library(knitr)
\[ \int 4e^{-7x}dx \] \[ u=-7x\ \rightarrow du=-7dx\ \rightarrow dx=\frac{du}{-7} \] thus \[ \int 4e^{u}\frac{du}{-7} \rightarrow \frac{4}{-7} \int e^{u}du\rightarrow \frac{4}{-7} e^{u}+C \] finally \[ \frac{4}{-7} e^{-7x}+C \]
\[ \frac{dN}{dt} =-\frac{3150}{t^{4}} -220 \]
\[ dN=(-\frac{3150}{t^{4}} -220)dt\rightarrow N=\int -\frac{3150}{t^{4}} -220dt\rightarrow N=\int -\frac{3150}{t^{4}} dt-\int 22dt\rightarrow N=-\frac{3150}{3t^{3}} -220t+C\]
t <- 1
(N <- (-3150/(3*t^3)-(220*1)))
## [1] -1270
(C <- 6530 - N )
## [1] 7800
Contamination = 7800
plot_area_img <- "/Users/Audiorunner13/CUNY MSDS Course Work/DATA605 Fall 2022/Week 13/plot_area.png"
# attr(transplant_prop_img, "info")
include_graphics(plot_area_img)
\[
\int^{8.5}_{4.5} 2x-9dx=[x^{2}-9x]\mid^{8.5}_{4.5} \]
x1 <- 8.5
x2 <- 4.5
(pArea <- (x1^2-(9*x1))-(x2^2-(9*x2)))
## [1] 16
Area = 16
\[ y=x^{2}-2x-2,\ y=x+2 \]
curve(x^2-2*x-2, lwd = 2, xlim=c(-5, 5))
curve(x+2, lwd = 2, xlim=c(-5, 5), add = TRUE)
Intersects at x = -1 and x = 4
\[ \int^{4}_{-1} x+2dx-\int^{4}_{-1} x^{2}-2x-2dx=-[\frac{1}{3} x^{3}-\frac{3}{2} x^{2}-4x]\mid^{4}_{-1} \]
(pArea <- 18.67 + 2.12)
## [1] 20.79
I could not figure this one out. :-(
\[ \int ln(9x)\times x^{6}dx \] \[ u=ln(9x),\frac{dv}{dx} =x^{6}\rightarrow du=\frac{9}{9x} dx=\frac{1}{x} dx\rightarrow dv=x^{6}dx \] \[ v=\frac{1}{7} x^{7} \] thus
\[ \int udv=uv-\int vdu\ =\ ln(9x)\frac{1}{7} x^{7}-\int \frac{1}{7} x^{7}\frac{1}{x} dx\ =\ ln(9x)\frac{x^{7}}{7} -\frac{x^{7}}{49} -C \]
\[ f(x)=\frac{1}{6x} \]
\[ \int^{e^{6}}_{1} f(x)dx=\int^{e^{6}}_{1} \frac{1}{6x} dx=\frac{1}{6} \int^{e^{6}}_{1} \frac{1}{x} dx=\frac{1}{6} ln(x)\mid^{e^{6}}_{1} \]
\[ =\frac{1}{6} \left[ ln(e^{6})-ln(1)\right] =\frac{1}{6} \left[ 6-0\right] =1 \]