Assignment 11A

Explore NYC Open Data to see what data is available. Select a dataset to import via R Socrata and answer a question about Corona or your final project. Create a R Notebook to share your analysis. Include:

  • Define global display options
  • Define display options for at least one code chunk
  • Use the kable or datatable functions to create at least one formatted tables
  • Create at least one plot or map

Active Tobacco Retailer Dealer Licenses:

  • Import this dataset of all tobacco licenses in New York City
  • Summarize by Borough or Neighborhood Tabulation Area to see how many tobacco licenses were granted in Corona vs other neighborhoods in the last year

Code

Data Processing Preparation

To prepare for the analysis, we will load packages before processing with our data exploration.

Load Packages

library(tidyverse)
library(tidycensus)
library(scales)
library(sf)
library(RColorBrewer)
library(RSocrata)
library(ggcharts)
library(ggblanket)
library(knitr)
library(DT)
options(scipen = 999)

Import the Dataframe with RSocrata

Using RSocrata, we can import the data for Active Tobacco Retailer Dealer Licenses from the website with their API link.

tobacco_raw <- read.socrata("https://data.cityofnewyork.us/resource/adw8-wvxb.csv")

Data Processing

Filter Queens from the Raw Data

To narrow our exploration, we will filter and create a new dataset to show Queens only.

tobacco_queens <- tobacco_raw %>%
  filter(Address.Borough == "Queens") %>% 
  select(Address.City, Address.ZIP, Address.Borough, Community.Board,
         NTA)

datatable(tobacco_queens)

Methods

Purpose

The aim of this exploration is to outline the total amount of tobacco retailer with active licenses in the neighbourhood in the Queens borough. For this particular study, we will separate the neighbourhoods by ZIP code number and focus on ZIP code 11368, which is the ZIP code for Corona.

Sources

The main source for the dataframe is the “Active Tobacco Retailer Dealer Licenses” from the NYC Open Data.

Methodology

For this exploration, there is no specific calculation used to sum the total number of active tobacco retailers. However, we did use a code chunk (shown in “Summary Tables” below) to help us summarise the total amount.

Results

Summary Tables

tobacco_queens_stats <- tobacco_queens %>%
  group_by(Address.ZIP) %>% 
  summarise(active_tobacco_retailers = n())

datatable(tobacco_queens_stats)

Plot


Conclusion

Based on the summary statistics and plot above, we can see that Corona (ZIP code 11368) ranks the second highest for the total amount of active tobacco retailers amongst other neighbourhoods in Queens, with a total of 73 active retailers.

LS0tCnRpdGxlOiAiQWN0aXZlIFRvYmFjY28gUmV0YWlsZXIgRGVhbGVyIExpY2Vuc2VzIgpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6CiAgICBjb2RlX2ZvbGRpbmc6IG5vbmUKICAgIHRoZW1lOiB5ZXRpCiAgICB0b2M6IHRydWUKICAgIHRvY19kZXB0aDogNQogICAgdG9jX2Zsb2F0OiB0cnVlCi0tLQojIEFzc2lnbm1lbnQgMTFBCkV4cGxvcmUgTllDIE9wZW4gRGF0YSB0byBzZWUgd2hhdCBkYXRhIGlzIGF2YWlsYWJsZS4gU2VsZWN0IGEgZGF0YXNldCB0byBpbXBvcnQgdmlhIFIgU29jcmF0YSBhbmQgYW5zd2VyIGEgcXVlc3Rpb24gYWJvdXQgQ29yb25hIG9yIHlvdXIgZmluYWwgcHJvamVjdC4gQ3JlYXRlIGEgUiBOb3RlYm9vayB0byBzaGFyZSB5b3VyIGFuYWx5c2lzLiBJbmNsdWRlOgoKKiBEZWZpbmUgX19nbG9iYWwgZGlzcGxheSBvcHRpb25zX18KKiBEZWZpbmUgX19kaXNwbGF5IG9wdGlvbnMgZm9yIGF0IGxlYXN0IG9uZSBjb2RlIGNodW5rX18KKiBVc2UgdGhlIF9fa2FibGVfXyBvciBfX2RhdGF0YWJsZV9fIGZ1bmN0aW9ucyB0byBjcmVhdGUgYXQgbGVhc3Qgb25lIGZvcm1hdHRlZCB0YWJsZXMKKiBDcmVhdGUgYXQgbGVhc3Qgb25lIF9fcGxvdCBvciBtYXBfXwoKIyMjIEFjdGl2ZSBUb2JhY2NvIFJldGFpbGVyIERlYWxlciBMaWNlbnNlczogIAoqIEltcG9ydCB0aGlzIGRhdGFzZXQgb2YgYWxsIHRvYmFjY28gbGljZW5zZXMgaW4gTmV3IFlvcmsgQ2l0eQoqIFN1bW1hcml6ZSBieSBCb3JvdWdoIG9yIE5laWdoYm9yaG9vZCBUYWJ1bGF0aW9uIEFyZWEgdG8gc2VlIGhvdyBtYW55IHRvYmFjY28gbGljZW5zZXMgd2VyZSBncmFudGVkIGluIENvcm9uYSB2cyBvdGhlciBuZWlnaGJvcmhvb2RzIGluIHRoZSBsYXN0IHllYXIKCmBgYHtyIHNldHVwLCBpbmNsdWRlID0gRkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVCwKICAgICAgICAgICAgICAgICAgICAgIHF1aWV0bHkgPSBULAogICAgICAgICAgICAgICAgICAgICAgbWVzc2FnZSA9IEYpCmBgYAoKKioqCgojIENvZGUKIyMgRGF0YSBQcm9jZXNzaW5nIFByZXBhcmF0aW9uClRvIHByZXBhcmUgZm9yIHRoZSBhbmFseXNpcywgd2Ugd2lsbCBsb2FkIHBhY2thZ2VzIGJlZm9yZSBwcm9jZXNzaW5nIHdpdGggb3VyIGRhdGEgZXhwbG9yYXRpb24uCgojIyMjIExvYWQgUGFja2FnZXMKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KHRpZHljZW5zdXMpCmxpYnJhcnkoc2NhbGVzKQpsaWJyYXJ5KHNmKQpsaWJyYXJ5KFJDb2xvckJyZXdlcikKbGlicmFyeShSU29jcmF0YSkKbGlicmFyeShnZ2NoYXJ0cykKbGlicmFyeShnZ2JsYW5rZXQpCmxpYnJhcnkoa25pdHIpCmxpYnJhcnkoRFQpCm9wdGlvbnMoc2NpcGVuID0gOTk5KQpgYGAKCiMjIyMgSW1wb3J0IHRoZSBEYXRhZnJhbWUgd2l0aCBSU29jcmF0YQpVc2luZyBfX1JTb2NyYXRhX18sIHdlIGNhbiBpbXBvcnQgdGhlIGRhdGEgZm9yIEFjdGl2ZSBUb2JhY2NvIFJldGFpbGVyIERlYWxlciBMaWNlbnNlcyBmcm9tIHRoZSB3ZWJzaXRlIHdpdGggdGhlaXIgQVBJIGxpbmsuCmBgYHtyfQp0b2JhY2NvX3JhdyA8LSByZWFkLnNvY3JhdGEoImh0dHBzOi8vZGF0YS5jaXR5b2ZuZXd5b3JrLnVzL3Jlc291cmNlL2Fkdzgtd3Z4Yi5jc3YiKQpgYGAKCiMjIERhdGEgUHJvY2Vzc2luZwojIyMjIyBGaWx0ZXIgUXVlZW5zIGZyb20gdGhlIFJhdyBEYXRhClRvIG5hcnJvdyBvdXIgZXhwbG9yYXRpb24sIHdlIHdpbGwgZmlsdGVyIGFuZCBjcmVhdGUgYSBuZXcgZGF0YXNldCB0byBzaG93IFF1ZWVucyBvbmx5LgpgYGB7cn0KdG9iYWNjb19xdWVlbnMgPC0gdG9iYWNjb19yYXcgJT4lCiAgZmlsdGVyKEFkZHJlc3MuQm9yb3VnaCA9PSAiUXVlZW5zIikgJT4lIAogIHNlbGVjdChBZGRyZXNzLkNpdHksIEFkZHJlc3MuWklQLCBBZGRyZXNzLkJvcm91Z2gsIENvbW11bml0eS5Cb2FyZCwKICAgICAgICAgTlRBKQoKZGF0YXRhYmxlKHRvYmFjY29fcXVlZW5zKQpgYGAKCioqKgoKIyBNZXRob2RzCiMjIyBQdXJwb3NlClRoZSBhaW0gb2YgdGhpcyBleHBsb3JhdGlvbiBpcyB0byBvdXRsaW5lIHRoZSB0b3RhbCBhbW91bnQgb2YgdG9iYWNjbyByZXRhaWxlciB3aXRoIGFjdGl2ZSBsaWNlbnNlcyBpbiB0aGUgbmVpZ2hib3VyaG9vZCBpbiB0aGUgUXVlZW5zIGJvcm91Z2guIEZvciB0aGlzIHBhcnRpY3VsYXIgc3R1ZHksIHdlIHdpbGwgc2VwYXJhdGUgdGhlIG5laWdoYm91cmhvb2RzIGJ5IFpJUCBjb2RlIG51bWJlciBhbmQgZm9jdXMgb24gWklQIGNvZGUgX18xMTM2OF9fLCB3aGljaCBpcyB0aGUgWklQIGNvZGUgZm9yIF9fQ29yb25hX18uCgojIyMgU291cmNlcwpUaGUgbWFpbiBzb3VyY2UgZm9yIHRoZSBkYXRhZnJhbWUgaXMgdGhlIFsiQWN0aXZlIFRvYmFjY28gUmV0YWlsZXIgRGVhbGVyIExpY2Vuc2VzIl0oaHR0cHM6Ly9kYXRhLmNpdHlvZm5ld3lvcmsudXMvQnVzaW5lc3MvQWN0aXZlLVRvYmFjY28tUmV0YWlsLURlYWxlci1MaWNlbnNlcy9hZHc4LXd2eGIvZGF0YSkgZnJvbSB0aGUgTllDIE9wZW4gRGF0YS4KCiMjIyBNZXRob2RvbG9neQpGb3IgdGhpcyBleHBsb3JhdGlvbiwgdGhlcmUgaXMgbm8gc3BlY2lmaWMgY2FsY3VsYXRpb24gdXNlZCB0byBzdW0gdGhlIHRvdGFsIG51bWJlciBvZiBhY3RpdmUgdG9iYWNjbyByZXRhaWxlcnMuIEhvd2V2ZXIsIHdlIGRpZCB1c2UgYSBjb2RlIGNodW5rIChzaG93biBpbiAiU3VtbWFyeSBUYWJsZXMiIGJlbG93KSB0byBoZWxwIHVzIHN1bW1hcmlzZSB0aGUgdG90YWwgYW1vdW50LgoKIyBSZXN1bHRzCiMjIyBTdW1tYXJ5IFRhYmxlcwpgYGB7cn0KdG9iYWNjb19xdWVlbnNfc3RhdHMgPC0gdG9iYWNjb19xdWVlbnMgJT4lCiAgZ3JvdXBfYnkoQWRkcmVzcy5aSVApICU+JSAKICBzdW1tYXJpc2UoYWN0aXZlX3RvYmFjY29fcmV0YWlsZXJzID0gbigpKQoKZGF0YXRhYmxlKHRvYmFjY29fcXVlZW5zX3N0YXRzKQpgYGAKCiMjIyBQbG90CmBgYHtyIGVjaG89RkFMU0V9CmdncGxvdChkYXRhID0gdG9iYWNjb19xdWVlbnNfc3RhdHMsCiAgICAgICBhZXMoeCA9IHJlb3JkZXIoQWRkcmVzcy5aSVAsIGFjdGl2ZV90b2JhY2NvX3JldGFpbGVycyksICMgUmVvcmRlcihpbnRlbmRlZCBjb2x1bW4gZm9yIHgsIGJ5IHRoaXMgdmFsdWUpCiAgICAgICAgICAgeSA9IGFjdGl2ZV90b2JhY2NvX3JldGFpbGVycywKICAgICAgICAgICBmaWxsID0gYWN0aXZlX3RvYmFjY29fcmV0YWlsZXJzKSkgKwogIGdlb21fY29sKCkgKwogIHNjYWxlX3lfY29udGludW91cyhsYWJlbHMgPSBzY2FsZXM6OmxhYmVsX2NvbW1hKCkpICsKICBzY2FsZV9maWxsX2dyYWRpZW50KGxhYmVscyA9IHNjYWxlczo6bGFiZWxfY29tbWEoKSwgbG93ID0gImdyZXkiLCBoaWdoID0gImJsdWUiKSArCiAgdGhlbWUoYXhpcy50ZXh0Lng9ZWxlbWVudF90ZXh0KGFuZ2xlID0gOTAsIGhqdXN0ID0gMSwgdmp1c3QgPSAwLjUpLAogICAgICAgIHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUpKSArIAogIGxhYnMoeCA9ICJaSVAgQ29kZSAoUXVlZW5zKSIsCiAgICAgICB5ID0gIkFjdGl2ZSBUb2JhY2NvIFJldGFpbGVycyIsCiAgICAgICB0aXRsZSA9ICJBY3RpdmUgVG9iYWNjbyBSZXRhaWxlcnMgaW4gUXVlZW5zIHBlciBaSVAgQ29kZSIsCiAgICAgICBmaWxsID0gIkFjdGl2ZSBUb2JhY2NvIFJldGFpbGVycyIpCmBgYAoKKioqCgojIENvbmNsdXNpb24KQmFzZWQgb24gdGhlIHN1bW1hcnkgc3RhdGlzdGljcyBhbmQgcGxvdCBhYm92ZSwgd2UgY2FuIHNlZSB0aGF0IF9fQ29yb25hIChaSVAgY29kZSAxMTM2OClfXyByYW5rcyB0aGUgX19zZWNvbmQgaGlnaGVzdF9fIGZvciB0aGUgdG90YWwgYW1vdW50IG9mIGFjdGl2ZSB0b2JhY2NvIHJldGFpbGVycyBhbW9uZ3N0IG90aGVyIG5laWdoYm91cmhvb2RzIGluIFF1ZWVucywgd2l0aCBhIHRvdGFsIG9mIDczIGFjdGl2ZSByZXRhaWxlcnMuCgoKCg==