Correlation

Correlation Plot (Heat Map) showing the significance pair at alpha = 0.05

Those in Blue color is significant at alpha = 0.05.
Those in Blank/White color is NOT significant at alpha = 0.05.

In this plot, the darker shade of blue indicated a stronger relationship.

Effect of ADHD (IV) on Executive.Networks (DV) —- NOT SIGNIFICANT p<0.05

## 
## Call:
## lm(formula = Executive.Networks ~ ADHD, data = df[, -1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -209.78  -47.54    6.72   49.22  169.88 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 110.4878    43.9292   2.515    0.015 *
## ADHD          1.1390     0.8233   1.383    0.172  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 77.7 on 53 degrees of freedom
## Multiple R-squared:  0.03485,    Adjusted R-squared:  0.01664 
## F-statistic: 1.914 on 1 and 53 DF,  p-value: 0.1723

ADHD is Not predicting Attention –> CANNOT consider ANY mediation model

Retest with another method

ADHD - Stress - Attention - NO Mediation

## 
## Mediation/Moderation Analysis 
## Call: mediate(y = "Executive.Networks", x = "ADHD", m = "Stress", data = df[, 
##     -1], n.iter = 10000)
## 
## The DV (Y) was  Executive.Networks . The IV (X) was  ADHD . The mediating variable(s) =  Stress .
## 
## Total effect(c) of  ADHD  on  Executive.Networks  =  1.14   S.E. =  0.82  t  =  1.38  df=  53   with p =  0.17
## Direct effect (c') of  ADHD  on  Executive.Networks  removing  Stress  =  0.23   S.E. =  0.93  t  =  0.25  df=  52   with p =  0.8
## Indirect effect (ab) of  ADHD  on  Executive.Networks  through  Stress   =  0.91 
## Mean bootstrapped indirect effect =  0.91  with standard error =  0.56  Lower CI =  -0.05    Upper CI =  2.18
## R = 0.32 R2 = 0.1   F = 2.89 on 2 and 52 DF   p-value:  0.0439 
## 
## 
##  Full output  
## Call: mediate(y = "Executive.Networks", x = "ADHD", m = "Stress", data = df[, 
##     -1], n.iter = 10000)
## 
## Direct effect estimates (traditional regression)    (c') X + M on Y 
##           Executive.Networks    se    t df    Prob
## Intercept             116.45 42.93 2.71 52 0.00904
## ADHD                    0.23  0.93 0.25 52 0.80300
## Stress                  2.04  1.05 1.94 52 0.05750
## 
## R = 0.32 R2 = 0.1   F = 2.89 on 2 and 52 DF   p-value:  0.0644 
## 
##  Total effect estimates (c) (X on Y) 
##           Executive.Networks    se    t df  Prob
## Intercept             110.49 43.93 2.52 53 0.015
## ADHD                    1.14  0.82 1.38 53 0.172
## 
##  'a'  effect estimates (X on M) 
##           Stress  se     t df     Prob
## Intercept  -2.92 5.6 -0.52 53 6.04e-01
## ADHD        0.44 0.1  4.23 53 9.25e-05
## 
##  'b'  effect estimates (M on Y controlling for X) 
##        Executive.Networks   se    t df   Prob
## Stress               2.04 1.05 1.94 52 0.0575
## 
##  'ab'  effect estimates (through all  mediators)
##      Executive.Networks boot   sd lower upper
## ADHD               0.91 0.91 0.56 -0.05  2.18

ADHD - Depression - Attention - No Mediation

## 
## Mediation/Moderation Analysis 
## Call: mediate(y = "Executive.Networks", x = "ADHD", m = "Depression", 
##     data = df[, -1], n.iter = 10000)
## 
## The DV (Y) was  Executive.Networks . The IV (X) was  ADHD . The mediating variable(s) =  Depression .
## 
## Total effect(c) of  ADHD  on  Executive.Networks  =  1.14   S.E. =  0.82  t  =  1.38  df=  53   with p =  0.17
## Direct effect (c') of  ADHD  on  Executive.Networks  removing  Depression  =  0.84   S.E. =  0.86  t  =  0.97  df=  52   with p =  0.34
## Indirect effect (ab) of  ADHD  on  Executive.Networks  through  Depression   =  0.3 
## Mean bootstrapped indirect effect =  0.32  with standard error =  0.3  Lower CI =  -0.12    Upper CI =  1.03
## R = 0.24 R2 = 0.06   F = 1.59 on 2 and 52 DF   p-value:  0.204 
## 
## 
##  Full output  
## Call: mediate(y = "Executive.Networks", x = "ADHD", m = "Depression", 
##     data = df[, -1], n.iter = 10000)
## 
## Direct effect estimates (traditional regression)    (c') X + M on Y 
##            Executive.Networks    se    t df   Prob
## Intercept              107.82 43.89 2.46 52 0.0174
## ADHD                     0.84  0.86 0.97 52 0.3380
## Depression               1.12  1.00 1.12 52 0.2690
## 
## R = 0.24 R2 = 0.06   F = 1.59 on 2 and 52 DF   p-value:  0.215 
## 
##  Total effect estimates (c) (X on Y) 
##           Executive.Networks    se    t df  Prob
## Intercept             110.49 43.93 2.52 53 0.015
## ADHD                    1.14  0.82 1.38 53 0.172
## 
##  'a'  effect estimates (X on M) 
##           Depression   se   t df   Prob
## Intercept       2.39 6.03 0.4 53 0.6930
## ADHD            0.27 0.11 2.4 53 0.0201
## 
##  'b'  effect estimates (M on Y controlling for X) 
##            Executive.Networks se    t df  Prob
## Depression               1.12  1 1.12 52 0.269
## 
##  'ab'  effect estimates (through all  mediators)
##      Executive.Networks boot  sd lower upper
## ADHD                0.3 0.32 0.3 -0.12  1.03

ADHD - Anxiety - Attention - NO mediation

## 
## Mediation/Moderation Analysis 
## Call: mediate(y = "Executive.Networks", x = "ADHD", m = "Anxiety", 
##     data = df[, -1], n.iter = 10000)
## 
## The DV (Y) was  Executive.Networks . The IV (X) was  ADHD . The mediating variable(s) =  Anxiety .
## 
## Total effect(c) of  ADHD  on  Executive.Networks  =  1.14   S.E. =  0.82  t  =  1.38  df=  53   with p =  0.17
## Direct effect (c') of  ADHD  on  Executive.Networks  removing  Anxiety  =  0.43   S.E. =  0.91  t  =  0.48  df=  52   with p =  0.64
## Indirect effect (ab) of  ADHD  on  Executive.Networks  through  Anxiety   =  0.71 
## Mean bootstrapped indirect effect =  0.73  with standard error =  0.53  Lower CI =  -0.16    Upper CI =  1.87
## R = 0.29 R2 = 0.09   F = 2.43 on 2 and 52 DF   p-value:  0.0757 
## 
## 
##  Full output  
## Call: mediate(y = "Executive.Networks", x = "ADHD", m = "Anxiety", 
##     data = df[, -1], n.iter = 10000)
## 
## Direct effect estimates (traditional regression)    (c') X + M on Y 
##           Executive.Networks    se    t df   Prob
## Intercept             113.33 43.20 2.62 52 0.0114
## ADHD                    0.43  0.91 0.48 52 0.6360
## Anxiety                 1.92  1.13 1.70 52 0.0959
## 
## R = 0.29 R2 = 0.09   F = 2.43 on 2 and 52 DF   p-value:  0.0981 
## 
##  Total effect estimates (c) (X on Y) 
##           Executive.Networks    se    t df  Prob
## Intercept             110.49 43.93 2.52 53 0.015
## ADHD                    1.14  0.82 1.38 53 0.172
## 
##  'a'  effect estimates (X on M) 
##           Anxiety   se     t df     Prob
## Intercept   -1.49 5.25 -0.28 53 0.778000
## ADHD         0.37 0.10  3.74 53 0.000448
## 
##  'b'  effect estimates (M on Y controlling for X) 
##         Executive.Networks   se   t df   Prob
## Anxiety               1.92 1.13 1.7 52 0.0959
## 
##  'ab'  effect estimates (through all  mediators)
##      Executive.Networks boot   sd lower upper
## ADHD               0.71 0.73 0.53 -0.16  1.87