1 Question 7.12

1.1 Solution:

Factor A: Length of Putt

10 ft = -1, 30 ft = 1

Factor B: Type of Putter

mallet = 1, cavity-back = -1

Factor C: Break of Putter

straight = -1, breaking = 1

Factor D: Slope of Putter

level = -1, downhill = 1

Reading the Data:

library(GAD)
length<-c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
type<-c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
brk<-c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
sp<-c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
I<-c(10,0,4,0,0,5,6.5,16.5,4.5,19.5,15,41.5,8,21.5,0,18)
II<-c(18,16.5,6,10,0,20.5,18.5,4.5,18,18,16,39,4.5,10.5,0,5)
III<-c(14,4.5,1,34,18.5,18,7.5,0,14.5,16,8.5,6.5,6.5,6.5,0,7)
IV<-c(12.5,17.5,14.5,11,19.5,20,6,23.5,10,5.5,0,3.5,10,0,4.5,10)
V<-c(19,20.5,12,25.5,16,29.5,0,8,0,10,0.5,7,13,15.5,1,32.5)
VI<-c(16,17.5,14,21.5,15,19,10,8,17.5,7,9,8.5,41,24,4,18.5)
VII<-c(18.5,33,5,0,11,10,0,8,6,36,3,36,14,16,6.5,8)
Obs<-c(I,II,III,IV,V,VI,VII)
Blk <- c(rep(1,16),rep(2,16),rep(3,16),rep(4,16),rep(5,16),rep(6,16),rep(7,16))

block<-as.fixed(Blk)
length<-as.fixed(length)
type<-as.fixed(type)
brk<-as.fixed(brk)
sp<-as.fixed(sp)

data<-data.frame(length,type,brk,sp,Obs,block)
data
##     length type brk sp  Obs block
## 1       -1   -1  -1 -1 10.0     1
## 2        1   -1  -1 -1  0.0     1
## 3       -1    1  -1 -1  4.0     1
## 4        1    1  -1 -1  0.0     1
## 5       -1   -1   1 -1  0.0     1
## 6        1   -1   1 -1  5.0     1
## 7       -1    1   1 -1  6.5     1
## 8        1    1   1 -1 16.5     1
## 9       -1   -1  -1  1  4.5     1
## 10       1   -1  -1  1 19.5     1
## 11      -1    1  -1  1 15.0     1
## 12       1    1  -1  1 41.5     1
## 13      -1   -1   1  1  8.0     1
## 14       1   -1   1  1 21.5     1
## 15      -1    1   1  1  0.0     1
## 16       1    1   1  1 18.0     1
## 17      -1   -1  -1 -1 18.0     2
## 18       1   -1  -1 -1 16.5     2
## 19      -1    1  -1 -1  6.0     2
## 20       1    1  -1 -1 10.0     2
## 21      -1   -1   1 -1  0.0     2
## 22       1   -1   1 -1 20.5     2
## 23      -1    1   1 -1 18.5     2
## 24       1    1   1 -1  4.5     2
## 25      -1   -1  -1  1 18.0     2
## 26       1   -1  -1  1 18.0     2
## 27      -1    1  -1  1 16.0     2
## 28       1    1  -1  1 39.0     2
## 29      -1   -1   1  1  4.5     2
## 30       1   -1   1  1 10.5     2
## 31      -1    1   1  1  0.0     2
## 32       1    1   1  1  5.0     2
## 33      -1   -1  -1 -1 14.0     3
## 34       1   -1  -1 -1  4.5     3
## 35      -1    1  -1 -1  1.0     3
## 36       1    1  -1 -1 34.0     3
## 37      -1   -1   1 -1 18.5     3
## 38       1   -1   1 -1 18.0     3
## 39      -1    1   1 -1  7.5     3
## 40       1    1   1 -1  0.0     3
## 41      -1   -1  -1  1 14.5     3
## 42       1   -1  -1  1 16.0     3
## 43      -1    1  -1  1  8.5     3
## 44       1    1  -1  1  6.5     3
## 45      -1   -1   1  1  6.5     3
## 46       1   -1   1  1  6.5     3
## 47      -1    1   1  1  0.0     3
## 48       1    1   1  1  7.0     3
## 49      -1   -1  -1 -1 12.5     4
## 50       1   -1  -1 -1 17.5     4
## 51      -1    1  -1 -1 14.5     4
## 52       1    1  -1 -1 11.0     4
## 53      -1   -1   1 -1 19.5     4
## 54       1   -1   1 -1 20.0     4
## 55      -1    1   1 -1  6.0     4
## 56       1    1   1 -1 23.5     4
## 57      -1   -1  -1  1 10.0     4
## 58       1   -1  -1  1  5.5     4
## 59      -1    1  -1  1  0.0     4
## 60       1    1  -1  1  3.5     4
## 61      -1   -1   1  1 10.0     4
## 62       1   -1   1  1  0.0     4
## 63      -1    1   1  1  4.5     4
## 64       1    1   1  1 10.0     4
## 65      -1   -1  -1 -1 19.0     5
## 66       1   -1  -1 -1 20.5     5
## 67      -1    1  -1 -1 12.0     5
## 68       1    1  -1 -1 25.5     5
## 69      -1   -1   1 -1 16.0     5
## 70       1   -1   1 -1 29.5     5
## 71      -1    1   1 -1  0.0     5
## 72       1    1   1 -1  8.0     5
## 73      -1   -1  -1  1  0.0     5
## 74       1   -1  -1  1 10.0     5
## 75      -1    1  -1  1  0.5     5
## 76       1    1  -1  1  7.0     5
## 77      -1   -1   1  1 13.0     5
## 78       1   -1   1  1 15.5     5
## 79      -1    1   1  1  1.0     5
## 80       1    1   1  1 32.5     5
## 81      -1   -1  -1 -1 16.0     6
## 82       1   -1  -1 -1 17.5     6
## 83      -1    1  -1 -1 14.0     6
## 84       1    1  -1 -1 21.5     6
## 85      -1   -1   1 -1 15.0     6
## 86       1   -1   1 -1 19.0     6
## 87      -1    1   1 -1 10.0     6
## 88       1    1   1 -1  8.0     6
## 89      -1   -1  -1  1 17.5     6
## 90       1   -1  -1  1  7.0     6
## 91      -1    1  -1  1  9.0     6
## 92       1    1  -1  1  8.5     6
## 93      -1   -1   1  1 41.0     6
## 94       1   -1   1  1 24.0     6
## 95      -1    1   1  1  4.0     6
## 96       1    1   1  1 18.5     6
## 97      -1   -1  -1 -1 18.5     7
## 98       1   -1  -1 -1 33.0     7
## 99      -1    1  -1 -1  5.0     7
## 100      1    1  -1 -1  0.0     7
## 101     -1   -1   1 -1 11.0     7
## 102      1   -1   1 -1 10.0     7
## 103     -1    1   1 -1  0.0     7
## 104      1    1   1 -1  8.0     7
## 105     -1   -1  -1  1  6.0     7
## 106      1   -1  -1  1 36.0     7
## 107     -1    1  -1  1  3.0     7
## 108      1    1  -1  1 36.0     7
## 109     -1   -1   1  1 14.0     7
## 110      1   -1   1  1 16.0     7
## 111     -1    1   1  1  6.5     7
## 112      1    1   1  1  8.0     7

Hypothesis:

To identify which factors are significant we perform an iterative approach i.e. perform hypothesis testing starting from testing for 4 factor interactions to testing for 2 factor interactions and then main effects

Null: \[H_o: (\tau\beta\gamma\lambda)_ijkl =0\]

Alternate:\[Ha:(\tau\beta\gamma\lambda)_ijkl\neq0\]

Analyzing it considering each replicate as Block:

model<-lm(Obs~length+type+brk+sp+block+length*type+length*brk+type*brk+length*sp+type*sp+brk*sp+length*type*brk+length*type*sp+length*brk*sp+type*brk*sp+length*type*brk*sp,data = data)
GAD::gad(model)
## Analysis of Variance Table
## 
## Response: Obs
##                    Df Sum Sq Mean Sq F value  Pr(>F)   
## length              1  917.1  917.15 10.3962 0.00176 **
## type                1  388.1  388.15  4.3998 0.03875 * 
## brk                 1  145.1  145.15  1.6453 0.20290   
## sp                  1    1.4    1.40  0.0158 0.90021   
## block               6  376.1   62.68  0.7105 0.64202   
## length:type         1  218.7  218.68  2.4788 0.11890   
## length:brk          1   11.9   11.90  0.1348 0.71433   
## type:brk            1  115.0  115.02  1.3038 0.25655   
## length:sp           1   93.8   93.81  1.0633 0.30522   
## type:sp             1   56.4   56.43  0.6397 0.42594   
## brk:sp              1    1.6    1.63  0.0184 0.89227   
## length:type:brk     1    7.3    7.25  0.0822 0.77499   
## length:type:sp      1  113.0  113.00  1.2809 0.26073   
## length:brk:sp       1   39.5   39.48  0.4476 0.50520   
## type:brk:sp         1   33.8   33.77  0.3828 0.53767   
## length:type:brk:sp  1   95.6   95.65  1.0842 0.30055   
## Residual           90 7939.7   88.22                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> Removing the 4th level interaction effect and running again because it isn’t significant to an alpha of 0.05
model1<-lm(Obs~length+type+brk+sp+block+length*type+length*brk+type*brk+length*sp+type*sp+brk*sp+length*type*brk+length*type*sp+length*brk*sp+type*brk*sp,data = data)
GAD::gad(model1)
## Analysis of Variance Table
## 
## Response: Obs
##                 Df Sum Sq Mean Sq F value   Pr(>F)   
## length           1  917.1  917.15 10.3866 0.001762 **
## type             1  388.1  388.15  4.3957 0.038804 * 
## brk              1  145.1  145.15  1.6438 0.203067   
## sp               1    1.4    1.40  0.0158 0.900250   
## block            6  376.1   62.68  0.7098 0.642528   
## length:type      1  218.7  218.68  2.4765 0.119026   
## length:brk       1   11.9   11.90  0.1347 0.714449   
## type:brk         1  115.0  115.02  1.3026 0.256734   
## length:sp        1   93.8   93.81  1.0623 0.305413   
## type:sp          1   56.4   56.43  0.6391 0.426128   
## brk:sp           1    1.6    1.63  0.0184 0.892318   
## length:type:brk  1    7.3    7.25  0.0821 0.775082   
## length:type:sp   1  113.0  113.00  1.2797 0.260920   
## length:brk:sp    1   39.5   39.48  0.4472 0.505381   
## type:brk:sp      1   33.8   33.77  0.3824 0.537843   
## Residual        91 8035.4   88.30                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> None of the 3rd level interaction effects are close to being significant so we will remove them and re-run the model
model2<-lm(Obs~length+type+brk+sp+block+length*type+length*brk+type*brk+length*sp+type*sp+brk*sp,data = data)
GAD::gad(model2)
## Analysis of Variance Table
## 
## Response: Obs
##             Df Sum Sq Mean Sq F value   Pr(>F)   
## length       1  917.1  917.15 10.5882 0.001577 **
## type         1  388.1  388.15  4.4810 0.036886 * 
## brk          1  145.1  145.15  1.6757 0.198640   
## sp           1    1.4    1.40  0.0161 0.899281   
## block        6  376.1   62.68  0.7236 0.631626   
## length:type  1  218.7  218.68  2.5246 0.115406   
## length:brk   1   11.9   11.90  0.1373 0.711780   
## type:brk     1  115.0  115.02  1.3279 0.252075   
## length:sp    1   93.8   93.81  1.0830 0.300678   
## type:sp      1   56.4   56.43  0.6515 0.421601   
## brk:sp       1    1.6    1.63  0.0188 0.891272   
## Residual    95 8228.9   86.62                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> None of the 2nd level interaction effects are close to being significant so we will remove them and re-run the model

Lastly, Running the model with main effects and Block:

model3<-lm(Obs~length+type+brk+sp+block,data = data)
GAD::gad(model3)
## Analysis of Variance Table
## 
## Response: Obs
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## length     1  917.1  917.15 10.6152 0.001528 **
## type       1  388.1  388.15  4.4925 0.036496 * 
## brk        1  145.1  145.15  1.6799 0.197888   
## sp         1    1.4    1.40  0.0161 0.899137   
## block      6  376.1   62.68  0.7254 0.630108   
## Residual 101 8726.3   86.40                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> We see that neither Block, Slope, Break are significant only PuttLength at a p-value of 0.001528 and PutterType at a p-value of 0.036496 are significant. --> Comparing the unblocked design and the blocked design, the p-values of the main effects and interactions do not significantly change. Additionally, the blocking does not affect the interactions, with the interaction plots being unchanged between the unblocked and unblocked design.
length <- rep(rep(c(-1,1),8),7)
type <- rep(rep(c(1,1,-1,-1),4),7)
interaction.plot(length,type,Obs,col=c("blue","red"))

--> Above Plot showsInteraction Plot betweem Putt Length and Putt Type

Since Block and other main effects are insignificant, Checking Model Adequacy with Putt Length and Putt Type as main effects:

model3<-lm(Obs~length+type,data = data)
library(ggplot2)
library(ggfortify)
autoplot(model3)

--> Residuals vs Fitted plot shows variation from constant variance and Normal QQ plot is adequate

2 Question 7.20

2.1 Solution:

#To confound on ABCE and ABDF,CDEF creating,

Block1 <- c('a','b','cd','abcd','ace','bce','de','abde','cf','abcf','adf','bdf','ef','abef','acdef','bcdef')
Block2 <- c('c','abc','ad','bd','e','abe','acde','bcde','af','bf','cdf','abcdf','acef','bcef','def','abdef')
Block3 <- c('ac','bc','d','abd','ae','be','cde','abcde','f','abf','acdf','bcdf','cef','abcef','adef','bdef')
Block4 <- c('(1)','ab','acd','bcd','ce','abce','ade','bde','acf','bcf','df','abdf','aef','bef','cdef','abcdef')
confounding_scheme<-cbind(Block1,Block2,Block3,Block4)
confounding_scheme
##       Block1  Block2  Block3  Block4  
##  [1,] "a"     "c"     "ac"    "(1)"   
##  [2,] "b"     "abc"   "bc"    "ab"    
##  [3,] "cd"    "ad"    "d"     "acd"   
##  [4,] "abcd"  "bd"    "abd"   "bcd"   
##  [5,] "ace"   "e"     "ae"    "ce"    
##  [6,] "bce"   "abe"   "be"    "abce"  
##  [7,] "de"    "acde"  "cde"   "ade"   
##  [8,] "abde"  "bcde"  "abcde" "bde"   
##  [9,] "cf"    "af"    "f"     "acf"   
## [10,] "abcf"  "bf"    "abf"   "bcf"   
## [11,] "adf"   "cdf"   "acdf"  "df"    
## [12,] "bdf"   "abcdf" "bcdf"  "abdf"  
## [13,] "ef"    "acef"  "cef"   "aef"   
## [14,] "abef"  "bcef"  "abcef" "bef"   
## [15,] "acdef" "def"   "adef"  "cdef"  
## [16,] "bcdef" "abdef" "bdef"  "abcdef"
--> Confounded Blocks = ABCE, ABDF, CDEF

3 Question 7.21

3.1 Solution:

#An eight block design confounded on ABCD,ACE, ABEF:
block1 <- c('b','acd','ce','abde','abcf','df','aef','bcdef')
block2 <- c('abc','d','ae','bcde','bf','acdf','cef','abdef')
block3 <- c('a','bcd','abce','de','cf','abdf','bef','acdef')
block4 <- c('c','abd','be','acde','af','bcdf','abcef','def')
block5 <- c('ac','bd','abe','cde','f','abcdf','bcef','adef')
block6 <- c('-1','abcd','bce','ade','acf','bdf','abef','cdef')
block7 <- c('bc','ad','e','abcde','abf','cdf','acef','bdef')
block8 <- c('ab','cd','ace','bde','bcf','adf','ef','abcdef')
confounding_scheme2<-cbind(block1,block2,block3,block4,block5,block6,block7,block8)
confounding_scheme2
##      block1  block2  block3  block4  block5  block6 block7  block8  
## [1,] "b"     "abc"   "a"     "c"     "ac"    "-1"   "bc"    "ab"    
## [2,] "acd"   "d"     "bcd"   "abd"   "bd"    "abcd" "ad"    "cd"    
## [3,] "ce"    "ae"    "abce"  "be"    "abe"   "bce"  "e"     "ace"   
## [4,] "abde"  "bcde"  "de"    "acde"  "cde"   "ade"  "abcde" "bde"   
## [5,] "abcf"  "bf"    "cf"    "af"    "f"     "acf"  "abf"   "bcf"   
## [6,] "df"    "acdf"  "abdf"  "bcdf"  "abcdf" "bdf"  "cdf"   "adf"   
## [7,] "aef"   "cef"   "bef"   "abcef" "bcef"  "abef" "acef"  "ef"    
## [8,] "bcdef" "abdef" "acdef" "def"   "adef"  "cdef" "bdef"  "abcdef"
--> Confounded Blocks = ABEF, ABCD, ACE, BCF, BDE, CDEF & ADF