#Setup
library(ggplot2)
library(ggpubr)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ✔ purrr 0.3.5
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(effectsize)
library(tidyr)
library(rstatix)
##
## Attaching package: 'rstatix'
##
## The following objects are masked from 'package:effectsize':
##
## cohens_d, eta_squared
##
## The following object is masked from 'package:stats':
##
## filter
library(dplyr)
#read in data
MyData <- read.csv("~/Documents/Fall 2022/PSY 211/2014-2022 ONLY.csv")
#read in my data set, remove missing data coded as 99 and create new data set
WSself <- dplyr::select(MyData, PUBPRIV, PROGRAM, C.E, RACE, ROSPST, LEVEL)
WSselfGrades <-na_if (WSself, "99")
WSselfGrades <- na.omit(WSselfGrades)
PUBPRIVgroups <- cut(WSselfGrades$PUBPRIV, breaks = c(0,1,2), labels = c("Public","Private"))
WSselfGrades$PUBPRIV[1:20]
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PUBPRIVgroups[1:20]
## [1] Public Public Public Public Public Public Public Public Public Public
## [11] Public Public Public Public Public Public Public Public Public Public
## Levels: Public Private
WSselfGrades$PUBPRIVgroups <- as.factor(WSselfGrades$PUBPRIV)
class(WSselfGrades$PUBPRIVgroups)
## [1] "factor"
levels(WSselfGrades$PUBPRIVgroups) <-c("Public", "Private")
C.Egroups <- cut(WSselfGrades$C.E, breaks = c(0,1,2), labels = c("Comparsion","Experimental"))
WSselfGrades$C.E[1:20]
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C.Egroups[1:20]
## [1] Comparsion Comparsion Comparsion Comparsion Comparsion Comparsion
## [7] Comparsion Comparsion Comparsion Comparsion Comparsion Comparsion
## [13] Comparsion Comparsion Comparsion Comparsion Comparsion Comparsion
## [19] Comparsion Comparsion
## Levels: Comparsion Experimental
WSselfGrades$C.Egroups <- as.factor(WSselfGrades$C.E)
class(WSselfGrades$C.Egroups)
## [1] "factor"
levels(WSselfGrades$C.Egroups) <-c("Comparsion", "Experimental")
ggplot(WSselfGrades, aes(fill=PUBPRIVgroups, y=ROSPST, x=C.Egroups)) +
geom_bar(position="dodge", stat="identity")+
xlab("Program Exposure")+
ylab("POST Self Esteem Scores")
#cell means
cellDescript <- with(WSselfGrades, aggregate(x=list(Mean=WSselfGrades$ROSPST,SD=WSselfGrades$ROSPST),
by=list(F1=PUBPRIVgroups, F2=C.Egroups),
FUN=mean_sd) )
View(cellDescript)
## Warning in format.data.frame(x0): corrupt data frame: columns will be truncated
## or padded with NAs
running ANOVA
model1 <- aov(ROSPST~PUBPRIVgroups*C.Egroups,data=WSselfGrades)
summary(model1)
## Df Sum Sq Mean Sq F value Pr(>F)
## PUBPRIVgroups 1 364 363.8 11.34 0.000788 ***
## C.Egroups 1 1556 1555.7 48.50 6.16e-12 ***
## PUBPRIVgroups:C.Egroups 1 7 6.7 0.21 0.647140
## Residuals 952 30537 32.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#ANOVA effect size
partial_eta_squared(model1)
## PUBPRIVgroups C.Egroups PUBPRIVgroups:C.Egroups
## 0.0117741803 0.0484750302 0.0002201801
#mean and SD for each group
WSselfGrades %>%
group_by(PUBPRIVgroups) %>%
get_summary_stats(ROSPST, type = "mean_sd")
## # A tibble: 2 × 5
## PUBPRIVgroups variable n mean sd
## <fct> <fct> <dbl> <dbl> <dbl>
## 1 Public ROSPST 366 20.1 5.34
## 2 Private ROSPST 590 21.4 6.07
WSselfGrades %>%
group_by(C.Egroups) %>%
get_summary_stats(ROSPST, type = "mean_sd")
## # A tibble: 2 × 5
## C.Egroups variable n mean sd
## <fct> <fct> <dbl> <dbl> <dbl>
## 1 Comparsion ROSPST 487 19.6 5.57
## 2 Experimental ROSPST 469 22.2 5.81
#Refercenes
citation("effectsize")
##
## To cite effectsize in publications use:
##
## Ben-Shachar M, Lüdecke D, Makowski D (2020). effectsize: Estimation
## of Effect Size Indices and Standardized Parameters. Journal of Open
## Source Software, 5(56), 2815. doi: 10.21105/joss.02815
##
## A BibTeX entry for LaTeX users is
##
## @Article{,
## title = {{e}ffectsize: Estimation of Effect Size Indices and Standardized Parameters},
## author = {Mattan S. Ben-Shachar and Daniel Lüdecke and Dominique Makowski},
## year = {2020},
## journal = {Journal of Open Source Software},
## volume = {5},
## number = {56},
## pages = {2815},
## publisher = {The Open Journal},
## doi = {10.21105/joss.02815},
## url = {https://doi.org/10.21105/joss.02815},
## }
citation(“dplyr”)
library(ggpubr)
library(tidyr) library(rstatix) library(dplyr) ```