Here's the process for reading in one file
# change to your path
data<-read.csv("~/github/sac/metro/metro.csv")
# change row names with first column of plant names
row.names(data) <- data[,1]
# remove first column
data <- data[,-1]
# change all NA's to zeros
data[is.na(data)] <- 0
Or you can read in all files at once and manipulate structure in lapply call
setwd("~/github/sac/metro") # set directory
listoffiles <- dir("~/github/sac/metro") # get all file names
# Define a function to do all manipulation
foo <- function(y){
x <- read.csv(y)
row.names(x) <- x[,1]
x <- x[,-1]
x[is.na(x)] <- 0
x
}
# Apply foo fxn to all files
listofnetowrks <- lapply(listoffiles, foo)
library(bipartite)
plotweb(data)
library(bipartite)
networklevel(data, index=c('nestedness','ISA','H2'))
nestedness interaction strength asymmetry
3.010058 0.006573
H2
0.376138
get data
library(bipartite)
threenetworks <- list(small1976, barrett1987, motten1982)
out <- lapply(threenetworks, function(x) networklevel(x, index=c('nestedness','ISA','H2')))
names(out) <- c('small1976', 'barrett1987', 'motten1982')
library(plyr)
df <- ldply(out)
manipulate data
library(reshape2)
df_melt <- melt(df)
library(ggplot2)
ggplot(df_melt, aes(variable, value, color=.id)) +
geom_jitter(size=5) +
theme_bw(base_size=18)
ggplot(df_melt, aes(.id, value)) +
geom_jitter(size=5) +
theme_bw(base_size=18) +
facet_wrap(~ variable)