locale(decimal_mark = ","))
Seed_rain_origins %>% 
  drop_na() %>% 
  mutate(id_real=as.factor(id_real),
         id=NULL,
         site_plot = paste(site, plot),
         yr=as.factor(yr),
         site=as.factor(site),
         frag_cat=as.factor(frag_cat),
         disp_mode=as.factor(disp_mode),
         origen=as.factor(origen)) %>% 
  filter(habit!=c("liana","shrub") & origen!="x")-> Seed_rain_origins
str(Seed_rain_origins)
## tibble [934 x 12] (S3: tbl_df/tbl/data.frame)
##  $ frag_cat     : Factor w/ 4 levels "Control","Large",..: 4 4 4 4 4 4 4 4 4 4 ...
##  $ area         : num [1:934] 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 ...
##  $ site         : Factor w/ 8 levels "C1","C2","G1",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ plot         : chr [1:934] "Q1" "Q1" "Q1" "Q1" ...
##  $ disp_mode    : Factor w/ 2 levels "abio","zoo": 2 2 1 2 1 2 2 2 2 2 ...
##  $ seed_size_cat: chr [1:934] "M" "P" "P" "G" ...
##  $ habit        : chr [1:934] "tree" "und-tree" "tree" "tree" ...
##  $ origen       : Factor w/ 3 levels "d","nd","x": 2 2 2 2 1 2 2 2 2 1 ...
##  $ id_real      : Factor w/ 43 levels "1","5","6","7",..: 32 30 26 10 15 7 18 37 39 22 ...
##  $ abund        : num [1:934] 40 1 38 5 20 0 5 1 114 0 ...
##  $ yr           : Factor w/ 2 levels "2006","2007": 1 1 1 1 1 1 1 1 1 1 ...
##  $ site_plot    : chr [1:934] "P1 Q1" "P1 Q1" "P1 Q1" "P1 Q1" ...
paged_table(Seed_rain_origins)

Calculando a diversidade interpolada no inext

Seed_rain_origins %>% 
  select(yr, frag_cat, disp_mode, origen, id_real, abund) %>%
  #str()
  mutate(all_variables=as.factor(paste(yr, frag_cat, disp_mode, origen))) %>% 
  #str()
  select(all_variables, id_real, abund) %>% 
  pivot_wider(names_from = all_variables, values_from =abund, values_fn = sum) %>% 
  replace(is.na(.),0)-> inext_data

#inext_data %>% 
#  colnames()

l_06_small_zoo_d <- c(43, sort(inext_data$`2006 Small zoo d`[inext_data$`2006 Small zoo d`>0],
                               decreasing = TRUE))
l_06_small_zoo_nd <- c(43, sort(inext_data$`2006 Small zoo nd`[inext_data$`2006 Small zoo nd`>0],
                                decreasing = TRUE))
l_06_small_abio_d <- c(43, sort(inext_data$`2006 Small abio d`[inext_data$`2006 Small abio d`>0], 
                                decreasing = TRUE))
l_06_small_abio_nd <- c(43, sort(inext_data$`2006 Small abio nd`[inext_data$`2006 Small abio nd`>0],
                                 decreasing = TRUE))

l_06_medium_zoo_d <- c(43, sort(inext_data$`2006 Medium zoo d`[inext_data$`2006 Medium zoo d`>0],
                               decreasing = TRUE))
l_06_medium_zoo_nd <- c(43, sort(inext_data$`2006 Medium zoo nd`[inext_data$`2006 Medium zoo nd`>0],
                                decreasing = TRUE))
l_06_medium_abio_d <- c(43, sort(inext_data$`2006 Medium abio d`[inext_data$`2006 Medium abio d`>0], 
                                decreasing = TRUE))
l_06_medium_abio_nd <- c(43, sort(inext_data$`2006 Medium abio nd`[inext_data$`2006 Medium abio nd`>0],
                                 decreasing = TRUE))

l_06_large_zoo_d <- c(43, sort(inext_data$`2006 Large zoo d`[inext_data$`2006 Large zoo d`>0],
                               decreasing = TRUE))
l_06_large_zoo_nd <- c(43, sort(inext_data$`2006 Large zoo nd`[inext_data$`2006 Large zoo nd`>0],
                                decreasing = TRUE))
l_06_large_abio_d <- c(43, sort(inext_data$`2006 Large abio d`[inext_data$`2006 Large abio d`>0], 
                                decreasing = TRUE))
l_06_large_abio_nd <- c(43, sort(inext_data$`2006 Large abio nd`[inext_data$`2006 Large abio nd`>0],
                                 decreasing = TRUE))

l_06_control_zoo_d <- c(43, sort(inext_data$`2006 Control zoo d`[inext_data$`2006 Control zoo d`>0],
                               decreasing = TRUE))
l_06_control_zoo_nd <- c(43, sort(inext_data$`2006 Control zoo nd`[inext_data$`2006 Control zoo nd`>0],
                                decreasing = TRUE))
l_06_control_abio_d <- c(43, sort(inext_data$`2006 Control abio d`[inext_data$`2006 Control abio d`>0], 
                                decreasing = TRUE))
l_06_control_abio_nd <- c(43, sort(inext_data$`2006 Control abio nd`[inext_data$`2006 Control abio nd`>0],
                                 decreasing = TRUE))

##### 
#Ano 07
l_07_small_zoo_d <- c(43, sort(inext_data$`2007 Small zoo d`[inext_data$`2007 Small zoo d`>0],
                               decreasing = TRUE))
l_07_small_zoo_nd <- c(43, sort(inext_data$`2007 Small zoo nd`[inext_data$`2007 Small zoo nd`>0],
                                decreasing = TRUE))
l_07_small_abio_d <- c(43, sort(inext_data$`2007 Small abio d`[inext_data$`2007 Small abio d`>0], 
                                decreasing = TRUE))
l_07_small_abio_nd <- c(43, sort(inext_data$`2007 Small abio nd`[inext_data$`2007 Small abio nd`>0],
                                 decreasing = TRUE))

l_07_medium_zoo_d <- c(43, sort(inext_data$`2007 Medium zoo d`[inext_data$`2007 Medium zoo d`>0],
                               decreasing = TRUE))
l_07_medium_zoo_nd <- c(43, sort(inext_data$`2007 Medium zoo nd`[inext_data$`2007 Medium zoo nd`>0],
                                decreasing = TRUE))
l_07_medium_abio_d <- c(43, sort(inext_data$`2007 Medium abio d`[inext_data$`2007 Medium abio d`>0], 
                                decreasing = TRUE))
l_07_medium_abio_nd <- c(43, sort(inext_data$`2007 Medium abio nd`[inext_data$`2007 Medium abio nd`>0],
                                 decreasing = TRUE))

l_07_large_zoo_d <- c(43, sort(inext_data$`2007 Large zoo d`[inext_data$`2007 Large zoo d`>0],
                               decreasing = TRUE))
l_07_large_zoo_nd <- c(43, sort(inext_data$`2007 Large zoo nd`[inext_data$`2007 Large zoo nd`>0],
                                decreasing = TRUE))
l_07_large_abio_d <- c(43, sort(inext_data$`2007 Large abio d`[inext_data$`2007 Large abio d`>0], 
                                decreasing = TRUE))
l_07_large_abio_nd <- c(43, sort(inext_data$`2007 Large abio nd`[inext_data$`2007 Large abio nd`>0],
                                 decreasing = TRUE))

l_07_control_zoo_d <- c(43, sort(inext_data$`2007 Control zoo d`[inext_data$`2007 Control zoo d`>0],
                               decreasing = TRUE))
l_07_control_zoo_nd <- c(43, sort(inext_data$`2007 Control zoo nd`[inext_data$`2007 Control zoo nd`>0],
                                decreasing = TRUE))
l_07_control_abio_d <- c(43, sort(inext_data$`2007 Control abio d`[inext_data$`2007 Control abio d`>0], 
                                decreasing = TRUE))
l_07_control_abio_nd <- c(43, sort(inext_data$`2007 Control abio nd`[inext_data$`2007 Control abio nd`>0],
                                 decreasing = TRUE))
#####
# continue
inext_list_data <- list(
  l_06_small_zoo_d = l_06_small_zoo_d,
  l_06_small_zoo_nd = l_06_small_zoo_nd,
  l_06_small_abio_d = l_06_small_abio_d,
  l_06_small_abio_nd = l_06_small_abio_nd,
  l_06_medium_zoo_d = l_06_medium_zoo_d,
  l_06_medium_zoo_nd = l_06_medium_zoo_nd,
  l_06_medium_abio_d = l_06_medium_abio_d,
  l_06_medium_abio_nd = l_06_medium_abio_nd,
  l_06_large_zoo_d = l_06_large_zoo_d,
  l_06_large_zoo_nd = l_06_large_zoo_nd,
  l_06_large_abio_d = l_06_large_abio_d,
  l_06_large_abio_nd = l_06_large_abio_nd,
  l_06_control_zoo_d = l_06_control_zoo_d,
  l_06_control_zoo_nd = l_06_control_zoo_nd,
  l_06_control_abio_d = l_06_control_abio_d,
  l_06_control_abio_nd = l_06_control_abio_nd,
  l_07_small_zoo_d = l_07_small_zoo_d,
  l_07_small_zoo_nd = l_07_small_zoo_nd,
  l_07_small_abio_d = l_07_small_abio_d,
  l_07_small_abio_nd = l_07_small_abio_nd,
  l_07_medium_zoo_d = l_07_medium_zoo_d,
  l_07_medium_zoo_nd = l_07_medium_zoo_nd,
  l_07_medium_abio_d = l_07_medium_abio_d,
  l_07_medium_abio_nd = l_07_medium_abio_nd,
  l_07_large_zoo_d = l_07_large_zoo_d,
  l_07_large_zoo_nd = l_07_large_zoo_nd,
  l_07_large_abio_d = l_07_large_abio_d,
  l_07_large_abio_nd = l_07_large_abio_nd,
  l_07_control_zoo_d = l_07_control_zoo_d,
  l_07_control_zoo_nd = l_07_control_zoo_nd,
  l_07_control_abio_d = l_07_control_abio_d,
  l_07_control_abio_nd = l_07_control_abio_nd
  )

iNEXT(x=inext_list_data, q=c(0, 1, 2), datatype="abundance")->inext_result

#####
# juntanto tudo - Ano 06
inext_result[["iNextEst"]][["l_06_small_zoo_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("small", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_small_zoo_d


inext_result[["iNextEst"]][["l_06_small_zoo_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("small", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_small_zoo_nd

inext_result[["iNextEst"]][["l_06_small_abio_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("small", 57),
    disp_mode=rep("abio", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_small_abio_d


inext_result[["iNextEst"]][["l_06_small_abio_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("small", 57),
    disp_mode=rep("abio", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_small_abio_nd
  
#medium
inext_result[["iNextEst"]][["l_06_medium_zoo_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("medium", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_medium_zoo_d


inext_result[["iNextEst"]][["l_06_medium_zoo_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("medium", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_medium_zoo_nd

inext_result[["iNextEst"]][["l_06_medium_abio_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("medium", 57),
    disp_mode=rep("abio", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_medium_abio_d

inext_result[["iNextEst"]][["l_06_medium_abio_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("medium", 57),
    disp_mode=rep("abio", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_medium_abio_nd


### Large
inext_result[["iNextEst"]][["l_06_large_zoo_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("large", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_large_zoo_d


inext_result[["iNextEst"]][["l_06_large_zoo_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("large", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_large_zoo_nd

inext_result[["iNextEst"]][["l_06_large_abio_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("large", 57),
    disp_mode=rep("abio", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_large_abio_d

inext_result[["iNextEst"]][["l_06_large_abio_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("large", 57),
    disp_mode=rep("abio", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_large_abio_nd

### Control

inext_result[["iNextEst"]][["l_06_control_zoo_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("control", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_control_zoo_d

inext_result[["iNextEst"]][["l_06_control_zoo_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("control", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_control_zoo_nd

inext_result[["iNextEst"]][["l_06_control_abio_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("control", 57),
    disp_mode=rep("abio", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_control_abio_d


inext_result[["iNextEst"]][["l_06_control_abio_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2006", 57),
    frag_cat=rep("control", 57),
    disp_mode=rep("abio", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_06_control_abio_nd

#####
# Agora pro ano de 2007

inext_result[["iNextEst"]][["l_07_small_zoo_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("small", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_small_zoo_d


inext_result[["iNextEst"]][["l_07_small_zoo_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("small", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_small_zoo_nd

inext_result[["iNextEst"]][["l_07_small_abio_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("small", 57),
    disp_mode=rep("abio", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_small_abio_d

inext_result[["iNextEst"]][["l_07_small_abio_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("small", 57),
    disp_mode=rep("abio", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_small_abio_nd
  
#medium
inext_result[["iNextEst"]][["l_07_medium_zoo_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("medium", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_medium_zoo_d


inext_result[["iNextEst"]][["l_07_medium_zoo_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("medium", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_medium_zoo_nd

inext_result[["iNextEst"]][["l_07_medium_abio_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("medium", 57),
    disp_mode=rep("abio", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_medium_abio_d

inext_result[["iNextEst"]][["l_07_medium_abio_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("medium", 57),
    disp_mode=rep("abio", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_medium_abio_nd


### Large
inext_result[["iNextEst"]][["l_07_large_zoo_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("large", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_large_zoo_d


inext_result[["iNextEst"]][["l_07_large_zoo_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("large", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_large_zoo_nd

inext_result[["iNextEst"]][["l_07_large_abio_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("large", 57),
    disp_mode=rep("abio", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_large_abio_d

inext_result[["iNextEst"]][["l_07_large_abio_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("large", 57),
    disp_mode=rep("abio", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_large_abio_nd

### Control

inext_result[["iNextEst"]][["l_07_control_zoo_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("control", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_control_zoo_d

inext_result[["iNextEst"]][["l_07_control_zoo_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("control", 57),
    disp_mode=rep("zoo", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_control_zoo_nd

inext_result[["iNextEst"]][["l_07_control_abio_d"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("control", 57),
    disp_mode=rep("abio", 57),
    origen=rep("d", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_control_abio_d


inext_result[["iNextEst"]][["l_07_control_abio_nd"]] %>% 
  filter(method=="interpolated") %>% 
  mutate(
    yr=rep("2007", 57),
    frag_cat=rep("control", 57),
    disp_mode=rep("abio", 57),
    origen=rep("nd", 57)) %>% 
  select(yr, frag_cat, disp_mode, origen, order, qD)-> data_07_control_abio_nd

#####
# juntanto tudo em um data_frame
full_join(data_06_small_zoo_d, data_06_small_zoo_nd) %>% 
  full_join(data_06_small_abio_d) %>% 
  full_join(data_06_small_abio_nd) %>% 
  full_join(data_06_medium_zoo_d) %>% 
  full_join(data_06_medium_zoo_nd) %>%
  full_join(data_06_medium_abio_d) %>% 
  full_join(data_06_medium_abio_nd) %>% 
  full_join(data_06_large_zoo_d) %>% 
  full_join(data_06_large_zoo_nd) %>%
  full_join(data_06_large_abio_d) %>% 
  full_join(data_06_large_abio_nd) %>% 
  full_join(data_06_control_zoo_d) %>% 
  full_join(data_06_control_zoo_nd) %>%
  full_join(data_06_control_abio_d) %>% 
  full_join(data_06_control_abio_nd) %>%
  full_join(data_07_small_zoo_d) %>% 
  full_join(data_07_small_zoo_nd) %>%
  full_join(data_07_small_abio_d) %>% 
  full_join(data_07_small_abio_nd) %>%
  full_join(data_07_medium_zoo_d) %>% 
  full_join(data_07_medium_zoo_nd) %>%
  full_join(data_07_medium_abio_d) %>% 
  full_join(data_07_medium_abio_nd) %>% 
  full_join(data_07_large_zoo_d) %>% 
  full_join(data_07_large_zoo_nd) %>%
  full_join(data_07_large_abio_d) %>% 
  full_join(data_07_large_abio_nd) %>% 
  full_join(data_07_control_zoo_d) %>% 
  full_join(data_07_control_zoo_nd) %>%
  full_join(data_07_control_abio_d) %>% 
  full_join(data_07_control_abio_nd) %>%
  pivot_wider(names_from = order, values_from =qD) %>% 
  unnest() %>% 
  rename("div0"=`0`,"div1"=`1`,"div2"=`2`)->div_data_geral

div_data_geral %>% 
  mutate(yr=as.factor(yr),
         frag_cat=as.factor(frag_cat),
         disp_mode=as.factor(disp_mode),
         origen=as.factor(origen))->div_data_geral
paged_table(div_data_geral)

AnÔlises exploratórias bem bÔsicas

Vou ajeitar as escalas ainda, galera. Isso aqui é só o bÔsico mesmo!

library(ggplot2)

div_data_geral %>% 
  ggplot(aes(x=yr , y=div0, fill=frag_cat, color=frag_cat))+
  geom_boxplot(alpha=0.5)+
  facet_grid(disp_mode ~ origen)+
  scale_color_manual(values = c("#FFCCCC", "#FFCC99", "#FFCC66", "#FF9966")) +
  scale_fill_manual(values = c("#FFCCCC", "#FFCC99", "#FFCC66", "#FF9966")) +
  theme_classic()

div_data_geral %>% 
  ggplot(aes(x=yr , y=div1, fill=frag_cat, color=frag_cat))+
  geom_boxplot(alpha=0.5)+
  facet_grid(disp_mode ~ origen)+
  scale_color_manual(values = c("#FFCCCC", "#FFCC99", "#FFCC66", "#FF9966")) +
  scale_fill_manual(values = c("#FFCCCC", "#FFCC99", "#FFCC66", "#FF9966")) +
  theme_classic()

div_data_geral %>% 
  ggplot(aes(x=yr , y=div2, fill=frag_cat, color=frag_cat))+
  geom_boxplot(alpha=0.5)+
  facet_grid(disp_mode ~ origen)+
  scale_color_manual(values = c("#FFCCCC", "#FFCC99", "#FFCC66", "#FF9966")) +
  scale_fill_manual(values = c("#FFCCCC", "#FFCC99", "#FFCC66", "#FF9966")) +
  theme_classic()

div_data_geral %>% 
  ggplot(mapping =  aes(x=frag_cat , y=div0, fill=yr, color=yr, group=yr))+
  geom_jitter(alpha=0.6) +
  geom_smooth(method =lm, se=T)+
  facet_grid(disp_mode ~ origen)+
  scale_color_manual(values = c("#FFCCCC", "#FF9966")) +
  scale_fill_manual(values = c("#FFCCCC", "#FF9966")) +
  theme_classic()

div_data_geral %>% 
  ggplot(mapping =  aes(x=frag_cat , y=div1, fill=yr, color=yr, group=yr))+
  geom_jitter(alpha=0.6) +
  geom_smooth(method =lm, se=T)+
  facet_grid(disp_mode ~ origen)+
  scale_color_manual(values = c("#FFCCCC", "#FF9966")) +
  scale_fill_manual(values = c("#FFCCCC", "#FF9966")) +
  theme_classic()

div_data_geral %>% 
  ggplot(mapping =  aes(x=frag_cat , y=div2, fill=yr, color=yr, group=yr))+
  geom_jitter(alpha=0.6) +
  geom_smooth(method =lm, se=T)+
  facet_grid(disp_mode ~ origen)+
  scale_color_manual(values = c("#FFCCCC", "#FF9966")) +
  scale_fill_manual(values = c("#FFCCCC", "#FF9966")) +
  theme_classic()  

Modelos


library(performance)
library(see)
library(MuMIn)

histogram(~div0, data = div_data_geral)

histogram(~div1, data = div_data_geral)

histogram(~div2, data = div_data_geral)


# testando modelos
# modelo cheio, sem interação
model_div0<-glm(div0~yr+frag_cat+origen+disp_mode, data = div_data_geral, family = "gaussian",
                na.action = "na.fail")
summary(model_div0)
## 
## Call:
## glm(formula = div0 ~ yr + frag_cat + origen + disp_mode, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -11.6823   -0.8370    0.0563    1.1128    8.3017  
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.9342     0.2740  18.009  < 2e-16 ***
## yr2007          -2.5415     0.2071 -12.271  < 2e-16 ***
## frag_catlarge   -0.9892     0.2929  -3.377  0.00078 ***
## frag_catmedium   0.8026     0.2929   2.740  0.00632 ** 
## frag_catsmall   -0.2731     0.2929  -0.932  0.35155    
## origennd        -0.2553     0.2071  -1.233  0.21818    
## disp_modezoo     6.9455     0.2071  33.535  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 6.520047)
## 
##     Null deviance: 12492.7  on 607  degrees of freedom
## Residual deviance:  3918.5  on 601  degrees of freedom
## AIC: 2874.3
## 
## Number of Fisher Scoring iterations: 2
dredge(model_div0, evaluate = TRUE, rank = "AICc", fixed = NULL, trace = TRUE)
## 0 : glm(formula = div0 ~ 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 1 : glm(formula = div0 ~ disp_mode + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 2 : glm(formula = div0 ~ frag_cat + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 3 : glm(formula = div0 ~ disp_mode + frag_cat + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 4 : glm(formula = div0 ~ origen + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 5 : glm(formula = div0 ~ disp_mode + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 6 : glm(formula = div0 ~ frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 7 : glm(formula = div0 ~ disp_mode + frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 8 : glm(formula = div0 ~ yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 9 : glm(formula = div0 ~ disp_mode + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 10 : glm(formula = div0 ~ frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 11 : glm(formula = div0 ~ disp_mode + frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 12 : glm(formula = div0 ~ origen + yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 13 : glm(formula = div0 ~ disp_mode + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 14 : glm(formula = div0 ~ frag_cat + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 15 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## Global model call: glm(formula = div0 ~ yr + frag_cat + origen + disp_mode, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## ---
## Model selection table 
##    (Int) dsp_mod frg_cat org yr df    logLik   AICc  delta weight
## 12 4.807       +       +      +  7 -1429.926 2874.0   0.00  0.564
## 16 4.934       +       +   +  +  8 -1429.158 2874.6   0.52  0.436
## 10 4.692       +              +  4 -1448.677 2905.4  31.38  0.000
## 14 4.819       +           +  +  5 -1447.956 2906.0  31.97  0.000
## 4  3.536       +       +         6 -1497.742 3007.6 133.59  0.000
## 8  3.663       +       +   +     7 -1497.128 3008.4 134.40  0.000
## 2  3.421       +                 3 -1512.835 3031.7 157.67  0.000
## 6  3.549       +           +     4 -1512.251 3032.6 158.53  0.000
## 11 8.279               +      +  6 -1750.067 3512.3 638.24  0.000
## 15 8.407               +   +  +  7 -1749.800 3513.8 639.75  0.000
## 9  8.164                      +  3 -1756.741 3519.5 645.48  0.000
## 13 8.292                   +  +  4 -1756.479 3521.0 646.99  0.000
## 3  7.009               +         5 -1775.479 3561.1 687.02  0.000
## 7  7.136               +   +     6 -1775.233 3562.6 688.57  0.000
## 1  6.894                         2 -1781.623 3567.3 693.23  0.000
## 5  7.021                   +     3 -1781.382 3568.8 694.77  0.000
## Models ranked by AICc(x)

# modelo cheio com interação entre o ano e as demais variÔveis 
model_int_div0<-glm(div0~yr*frag_cat+yr*origen+yr*disp_mode, data = div_data_geral, family = "gaussian",
                na.action = "na.fail")
summary(model_int_div0)
## 
## Call:
## glm(formula = div0 ~ yr * frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -13.4163   -0.7086    0.2031    1.2873    6.5677  
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             4.3561     0.3360  12.965  < 2e-16 ***
## yr2007                 -1.3853     0.4752  -2.915  0.00369 ** 
## frag_catlarge          -0.6535     0.3880  -1.684  0.09263 .  
## frag_catmedium          2.0521     0.3880   5.289 1.73e-07 ***
## frag_catsmall           0.6045     0.3880   1.558  0.11973    
## origennd               -1.3931     0.2743  -5.078 5.11e-07 ***
## disp_modezoo            8.0082     0.2743  29.191  < 2e-16 ***
## yr2007:frag_catlarge   -0.6714     0.5487  -1.224  0.22159    
## yr2007:frag_catmedium  -2.4989     0.5487  -4.554 6.37e-06 ***
## yr2007:frag_catsmall   -1.7552     0.5487  -3.199  0.00145 ** 
## yr2007:origennd         2.2756     0.3880   5.865 7.44e-09 ***
## yr2007:disp_modezoo    -2.1253     0.3880  -5.478 6.36e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 5.719991)
## 
##     Null deviance: 12492.7  on 607  degrees of freedom
## Residual deviance:  3409.1  on 596  degrees of freedom
## AIC: 2799.6
## 
## Number of Fisher Scoring iterations: 2
dredge(model_int_div0, evaluate = TRUE, rank = "AICc", fixed = NULL, trace = TRUE)
## 0 : glm(formula = div0 ~ 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 1 : glm(formula = div0 ~ disp_mode + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 2 : glm(formula = div0 ~ frag_cat + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 3 : glm(formula = div0 ~ disp_mode + frag_cat + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 4 : glm(formula = div0 ~ origen + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 5 : glm(formula = div0 ~ disp_mode + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 6 : glm(formula = div0 ~ frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 7 : glm(formula = div0 ~ disp_mode + frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 8 : glm(formula = div0 ~ yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 9 : glm(formula = div0 ~ disp_mode + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 10 : glm(formula = div0 ~ frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 11 : glm(formula = div0 ~ disp_mode + frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 12 : glm(formula = div0 ~ origen + yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 13 : glm(formula = div0 ~ disp_mode + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 14 : glm(formula = div0 ~ frag_cat + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 15 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 25 : glm(formula = div0 ~ disp_mode + yr + disp_mode:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 27 : glm(formula = div0 ~ disp_mode + frag_cat + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 29 : glm(formula = div0 ~ disp_mode + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 31 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 42 : glm(formula = div0 ~ frag_cat + yr + frag_cat:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 43 : glm(formula = div0 ~ disp_mode + frag_cat + yr + frag_cat:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 46 : glm(formula = div0 ~ frag_cat + origen + yr + frag_cat:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 47 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + frag_cat:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 59 : glm(formula = div0 ~ disp_mode + frag_cat + yr + disp_mode:yr + 
##     frag_cat:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 63 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     frag_cat:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 76 : glm(formula = div0 ~ origen + yr + origen:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 77 : glm(formula = div0 ~ disp_mode + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 78 : glm(formula = div0 ~ frag_cat + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 79 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + origen:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 93 : glm(formula = div0 ~ disp_mode + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 95 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 110 : glm(formula = div0 ~ frag_cat + origen + yr + frag_cat:yr + origen:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 111 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + frag_cat:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 127 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     frag_cat:yr + origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## Global model call: glm(formula = div0 ~ yr * frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## ---
## Model selection table 
##     (Int) dsp_mod frg_cat org yr dsp_mod:yr frg_cat:yr org:yr df    logLik
## 128 4.356       +       +   +  +          +          +      + 13 -1386.821
## 96  4.972       +       +   +  +          +                 + 10 -1399.143
## 112 4.887       +       +   +  +                     +      + 12 -1401.753
## 60  3.660       +       +      +          +          +        11 -1404.714
## 64  3.787       +       +   +  +          +          +        12 -1403.880
## 80  5.503       +       +   +  +                            +  9 -1413.496
## 28  4.275       +       +      +          +                    8 -1416.345
## 32  4.403       +       +   +  +          +                    9 -1415.542
## 94  4.857       +           +  +          +                 +  7 -1419.826
## 44  4.191       +       +      +                     +        10 -1418.813
## 48  4.319       +       +   +  +                     +        11 -1418.016
## 12  4.807       +       +      +                               7 -1429.926
## 16  4.934       +       +   +  +                               8 -1429.158
## 78  5.388       +           +  +                            +  6 -1433.255
## 26  4.160       +              +          +                    5 -1435.926
## 30  4.288       +           +  +          +                    6 -1435.173
## 10  4.692       +              +                               4 -1448.677
## 14  4.819       +           +  +                               5 -1447.956
## 4   3.536       +       +                                      6 -1497.742
## 8   3.663       +       +   +                                  7 -1497.128
## 2   3.421       +                                              3 -1512.835
## 6   3.549       +           +                                  4 -1512.251
## 111 8.360               +   +  +                     +      + 11 -1740.533
## 79  8.976               +   +  +                            +  8 -1744.436
## 43  7.664               +      +                     +         9 -1746.236
## 11  8.279               +      +                               6 -1750.067
## 47  7.791               +   +  +                     +        10 -1745.965
## 77  8.861                   +  +                            +  5 -1751.233
## 15  8.407               +   +  +                               7 -1749.800
## 9   8.164                      +                               3 -1756.741
## 13  8.292                   +  +                               4 -1756.479
## 3   7.009               +                                      5 -1775.479
## 7   7.136               +   +                                  6 -1775.233
## 1   6.894                                                      2 -1781.623
## 5   7.021                   +                                  3 -1781.382
##       AICc  delta weight
## 128 2800.3   0.00      1
## 96  2818.7  18.40      0
## 112 2828.0  27.78      0
## 60  2831.9  31.62      0
## 64  2832.3  32.03      0
## 80  2845.3  45.04      0
## 28  2848.9  48.68      0
## 32  2849.4  49.13      0
## 94  2853.8  53.58      0
## 44  2858.0  57.74      0
## 48  2858.5  58.22      0
## 12  2874.0  73.78      0
## 16  2874.6  74.30      0
## 78  2878.7  78.40      0
## 26  2882.0  81.70      0
## 30  2882.5  82.23      0
## 10  2905.4 105.17      0
## 14  2906.0 105.76      0
## 4   3007.6 207.37      0
## 8   3008.4 208.19      0
## 2   3031.7 231.46      0
## 6   3032.6 232.31      0
## 111 3503.5 703.25      0
## 79  3505.1 704.86      0
## 43  3510.8 710.52      0
## 11  3512.3 712.02      0
## 47  3512.3 712.04      0
## 77  3512.6 712.31      0
## 15  3513.8 713.53      0
## 9   3519.5 719.27      0
## 13  3521.0 720.77      0
## 3   3561.1 760.80      0
## 7   3562.6 762.35      0
## 1   3567.3 767.01      0
## 5   3568.8 768.55      0
## Models ranked by AICc(x)

# modelo sem interação com o ano como variÔvel aleatória 
model_lmer_div0<-lmer(div0~frag_cat+origen+disp_mode+(1|yr), data = div_data_geral,
                na.action = "na.fail")
summary(model_lmer_div0)
## Linear mixed model fit by REML ['lmerMod']
## Formula: div0 ~ frag_cat + origen + disp_mode + (1 | yr)
##    Data: div_data_geral
## 
## REML criterion at convergence: 2872.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5718 -0.3300  0.0251  0.4391  3.2545 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  yr       (Intercept) 3.208    1.791   
##  Residual             6.520    2.553   
## Number of obs: 608, groups:  yr, 2
## 
## Fixed effects:
##                Estimate Std. Error t value
## (Intercept)      3.6635     1.2917   2.836
## frag_catlarge   -0.9892     0.2929  -3.377
## frag_catmedium   0.8026     0.2929   2.740
## frag_catsmall   -0.2731     0.2929  -0.932
## origennd        -0.2553     0.2071  -1.233
## disp_modezoo     6.9455     0.2071  33.535
## 
## Correlation of Fixed Effects:
##             (Intr) frg_ctl frg_ctm frg_cts orgnnd
## frag_catlrg -0.113                               
## frag_catmdm -0.113  0.500                        
## frag_ctsmll -0.113  0.500   0.500                
## origennd    -0.080  0.000   0.000   0.000        
## disp_modezo -0.080  0.000   0.000   0.000   0.000
dredge(model_lmer_div0, evaluate = TRUE, rank = "AICc", fixed = NULL, trace = TRUE)
## 0 : lmer(formula = div0 ~ (1 | yr), data = div_data_geral, na.action = "na.fail")
## 1 : lmer(formula = div0 ~ disp_mode + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 2 : lmer(formula = div0 ~ frag_cat + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 3 : lmer(formula = div0 ~ disp_mode + frag_cat + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 4 : lmer(formula = div0 ~ origen + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 5 : lmer(formula = div0 ~ disp_mode + origen + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 6 : lmer(formula = div0 ~ frag_cat + origen + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 7 : lmer(formula = div0 ~ disp_mode + frag_cat + origen + (1 | yr), 
##     data = div_data_geral, na.action = "na.fail")
## Global model call: lmer(formula = div0 ~ frag_cat + origen + disp_mode + (1 | yr), 
##     data = div_data_geral, na.action = "na.fail")
## ---
## Model selection table 
##   (Int) dsp_mod frg_cat org df    logLik   AICc  delta weight
## 4 3.536       +       +      7 -1436.223 2886.6   0.00  0.716
## 8 3.663       +       +   +  8 -1436.119 2888.5   1.85  0.284
## 2 3.421       +              4 -1453.606 2915.3  28.65  0.000
## 6 3.549       +           +  5 -1453.515 2917.1  30.50  0.000
## 3 7.009               +      6 -1753.076 3518.3 631.66  0.000
## 7 7.136               +   +  7 -1752.940 3520.1 633.43  0.000
## 1 6.894                      3 -1760.029 3526.1 639.46  0.000
## 5 7.021                   +  4 -1759.889 3527.8 641.21  0.000
## Models ranked by AICc(x) 
## Random terms (all models): 
##   1 | yr

# modelo com interação com o ano como variÔvel aleatória 
model_int_lmer_div0<-lmer(div0~frag_cat*origen*disp_mode+(1|yr), data = div_data_geral,
                na.action = "na.fail")
summary(model_int_lmer_div0)
## Linear mixed model fit by REML ['lmerMod']
## Formula: div0 ~ frag_cat * origen * disp_mode + (1 | yr)
##    Data: div_data_geral
## 
## REML criterion at convergence: 2823.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2377 -0.2809  0.0234  0.4267  2.7897 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  yr       (Intercept) 3.209    1.791   
##  Residual             6.198    2.489   
## Number of obs: 608, groups:  yr, 2
## 
## Fixed effects:
##                                      Estimate Std. Error t value
## (Intercept)                            3.0001     1.3295   2.256
## frag_catlarge                         -0.2068     0.5711  -0.362
## frag_catmedium                         0.8571     0.5711   1.501
## frag_catsmall                          1.2292     0.5711   2.152
## origennd                               1.5693     0.5711   2.748
## disp_modezoo                           6.8163     0.5711  11.935
## frag_catlarge:origennd                -2.0250     0.8077  -2.507
## frag_catmedium:origennd               -1.2359     0.8077  -1.530
## frag_catsmall:origennd                -3.4092     0.8077  -4.221
## frag_catlarge:disp_modezoo            -0.2851     0.8077  -0.353
## frag_catmedium:disp_modezoo            2.1030     0.8077   2.604
## frag_catsmall:disp_modezoo            -0.6724     0.8077  -0.833
## origennd:disp_modezoo                 -0.7373     0.8077  -0.913
## frag_catlarge:origennd:disp_modezoo    1.4907     1.1423   1.305
## frag_catmedium:origennd:disp_modezoo  -1.9524     1.1423  -1.709
## frag_catsmall:origennd:disp_modezoo    2.1540     1.1423   1.886
dredge(model_int_lmer_div0, evaluate = TRUE, rank = "AICc", fixed = NULL, trace = TRUE)
## 0 : lmer(formula = div0 ~ (1 | yr), data = div_data_geral, na.action = "na.fail")
## 1 : lmer(formula = div0 ~ disp_mode + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 2 : lmer(formula = div0 ~ frag_cat + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 3 : lmer(formula = div0 ~ disp_mode + frag_cat + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 4 : lmer(formula = div0 ~ origen + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 5 : lmer(formula = div0 ~ disp_mode + origen + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 6 : lmer(formula = div0 ~ frag_cat + origen + (1 | yr), data = div_data_geral, 
##     na.action = "na.fail")
## 7 : lmer(formula = div0 ~ disp_mode + frag_cat + origen + (1 | yr), 
##     data = div_data_geral, na.action = "na.fail")
## 11 : lmer(formula = div0 ~ disp_mode + frag_cat + (1 | yr) + disp_mode:frag_cat, 
##     data = div_data_geral, na.action = "na.fail")
## 15 : lmer(formula = div0 ~ disp_mode + frag_cat + origen + (1 | yr) + 
##     disp_mode:frag_cat, data = div_data_geral, na.action = "na.fail")
## 21 : lmer(formula = div0 ~ disp_mode + origen + (1 | yr) + disp_mode:origen, 
##     data = div_data_geral, na.action = "na.fail")
## 23 : lmer(formula = div0 ~ disp_mode + frag_cat + origen + (1 | yr) + 
##     disp_mode:origen, data = div_data_geral, na.action = "na.fail")
## 31 : lmer(formula = div0 ~ disp_mode + frag_cat + origen + (1 | yr) + 
##     disp_mode:frag_cat + disp_mode:origen, data = div_data_geral, 
##     na.action = "na.fail")
## 38 : lmer(formula = div0 ~ frag_cat + origen + (1 | yr) + frag_cat:origen, 
##     data = div_data_geral, na.action = "na.fail")
## 39 : lmer(formula = div0 ~ disp_mode + frag_cat + origen + (1 | yr) + 
##     frag_cat:origen, data = div_data_geral, na.action = "na.fail")
## 47 : lmer(formula = div0 ~ disp_mode + frag_cat + origen + (1 | yr) + 
##     disp_mode:frag_cat + frag_cat:origen, data = div_data_geral, 
##     na.action = "na.fail")
## 55 : lmer(formula = div0 ~ disp_mode + frag_cat + origen + (1 | yr) + 
##     disp_mode:origen + frag_cat:origen, data = div_data_geral, 
##     na.action = "na.fail")
## 63 : lmer(formula = div0 ~ disp_mode + frag_cat + origen + (1 | yr) + 
##     disp_mode:frag_cat + disp_mode:origen + frag_cat:origen, 
##     data = div_data_geral, na.action = "na.fail")
## 127 : lmer(formula = div0 ~ disp_mode + frag_cat + origen + (1 | yr) + 
##     disp_mode:frag_cat + disp_mode:origen + frag_cat:origen + 
##     disp_mode:frag_cat:origen, data = div_data_geral, na.action = "na.fail")
## Global model call: lmer(formula = div0 ~ frag_cat * origen * disp_mode + (1 | yr), 
##     data = div_data_geral, na.action = "na.fail")
## ---
## Model selection table 
##     (Int) dsp_mod frg_cat org dsp_mod:frg_cat dsp_mod:org frg_cat:org
## 128 3.000       +       +   +               +           +           +
## 40  2.935       +       +   +                                       +
## 48  3.184       +       +   +               +                       +
## 56  2.857       +       +   +                           +           +
## 64  3.106       +       +   +               +           +           +
## 4   3.536       +       +                                            
## 12  3.785       +       +                   +                        
## 8   3.663       +       +   +                                        
## 16  3.912       +       +   +               +                        
## 24  3.585       +       +   +                           +            
## 32  3.834       +       +   +               +           +            
## 2   3.421       +                                                    
## 6   3.549       +           +                                        
## 22  3.470       +           +                           +            
## 39  6.408               +   +                                       +
## 3   7.009               +                                            
## 7   7.136               +   +                                        
## 1   6.894                                                            
## 5   7.021                   +                                        
##     dsp_mod:frg_cat:org df    logLik   AICc  delta weight
## 128                   + 18 -1411.593 2860.3   0.00  0.994
## 40                      11 -1425.014 2872.5  12.12  0.002
## 48                      14 -1422.290 2873.3  12.94  0.002
## 56                      12 -1424.695 2873.9  13.57  0.001
## 64                      15 -1421.971 2874.8  14.41  0.001
## 4                        7 -1436.223 2886.6  26.29  0.000
## 12                      10 -1433.513 2887.4  27.05  0.000
## 8                        8 -1436.119 2888.5  28.13  0.000
## 16                      11 -1433.409 2889.3  28.91  0.000
## 24                       9 -1435.794 2889.9  29.54  0.000
## 32                      12 -1433.083 2890.7  30.34  0.000
## 2                        4 -1453.606 2915.3  54.93  0.000
## 6                        5 -1453.515 2917.1  56.78  0.000
## 22                       6 -1453.178 2918.5  58.15  0.000
## 39                      10 -1746.999 3514.4 654.02  0.000
## 3                        6 -1753.076 3518.3 657.95  0.000
## 7                        7 -1752.940 3520.1 659.72  0.000
## 1                        3 -1760.029 3526.1 665.75  0.000
## 5                        4 -1759.889 3527.8 667.50  0.000
## Models ranked by AICc(x) 
## Random terms (all models): 
##   1 | yr

# teestando o modelo comm interaƧƵes do ano para a diverisdade 1 e 2
model_int_div1<-glm(div1~yr*frag_cat+yr*origen+yr*disp_mode, data = div_data_geral, family = "gaussian",
                na.action = "na.fail")
summary(model_int_div1)
## 
## Call:
## glm(formula = div1 ~ yr * frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -6.9631  -0.7119   0.0186   0.8403   3.1909  
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             3.6169     0.1883  19.205  < 2e-16 ***
## yr2007                 -1.6935     0.2663  -6.359 4.06e-10 ***
## frag_catlarge          -1.0913     0.2175  -5.018 6.89e-07 ***
## frag_catmedium         -0.6966     0.2175  -3.203 0.001432 ** 
## frag_catsmall           0.4605     0.2175   2.117 0.034635 *  
## origennd               -2.1987     0.1538 -14.299  < 2e-16 ***
## disp_modezoo            3.8858     0.1538  25.270  < 2e-16 ***
## yr2007:frag_catlarge    1.1695     0.3075   3.803 0.000158 ***
## yr2007:frag_catmedium   0.2055     0.3075   0.668 0.504292    
## yr2007:frag_catsmall   -0.5719     0.3075  -1.860 0.063434 .  
## yr2007:origennd         2.3934     0.2175  11.006  < 2e-16 ***
## yr2007:disp_modezoo    -1.3482     0.2175  -6.199 1.06e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 1.797072)
## 
##     Null deviance: 3345.9  on 607  degrees of freedom
## Residual deviance: 1071.1  on 596  degrees of freedom
## AIC: 2095.7
## 
## Number of Fisher Scoring iterations: 2
dredge(model_int_div1, evaluate = TRUE, rank = "AICc", fixed = NULL, trace = TRUE)
## 0 : glm(formula = div1 ~ 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 1 : glm(formula = div1 ~ disp_mode + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 2 : glm(formula = div1 ~ frag_cat + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 3 : glm(formula = div1 ~ disp_mode + frag_cat + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 4 : glm(formula = div1 ~ origen + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 5 : glm(formula = div1 ~ disp_mode + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 6 : glm(formula = div1 ~ frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 7 : glm(formula = div1 ~ disp_mode + frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 8 : glm(formula = div1 ~ yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 9 : glm(formula = div1 ~ disp_mode + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 10 : glm(formula = div1 ~ frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 11 : glm(formula = div1 ~ disp_mode + frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 12 : glm(formula = div1 ~ origen + yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 13 : glm(formula = div1 ~ disp_mode + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 14 : glm(formula = div1 ~ frag_cat + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 15 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 25 : glm(formula = div1 ~ disp_mode + yr + disp_mode:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 27 : glm(formula = div1 ~ disp_mode + frag_cat + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 29 : glm(formula = div1 ~ disp_mode + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 31 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 42 : glm(formula = div1 ~ frag_cat + yr + frag_cat:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 43 : glm(formula = div1 ~ disp_mode + frag_cat + yr + frag_cat:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 46 : glm(formula = div1 ~ frag_cat + origen + yr + frag_cat:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 47 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + frag_cat:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 59 : glm(formula = div1 ~ disp_mode + frag_cat + yr + disp_mode:yr + 
##     frag_cat:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 63 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     frag_cat:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 76 : glm(formula = div1 ~ origen + yr + origen:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 77 : glm(formula = div1 ~ disp_mode + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 78 : glm(formula = div1 ~ frag_cat + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 79 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + origen:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 93 : glm(formula = div1 ~ disp_mode + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 95 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 110 : glm(formula = div1 ~ frag_cat + origen + yr + frag_cat:yr + origen:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 111 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + frag_cat:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 127 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     frag_cat:yr + origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## Global model call: glm(formula = div1 ~ yr * frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## ---
## Model selection table 
##     (Int) dsp_mod frg_cat org yr dsp_mod:yr frg_cat:yr org:yr df    logLik
## 128 3.617       +       +   +  +          +          +      + 13 -1034.847
## 96  3.516       +       +   +  +          +                 + 10 -1051.384
## 112 3.954       +       +   +  +                     +      + 12 -1053.844
## 94  3.285       +           +  +          +                 +  7 -1068.287
## 80  3.854       +       +   +  +                            +  9 -1069.405
## 78  3.622       +           +  +                            +  6 -1085.359
## 64  3.018       +       +   +  +          +          +        12 -1091.093
## 32  2.918       +       +   +  +          +                    9 -1104.899
## 48  3.356       +       +   +  +                     +        11 -1106.963
## 30  2.687       +           +  +          +                    6 -1119.136
## 16  3.255       +       +   +  +                               8 -1120.082
## 60  2.518       +       +      +          +          +        11 -1125.114
## 14  3.024       +           +  +                               5 -1133.641
## 28  2.417       +       +      +          +                    8 -1137.488
## 44  2.855       +       +      +                     +        10 -1139.343
## 26  2.186       +              +          +                    5 -1150.308
## 8   2.770       +       +   +                                  7 -1149.307
## 12  2.754       +       +      +                               7 -1151.162
## 6   2.539       +           +                                  4 -1161.648
## 10  2.523       +              +                               4 -1163.429
## 4   2.269       +       +                                      6 -1177.667
## 2   2.038       +                                              3 -1188.928
## 111 5.560               +   +  +                     +      + 11 -1316.828
## 79  5.459               +   +  +                            +  8 -1323.477
## 77  5.228                   +  +                            +  5 -1330.497
## 47  4.961               +   +  +                     +        10 -1340.333
## 15  4.861               +   +  +                               7 -1346.492
## 13  4.630                   +  +                               4 -1353.005
## 43  4.460               +      +                     +         9 -1355.790
## 7   4.376               +   +                                  6 -1360.720
## 11  4.360               +      +                               6 -1361.646
## 5   4.144                   +                                  3 -1366.939
## 9   4.129                      +                               3 -1367.846
## 3   3.875               +                                      5 -1375.198
## 1   3.643                                                      2 -1381.130
##       AICc  delta weight
## 128 2096.3   0.00      1
## 96  2123.1  26.83      0
## 112 2132.2  35.91      0
## 94  2150.8  54.45      0
## 80  2157.1  60.80      0
## 78  2182.9  86.55      0
## 64  2206.7 110.40      0
## 32  2228.1 131.79      0
## 48  2236.4 140.06      0
## 30  2250.4 154.11      0
## 16  2256.4 160.10      0
## 60  2272.7 176.36      0
## 14  2277.4 181.08      0
## 28  2291.2 194.91      0
## 44  2299.1 202.75      0
## 26  2310.7 214.41      0
## 8   2312.8 216.49      0
## 12  2316.5 220.20      0
## 6   2331.4 235.06      0
## 10  2334.9 238.62      0
## 4   2367.5 271.17      0
## 2   2383.9 287.59      0
## 111 2656.1 559.79      0
## 79  2663.2 566.89      0
## 77  2671.1 574.79      0
## 47  2701.0 604.73      0
## 15  2707.2 610.86      0
## 13  2714.1 617.77      0
## 43  2729.9 633.57      0
## 7   2733.6 637.27      0
## 11  2735.4 639.13      0
## 5   2739.9 643.61      0
## 9   2741.7 645.43      0
## 3   2760.5 664.19      0
## 1   2766.3 669.97      0
## Models ranked by AICc(x)

model_int_div2<-glm(div2~yr*frag_cat+yr*origen+yr*disp_mode, data = div_data_geral, family = "gaussian",
                na.action = "na.fail")
summary(model_int_div2)
## 
## Call:
## glm(formula = div2 ~ yr * frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -5.0881  -0.7358  -0.0311   0.6638   3.4569  
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             3.0408     0.1485  20.473  < 2e-16 ***
## yr2007                 -1.4865     0.2100  -7.077 4.15e-12 ***
## frag_catlarge          -0.8351     0.1715  -4.870 1.43e-06 ***
## frag_catmedium         -1.0828     0.1715  -6.314 5.32e-10 ***
## frag_catsmall           0.3703     0.1715   2.159  0.03122 *  
## origennd               -1.7240     0.1213 -14.216  < 2e-16 ***
## disp_modezoo            2.6770     0.1213  22.074  < 2e-16 ***
## yr2007:frag_catlarge    1.1317     0.2425   4.666 3.80e-06 ***
## yr2007:frag_catmedium   0.6808     0.2425   2.807  0.00516 ** 
## yr2007:frag_catsmall   -0.3592     0.2425  -1.481  0.13910    
## yr2007:origennd         1.9864     0.1715  11.582  < 2e-16 ***
## yr2007:disp_modezoo    -0.9942     0.1715  -5.797 1.10e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 1.117698)
## 
##     Null deviance: 1842.72  on 607  degrees of freedom
## Residual deviance:  666.15  on 596  degrees of freedom
## AIC: 1807
## 
## Number of Fisher Scoring iterations: 2
dredge(model_int_div2, evaluate = TRUE, rank = "AICc", fixed = NULL, trace = TRUE)
## 0 : glm(formula = div2 ~ 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 1 : glm(formula = div2 ~ disp_mode + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 2 : glm(formula = div2 ~ frag_cat + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 3 : glm(formula = div2 ~ disp_mode + frag_cat + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 4 : glm(formula = div2 ~ origen + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 5 : glm(formula = div2 ~ disp_mode + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 6 : glm(formula = div2 ~ frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 7 : glm(formula = div2 ~ disp_mode + frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 8 : glm(formula = div2 ~ yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 9 : glm(formula = div2 ~ disp_mode + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 10 : glm(formula = div2 ~ frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 11 : glm(formula = div2 ~ disp_mode + frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 12 : glm(formula = div2 ~ origen + yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 13 : glm(formula = div2 ~ disp_mode + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 14 : glm(formula = div2 ~ frag_cat + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 15 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 25 : glm(formula = div2 ~ disp_mode + yr + disp_mode:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 27 : glm(formula = div2 ~ disp_mode + frag_cat + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 29 : glm(formula = div2 ~ disp_mode + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 31 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 42 : glm(formula = div2 ~ frag_cat + yr + frag_cat:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 43 : glm(formula = div2 ~ disp_mode + frag_cat + yr + frag_cat:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 46 : glm(formula = div2 ~ frag_cat + origen + yr + frag_cat:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 47 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + frag_cat:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 59 : glm(formula = div2 ~ disp_mode + frag_cat + yr + disp_mode:yr + 
##     frag_cat:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 63 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     frag_cat:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 76 : glm(formula = div2 ~ origen + yr + origen:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 77 : glm(formula = div2 ~ disp_mode + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 78 : glm(formula = div2 ~ frag_cat + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 79 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + origen:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 93 : glm(formula = div2 ~ disp_mode + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 95 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 110 : glm(formula = div2 ~ frag_cat + origen + yr + frag_cat:yr + origen:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 111 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + frag_cat:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 127 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     frag_cat:yr + origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## Global model call: glm(formula = div2 ~ yr * frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## ---
## Model selection table 
##     (Int) dsp_mod frg_cat org yr dsp_mod:yr frg_cat:yr org:yr df    logLik
## 128 3.041       +       +   +  +          +          +      + 13  -890.481
## 112 3.289       +       +   +  +                     +      + 12  -907.156
## 96  2.859       +       +   +  +          +                 + 10  -912.958
## 80  3.108       +       +   +  +                            +  9  -928.474
## 94  2.654       +           +  +          +                 +  7  -943.084
## 78  2.902       +           +  +                            +  6  -957.169
## 64  2.544       +       +   +  +          +          +        12  -952.195
## 48  2.793       +       +   +  +                     +        11  -965.874
## 32  2.363       +       +   +  +          +                    9  -970.664
## 16  2.611       +       +   +  +                               8  -983.554
## 60  2.179       +       +      +          +          +        11  -981.024
## 30  2.157       +           +  +          +                    6  -995.791
## 44  2.427       +       +      +                     +        10  -993.491
## 28  1.997       +       +      +          +                    8  -997.868
## 8   2.298       +       +   +                                  7 -1003.003
## 14  2.406       +           +  +                               5 -1007.677
## 12  2.246       +       +      +                               7 -1009.676
## 26  1.792       +              +          +                    5 -1020.923
## 6   2.092       +           +                                  4 -1025.685
## 4   1.932       +       +                                      6 -1027.569
## 10  2.040       +              +                               4 -1031.884
## 2   1.727       +                                              3 -1048.550
## 111 4.379               +   +  +                     +      + 11 -1121.859
## 79  4.198               +   +  +                            +  8 -1132.566
## 77  3.992                   +  +                            +  5 -1147.568
## 47  3.883               +   +  +                     +        10 -1152.252
## 15  3.701               +   +  +                               7 -1161.956
## 43  3.517               +      +                     +         9 -1167.522
## 7   3.387               +   +                                  6 -1172.924
## 13  3.496                   +  +                               4 -1175.606
## 11  3.336               +      +                               6 -1176.758
## 5   3.182                   +                                  3 -1186.101
## 3   3.022               +                                      5 -1187.214
## 9   3.130                      +                               3 -1189.773
## 1   2.817                                                      2 -1199.798
##       AICc  delta weight
## 128 1807.6   0.00      1
## 112 1838.8  31.26      0
## 96  1846.3  38.71      0
## 80  1875.2  67.67      0
## 94  1900.4  92.78      0
## 78  1926.5 118.90      0
## 64  1928.9 121.34      0
## 48  1954.2 146.62      0
## 32  1959.6 152.05      0
## 16  1983.3 175.77      0
## 60  1984.5 176.92      0
## 30  2003.7 196.15      0
## 44  2007.4 199.77      0
## 28  2012.0 204.40      0
## 8   2020.2 212.62      0
## 14  2025.5 217.88      0
## 12  2033.5 225.96      0
## 26  2051.9 244.37      0
## 6   2059.4 251.86      0
## 4   2067.3 259.70      0
## 10  2071.8 264.26      0
## 2   2103.1 295.57      0
## 111 2266.2 458.59      0
## 79  2281.4 473.80      0
## 77  2305.2 497.66      0
## 47  2324.9 517.30      0
## 15  2338.1 530.52      0
## 43  2353.3 545.77      0
## 7   2358.0 550.41      0
## 13  2359.3 551.70      0
## 11  2365.7 558.08      0
## 5   2378.2 570.67      0
## 3   2384.5 576.95      0
## 9   2385.6 578.01      0
## 1   2403.6 596.04      0
## Models ranked by AICc(x)


#checando os modelos

check_distribution(model_int_div0)
## # Distribution of Model Family
## 
## Predicted Distribution of Residuals
## 
##  Distribution Probability
##        normal         69%
##       tweedie         22%
##       weibull          9%
## 
## Predicted Distribution of Response
## 
##  Distribution Probability
##       tweedie         41%
##           chi         31%
##       weibull         22%
check_distribution(model_int_div1)
## # Distribution of Model Family
## 
## Predicted Distribution of Residuals
## 
##  Distribution Probability
##        normal         69%
##       tweedie         25%
##       weibull          6%
## 
## Predicted Distribution of Response
## 
##  Distribution Probability
##       tweedie         47%
##           chi         16%
##         gamma         12%
check_distribution(model_int_div2)
## # Distribution of Model Family
## 
## Predicted Distribution of Residuals
## 
##  Distribution Probability
##        normal         69%
##       tweedie         19%
##       weibull          9%
## 
## Predicted Distribution of Response
## 
##  Distribution Probability
##       tweedie         50%
##       weibull         12%
##   exponential          9%

check_model(model_int_div0) # autaorrelação entre ano e plot indica realmente um efeito conjunto dos dois

check_model(model_int_div1)

check_model(model_int_div2)


# autaorrelação entre ano e plot indica realmente um efeito conjunto dos dois
# modelos finais (resultado)

fin_mod_int_div0<-glm(div0~yr+frag_cat+yr*origen+yr*disp_mode, data = div_data_geral, family = "gaussian",
                na.action = "na.fail")
summary(fin_mod_int_div0)
## 
## Call:
## glm(formula = div0 ~ yr + frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -12.7825   -0.7744    0.0221    1.4063    7.2015  
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           4.9718     0.2962  16.785  < 2e-16 ***
## yr2007               -2.6166     0.3420  -7.651 8.02e-14 ***
## frag_catlarge        -0.9892     0.2793  -3.542 0.000428 ***
## frag_catmedium        0.8026     0.2793   2.874 0.004197 ** 
## frag_catsmall        -0.2731     0.2793  -0.978 0.328540    
## origennd             -1.3931     0.2793  -4.989 7.98e-07 ***
## disp_modezoo          8.0082     0.2793  28.677  < 2e-16 ***
## yr2007:origennd       2.2756     0.3949   5.762 1.33e-08 ***
## yr2007:disp_modezoo  -2.1253     0.3949  -5.381 1.06e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 5.926767)
## 
##     Null deviance: 12492.7  on 607  degrees of freedom
## Residual deviance:  3550.1  on 599  degrees of freedom
## AIC: 2818.3
## 
## Number of Fisher Scoring iterations: 2
dredge(fin_mod_int_div0, evaluate = TRUE, rank = "AICc", fixed = NULL, trace = TRUE)
## 0 : glm(formula = div0 ~ 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 1 : glm(formula = div0 ~ disp_mode + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 2 : glm(formula = div0 ~ frag_cat + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 3 : glm(formula = div0 ~ disp_mode + frag_cat + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 4 : glm(formula = div0 ~ origen + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 5 : glm(formula = div0 ~ disp_mode + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 6 : glm(formula = div0 ~ frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 7 : glm(formula = div0 ~ disp_mode + frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 8 : glm(formula = div0 ~ yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 9 : glm(formula = div0 ~ disp_mode + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 10 : glm(formula = div0 ~ frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 11 : glm(formula = div0 ~ disp_mode + frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 12 : glm(formula = div0 ~ origen + yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 13 : glm(formula = div0 ~ disp_mode + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 14 : glm(formula = div0 ~ frag_cat + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 15 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 25 : glm(formula = div0 ~ disp_mode + yr + disp_mode:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 27 : glm(formula = div0 ~ disp_mode + frag_cat + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 29 : glm(formula = div0 ~ disp_mode + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 31 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 44 : glm(formula = div0 ~ origen + yr + origen:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 45 : glm(formula = div0 ~ disp_mode + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 46 : glm(formula = div0 ~ frag_cat + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 47 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + origen:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 61 : glm(formula = div0 ~ disp_mode + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 63 : glm(formula = div0 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## Global model call: glm(formula = div0 ~ yr + frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## ---
## Model selection table 
##    (Int) dsp_mod frg_cat org yr dsp_mod:yr org:yr df    logLik   AICc  delta
## 64 4.972       +       +   +  +          +      + 10 -1399.143 2818.7   0.00
## 48 5.503       +       +   +  +                 +  9 -1413.496 2845.3  26.64
## 28 4.275       +       +      +          +         8 -1416.345 2848.9  30.28
## 32 4.403       +       +   +  +          +         9 -1415.542 2849.4  30.73
## 62 4.857       +           +  +          +      +  7 -1419.826 2853.8  35.18
## 12 4.807       +       +      +                    7 -1429.926 2874.0  55.38
## 16 4.934       +       +   +  +                    8 -1429.158 2874.6  55.90
## 46 5.388       +           +  +                 +  6 -1433.255 2878.7  60.00
## 26 4.160       +              +          +         5 -1435.926 2882.0  63.30
## 30 4.288       +           +  +          +         6 -1435.173 2882.5  63.83
## 10 4.692       +              +                    4 -1448.677 2905.4  86.77
## 14 4.819       +           +  +                    5 -1447.956 2906.0  87.36
## 4  3.536       +       +                           6 -1497.742 3007.6 188.97
## 8  3.663       +       +   +                       7 -1497.128 3008.4 189.79
## 2  3.421       +                                   3 -1512.835 3031.7 213.06
## 6  3.549       +           +                       4 -1512.251 3032.6 213.92
## 47 8.976               +   +  +                 +  8 -1744.436 3505.1 686.46
## 11 8.279               +      +                    6 -1750.067 3512.3 693.62
## 45 8.861                   +  +                 +  5 -1751.233 3512.6 693.91
## 15 8.407               +   +  +                    7 -1749.800 3513.8 695.13
## 9  8.164                      +                    3 -1756.741 3519.5 700.87
## 13 8.292                   +  +                    4 -1756.479 3521.0 702.37
## 3  7.009               +                           5 -1775.479 3561.1 742.40
## 7  7.136               +   +                       6 -1775.233 3562.6 743.95
## 1  6.894                                           2 -1781.623 3567.3 748.61
## 5  7.021                   +                       3 -1781.382 3568.8 750.15
##    weight
## 64      1
## 48      0
## 28      0
## 32      0
## 62      0
## 12      0
## 16      0
## 46      0
## 26      0
## 30      0
## 10      0
## 14      0
## 4       0
## 8       0
## 2       0
## 6       0
## 47      0
## 11      0
## 45      0
## 15      0
## 9       0
## 13      0
## 3       0
## 7       0
## 1       0
## 5       0
## Models ranked by AICc(x)

fin_mod_int_div1<-glm(div1~yr+frag_cat+yr*origen+yr*disp_mode, data = div_data_geral, family = "gaussian",
                na.action = "na.fail")
summary(fin_mod_int_div1)
## 
## Call:
## glm(formula = div1 ~ yr + frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -6.5768  -0.7534   0.0568   0.8437   3.5772  
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           3.5165     0.1672  21.035  < 2e-16 ***
## yr2007               -1.4928     0.1930  -7.733 4.47e-14 ***
## frag_catlarge        -0.5066     0.1576  -3.214 0.001379 ** 
## frag_catmedium       -0.5938     0.1576  -3.768 0.000181 ***
## frag_catsmall         0.1745     0.1576   1.107 0.268630    
## origennd             -2.1987     0.1576 -13.950  < 2e-16 ***
## disp_modezoo          3.8858     0.1576  24.654  < 2e-16 ***
## yr2007:origennd       2.3934     0.2229  10.738  < 2e-16 ***
## yr2007:disp_modezoo  -1.3482     0.2229  -6.048 2.58e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 1.888037)
## 
##     Null deviance: 3345.9  on 607  degrees of freedom
## Residual deviance: 1130.9  on 599  degrees of freedom
## AIC: 2122.8
## 
## Number of Fisher Scoring iterations: 2
dredge(fin_mod_int_div1, evaluate = TRUE, rank = "AICc", fixed = NULL, trace = TRUE)
## 0 : glm(formula = div1 ~ 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 1 : glm(formula = div1 ~ disp_mode + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 2 : glm(formula = div1 ~ frag_cat + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 3 : glm(formula = div1 ~ disp_mode + frag_cat + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 4 : glm(formula = div1 ~ origen + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 5 : glm(formula = div1 ~ disp_mode + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 6 : glm(formula = div1 ~ frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 7 : glm(formula = div1 ~ disp_mode + frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 8 : glm(formula = div1 ~ yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 9 : glm(formula = div1 ~ disp_mode + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 10 : glm(formula = div1 ~ frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 11 : glm(formula = div1 ~ disp_mode + frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 12 : glm(formula = div1 ~ origen + yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 13 : glm(formula = div1 ~ disp_mode + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 14 : glm(formula = div1 ~ frag_cat + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 15 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 25 : glm(formula = div1 ~ disp_mode + yr + disp_mode:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 27 : glm(formula = div1 ~ disp_mode + frag_cat + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 29 : glm(formula = div1 ~ disp_mode + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 31 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 44 : glm(formula = div1 ~ origen + yr + origen:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 45 : glm(formula = div1 ~ disp_mode + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 46 : glm(formula = div1 ~ frag_cat + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 47 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + origen:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 61 : glm(formula = div1 ~ disp_mode + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 63 : glm(formula = div1 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## Global model call: glm(formula = div1 ~ yr + frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## ---
## Model selection table 
##    (Int) dsp_mod frg_cat org yr dsp_mod:yr org:yr df    logLik   AICc  delta
## 64 3.516       +       +   +  +          +      + 10 -1051.384 2123.1   0.00
## 62 3.285       +           +  +          +      +  7 -1068.287 2150.8  27.62
## 48 3.854       +       +   +  +                 +  9 -1069.405 2157.1  33.97
## 46 3.622       +           +  +                 +  6 -1085.359 2182.9  59.72
## 32 2.918       +       +   +  +          +         9 -1104.899 2228.1 104.96
## 30 2.687       +           +  +          +         6 -1119.136 2250.4 127.28
## 16 3.255       +       +   +  +                    8 -1120.082 2256.4 133.27
## 14 3.024       +           +  +                    5 -1133.641 2277.4 154.24
## 28 2.417       +       +      +          +         8 -1137.488 2291.2 168.08
## 26 2.186       +              +          +         5 -1150.308 2310.7 187.58
## 8  2.770       +       +   +                       7 -1149.307 2312.8 189.66
## 12 2.754       +       +      +                    7 -1151.162 2316.5 193.37
## 6  2.539       +           +                       4 -1161.648 2331.4 208.22
## 10 2.523       +              +                    4 -1163.429 2334.9 211.79
## 4  2.269       +       +                           6 -1177.667 2367.5 244.34
## 2  2.038       +                                   3 -1188.928 2383.9 260.76
## 47 5.459               +   +  +                 +  8 -1323.477 2663.2 540.06
## 45 5.228                   +  +                 +  5 -1330.497 2671.1 547.96
## 15 4.861               +   +  +                    7 -1346.492 2707.2 584.03
## 13 4.630                   +  +                    4 -1353.005 2714.1 590.94
## 7  4.376               +   +                       6 -1360.720 2733.6 610.44
## 11 4.360               +      +                    6 -1361.646 2735.4 612.30
## 5  4.144                   +                       3 -1366.939 2739.9 616.78
## 9  4.129                      +                    3 -1367.846 2741.7 618.60
## 3  3.875               +                           5 -1375.198 2760.5 637.36
## 1  3.643                                           2 -1381.130 2766.3 643.14
##    weight
## 64      1
## 62      0
## 48      0
## 46      0
## 32      0
## 30      0
## 16      0
## 14      0
## 28      0
## 26      0
## 8       0
## 12      0
## 6       0
## 10      0
## 4       0
## 2       0
## 47      0
## 45      0
## 15      0
## 13      0
## 7       0
## 11      0
## 5       0
## 9       0
## 3       0
## 1       0
## Models ranked by AICc(x)

fin_mod_int_div2<-glm(div2~yr+frag_cat+yr*origen+yr*disp_mode, data = div_data_geral, family = "gaussian",
                na.action = "na.fail")
summary(fin_mod_int_div2)
## 
## Call:
## glm(formula = div2 ~ yr + frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -4.7268  -0.6805   0.0862   0.6573   3.8182  
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           2.8591     0.1331  21.475  < 2e-16 ***
## yr2007               -1.1232     0.1537  -7.306 8.82e-13 ***
## frag_catlarge        -0.2693     0.1255  -2.146   0.0323 *  
## frag_catmedium       -0.7424     0.1255  -5.915 5.59e-09 ***
## frag_catsmall         0.1907     0.1255   1.519   0.1292    
## origennd             -1.7240     0.1255 -13.735  < 2e-16 ***
## disp_modezoo          2.6770     0.1255  21.327  < 2e-16 ***
## yr2007:origennd       1.9864     0.1775  11.190  < 2e-16 ***
## yr2007:disp_modezoo  -0.9942     0.1775  -5.601 3.26e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 1.197441)
## 
##     Null deviance: 1842.72  on 607  degrees of freedom
## Residual deviance:  717.27  on 599  degrees of freedom
## AIC: 1845.9
## 
## Number of Fisher Scoring iterations: 2
dredge(fin_mod_int_div2, evaluate = TRUE, rank = "AICc", fixed = NULL, trace = TRUE)
## 0 : glm(formula = div2 ~ 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 1 : glm(formula = div2 ~ disp_mode + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 2 : glm(formula = div2 ~ frag_cat + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 3 : glm(formula = div2 ~ disp_mode + frag_cat + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 4 : glm(formula = div2 ~ origen + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 5 : glm(formula = div2 ~ disp_mode + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 6 : glm(formula = div2 ~ frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 7 : glm(formula = div2 ~ disp_mode + frag_cat + origen + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 8 : glm(formula = div2 ~ yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 9 : glm(formula = div2 ~ disp_mode + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 10 : glm(formula = div2 ~ frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 11 : glm(formula = div2 ~ disp_mode + frag_cat + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 12 : glm(formula = div2 ~ origen + yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 13 : glm(formula = div2 ~ disp_mode + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 14 : glm(formula = div2 ~ frag_cat + origen + yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 15 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 25 : glm(formula = div2 ~ disp_mode + yr + disp_mode:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 27 : glm(formula = div2 ~ disp_mode + frag_cat + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 29 : glm(formula = div2 ~ disp_mode + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 31 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 44 : glm(formula = div2 ~ origen + yr + origen:yr + 1, family = "gaussian", 
##     data = div_data_geral, na.action = "na.fail")
## 45 : glm(formula = div2 ~ disp_mode + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 46 : glm(formula = div2 ~ frag_cat + origen + yr + origen:yr + 1, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 47 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + origen:yr + 
##     1, family = "gaussian", data = div_data_geral, na.action = "na.fail")
## 61 : glm(formula = div2 ~ disp_mode + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## 63 : glm(formula = div2 ~ disp_mode + frag_cat + origen + yr + disp_mode:yr + 
##     origen:yr + 1, family = "gaussian", data = div_data_geral, 
##     na.action = "na.fail")
## Global model call: glm(formula = div2 ~ yr + frag_cat + yr * origen + yr * disp_mode, 
##     family = "gaussian", data = div_data_geral, na.action = "na.fail")
## ---
## Model selection table 
##    (Int) dsp_mod frg_cat org yr dsp_mod:yr org:yr df    logLik   AICc  delta
## 64 2.859       +       +   +  +          +      + 10  -912.958 1846.3   0.00
## 48 3.108       +       +   +  +                 +  9  -928.474 1875.2  28.96
## 62 2.654       +           +  +          +      +  7  -943.084 1900.4  54.07
## 46 2.902       +           +  +                 +  6  -957.169 1926.5  80.19
## 32 2.363       +       +   +  +          +         9  -970.664 1959.6 113.35
## 16 2.611       +       +   +  +                    8  -983.554 1983.3 137.06
## 30 2.157       +           +  +          +         6  -995.791 2003.7 157.44
## 28 1.997       +       +      +          +         8  -997.868 2012.0 165.69
## 8  2.298       +       +   +                       7 -1003.003 2020.2 173.91
## 14 2.406       +           +  +                    5 -1007.677 2025.5 179.17
## 12 2.246       +       +      +                    7 -1009.676 2033.5 187.25
## 26 1.792       +              +          +         5 -1020.923 2051.9 205.66
## 6  2.092       +           +                       4 -1025.685 2059.4 213.15
## 4  1.932       +       +                           6 -1027.569 2067.3 220.99
## 10 2.040       +              +                    4 -1031.884 2071.8 225.55
## 2  1.727       +                                   3 -1048.550 2103.1 256.86
## 47 4.198               +   +  +                 +  8 -1132.566 2281.4 435.09
## 45 3.992                   +  +                 +  5 -1147.568 2305.2 458.95
## 15 3.701               +   +  +                    7 -1161.956 2338.1 491.82
## 7  3.387               +   +                       6 -1172.924 2358.0 511.70
## 13 3.496                   +  +                    4 -1175.606 2359.3 512.99
## 11 3.336               +      +                    6 -1176.758 2365.7 519.37
## 5  3.182                   +                       3 -1186.101 2378.2 531.96
## 3  3.022               +                           5 -1187.214 2384.5 538.24
## 9  3.130                      +                    3 -1189.773 2385.6 539.30
## 1  2.817                                           2 -1199.798 2403.6 557.33
##    weight
## 64      1
## 48      0
## 62      0
## 46      0
## 32      0
## 16      0
## 30      0
## 28      0
## 8       0
## 14      0
## 12      0
## 26      0
## 6       0
## 4       0
## 10      0
## 2       0
## 47      0
## 45      0
## 15      0
## 7       0
## 13      0
## 11      0
## 5       0
## 3       0
## 9       0
## 1       0
## Models ranked by AICc(x)