Problem 7.12

Model Equation:

\(Y_{ijklmn} = \mu+\alpha_i+\beta_j+(\alpha\beta)_{ij}+\gamma_k+(\alpha\gamma)_{ik}+(\beta\gamma)_{jk}+\delta_l+.........+(\alpha\beta\gamma\delta)_{ijkl}+\tau_m+\epsilon_{ijklmn}\)

Where, \(\tau_m\) = Block effect and n = replicate

ANOVA with Blocking

library(GAD)
## Loading required package: matrixStats
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
A <- c(rep(-1,7),rep(1,7))
B <- c(rep(-1,14),rep(1,14))
C <- c(rep(-1,28),rep(1,28))
D <- c(rep(-1,56),rep(1,56))
Block <- c(rep(seq(1,7),16))
obs <- c(10,18,14,12.5,19,16,18.5,0,16.5,4.5,17.5,20.5,17.5,33,4,6,1,14.5,12,14,5,0,10,34,11,25.5,21.5,0,0,0,18.5,19.5,16,15,11,
         5,20.5,18,20,29.5,19,10,6.5,18.5,7.5,6,0,10,0,16.5,4.5,0,23.5,8,8,8,4.5,18,14.5,10,0,17.5,6,19.5,18,16,5.5,10,7,
         36,15,16,8.5,0,0.5,9,3,41.5,39,6.5,3.5,7,8.5,36,8,4.5,6.5,10,13,41,14,21.5,10.5,6.5,0,15.5,24,16,0,0,0,4.5,1,4,6.5,18,
         5,7,10,32.5,18.5,8)
A <- as.fixed(A)
B <- as.fixed(B)
C <- as.fixed(C)
D <- as.fixed(D)
Block <- as.fixed(Block)
dat <- data.frame(A,B,C,D,Block,obs)
dat
model <- aov(obs~(A*B*C*D)+Block,data=dat)
summary(model)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## A            1    917   917.1  10.396 0.00176 **
## B            1    388   388.1   4.400 0.03875 * 
## C            1    145   145.1   1.645 0.20290   
## D            1      1     1.4   0.016 0.90021   
## Block        6    376    62.7   0.710 0.64202   
## A:B          1    219   218.7   2.479 0.11890   
## A:C          1     12    11.9   0.135 0.71433   
## B:C          1    115   115.0   1.304 0.25655   
## A:D          1     94    93.8   1.063 0.30522   
## B:D          1     56    56.4   0.640 0.42594   
## C:D          1      2     1.6   0.018 0.89227   
## A:B:C        1      7     7.3   0.082 0.77499   
## A:B:D        1    113   113.0   1.281 0.26073   
## A:C:D        1     39    39.5   0.448 0.50520   
## B:C:D        1     34    33.8   0.383 0.53767   
## A:B:C:D      1     96    95.6   1.084 0.30055   
## Residuals   90   7940    88.2                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When considering Block, P value’s of Factor A and Factor B are less than \(\alpha=0.05\) level of significance and hence the length of Putt (Factor A) and the type of putter (Factor B) are significant. All other remaining factors, their interaction terms and the Block are not significant based on their respective P value’s.

ANOVA without Blocking

library(GAD)
A <- c(rep(-1,7),rep(1,7))
B <- c(rep(-1,14),rep(1,14))
C <- c(rep(-1,28),rep(1,28))
D <- c(rep(-1,56),rep(1,56))
Block <- c(rep(seq(1,7),16))
obs <- c(10,18,14,12.5,19,16,18.5,0,16.5,4.5,17.5,20.5,17.5,33,4,6,1,14.5,12,14,5,0,10,34,11,25.5,21.5,0,0,0,18.5,19.5,16,15,11,
         5,20.5,18,20,29.5,19,10,6.5,18.5,7.5,6,0,10,0,16.5,4.5,0,23.5,8,8,8,4.5,18,14.5,10,0,17.5,6,19.5,18,16,5.5,10,7,
         36,15,16,8.5,0,0.5,9,3,41.5,39,6.5,3.5,7,8.5,36,8,4.5,6.5,10,13,41,14,21.5,10.5,6.5,0,15.5,24,16,0,0,0,4.5,1,4,6.5,18,
         5,7,10,32.5,18.5,8)
A <- as.fixed(A)
B <- as.fixed(B)
C <- as.fixed(C)
D <- as.fixed(D)
Block <- as.fixed(Block)
dat <- data.frame(A,B,C,D,Block,obs)
dat
model <- aov(obs~A*B*C*D,data=dat)
summary(model)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## A            1    917   917.1  10.588 0.00157 **
## B            1    388   388.1   4.481 0.03686 * 
## C            1    145   145.1   1.676 0.19862   
## D            1      1     1.4   0.016 0.89928   
## A:B          1    219   218.7   2.525 0.11538   
## A:C          1     12    11.9   0.137 0.71178   
## B:C          1    115   115.0   1.328 0.25205   
## A:D          1     94    93.8   1.083 0.30066   
## B:D          1     56    56.4   0.651 0.42159   
## C:D          1      2     1.6   0.019 0.89127   
## A:B:C        1      7     7.3   0.084 0.77294   
## A:B:D        1    113   113.0   1.305 0.25623   
## A:C:D        1     39    39.5   0.456 0.50121   
## B:C:D        1     34    33.8   0.390 0.53386   
## A:B:C:D      1     96    95.6   1.104 0.29599   
## Residuals   96   8316    86.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When considering not to Block, P value’s of Factor A and Factor B are less than \(\alpha=0.05\) level of significance and hence the length of Putt (Factor A) and the type of putter (Factor B) are significant. All other remaining factors and their interaction terms are not significant based on their respective P value’s.

If Comparing between Block and not to Block- On both cases, the length of Putt (Factor A) and the type of putter (Factor B) are significant. Also P-value’s on both cases (Block/not to Block) are pretty much similar. Also, when Blocking, value of SSE is smaller than the value of SSE (when not Blocking).

Problem 7.20

A <- c(-1,1)
B <- c(rep(-1,2),rep(1,2))
C <- c(rep(-1,4),rep(1,4))
D <- c(rep(-1,8),rep(1,8))
E <- c(rep(-1,16),rep(1,16))
F <- c(rep(-1,32),rep(1,32))
ABCF <- c(A*B*C*F)
CDEF <- c(C*D*E*F)
ABDE <- c(A*B*D*E)
dat <- data.frame(A,B,C,D,E,F,ABCF,CDEF,ABDE)
dat

Problem 7.21

A <- c(-1,1)
B <- c(rep(-1,2),rep(1,2))
C <- c(rep(-1,4),rep(1,4))
D <- c(rep(-1,8),rep(1,8))
E <- c(rep(-1,16),rep(1,16))
F <- c(rep(-1,32),rep(1,32))
ABEF <- c(A*B*E*F)
ABCD <- c(A*B*C*D)
ACE <- c(A*C*E)
BCF <- c(B*C*F)
BDE <- c(B*D*E)
CDEF <- c(C*D*E*F)
ADF <- c(A*D*F)
dat <- data.frame(A,B,C,D,E,F,ABEF,ABCD,ACE,BCF,BDE,CDEF,ADF)
dat