\(\int4e^{-7x}dx\)
\(u = -7x\enspace \:\;\;\;\;\; du = -7dx\)
\(\frac{du}{-7}=dx\)
\(\int4e^u\cdot\frac{du}{-7}\) = \(-\frac{4}{7}\int e^u du\) = -\(\frac{4}{7}e^u +c\) =
\(-\frac{4}{7}e^{-7x}+C\)
\(\frac{dN}{dt} = -\frac{3150}{t^4}-220\)
\(\int \frac{dN}{dt} = \int -\frac{3150}{t^4}-220\)
\(N(t) = \frac{1050}{t^3}- 220t + C\)
\(6350 = -\frac{1050}{1^3} -200(1)+ C\)
7400 = C
\(N(t) = \frac{1050}{t^3}- 220t + 7400\)
\(Area=f(5)+f(6)+f(7)+f(8)\)
\(Area=16\)
\(y = x^2 - 2x - 2\:, \: \enspace y= x + 2\)
#Find intersection:
curve(x+2, from=-10, to=10, n=300,
col="blue", lwd=2, )
curve(x^2-2*x-2, from=-10, to=10, n=300,
col="blue", lwd=2, add =TRUE )
\(x^2 - 2x-2 = x+2\)
\(x^2 -3x - 4 = 0\)
\(x = 4, x=-1\)
\(\int_{-1}^{4}(x+2)-(x^2 - 2x-2)\)
\(\int_{-1}^4(-x^2+3x+4)dx\)
20.833
x = number of orders
Cost = 8.25x +3.75$
Cost = 8.25x + $
Finding the derivative and setting to zero to find critical value.
Cā = 8.25 - \(\frac{206.25}{x^2}\)
0 = 8.25 - \(\frac{206.25}{x^2}\)
x = 22
The number of orders per year that will minimize inventory costs is 5 so lot size is 22.
\(\int uv dx\) = \(uv -\int v du\)
u = ln(x) \(du = x^6dx\)
\(du = \frac{1}{9x} \cdot 9 dx\) \(v=\frac{1}{7}x^7\)
\(ln(9x)\frac{1}{7}x^7\) - \(\int \frac{1}{7}x^7 \cdot \frac{1}{x} dx\) =\(ln(9x)\frac{1}{7}x^7\)-\(\frac{1}{7}\int x^6dx\)
\(ln(9x)\frac{1}{7}x^7\) - \(\frac{1}{49}x^7\)
f(x) =\(\frac{1}{6x}\)
\(\int^{e^6}_{1} \frac{1}{6x}dx\)
\(\frac{1}{6}ln(x)|^{e^6}_1\) = \(\frac{1}{6}ln(e^6) - \frac{1}{6}ln(1)\) = 1 - 0 = 1
f(x) is a probability density funciton as the area underneath the graph is equal to 1.