Data getting
wos_scopus_tos <-
tosr::tosr_load("savedrecs Nov 22.txt",
"scopus Nov 22.bib")
[1] 2
Converting your wos collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
Converting your scopus collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
63 duplicated documents have been removed
tree_of_science <-
tosr::tosR("savedrecs Nov 22.txt",
"scopus Nov 22.bib")
[1] 2
Converting your wos collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
Converting your scopus collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
63 duplicated documents have been removed
Computing TOS SAP
Computing TOS subfields
wos <-
bibliometrix::convert2df(c("savedrecs Nov 22.txt")) # create dataframe from wos file
Converting your wos collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
scopus <-
bibliometrix::convert2df("scopus Nov 22.bib", # Create dataframe from scopus file
dbsource = "scopus",
format = "bibtex")
Converting your scopus collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
Table 1. Search Criteria
table_1 <-
tibble(wos = length(wos$SR), # Create a dataframe with the values.
scopus = length(scopus$SR),
total = length(wos_scopus_tos$df$SR))
table_1
Figure 1. Languages
main_languages <-
wos_scopus_tos$df |>
select(LA) |>
separate_rows(LA, sep = "; ") |>
count(LA, sort = TRUE) |>
slice(1:5)
other_languages <-
wos_scopus_tos$df |>
separate_rows(LA, sep = "; ") |>
select(LA) |>
count(LA, sort = TRUE) |>
slice(6:n) |>
summarise(n = sum(n)) |>
mutate(LA = "OTHERS") |>
select(LA, n)
Warning: numerical expression has 6 elements: only the first used
languages <-
main_languages |>
bind_rows(other_languages) |>
mutate(percentage = n / sum(n),
percentage = round(percentage,
digits = 2) ) |>
rename(language = LA) |>
select(language, percentage, count = n)
languages
df <- languages |>
rename(value = percentage, group = language) |>
mutate(value = value * 100) |>
select(value, group)
df2 <- df %>%
mutate(csum = rev(cumsum(rev(value))),
pos = value/2 + lead(csum, 1),
pos = if_else(is.na(pos), value/2, pos))
ggplot(df, aes(x = 2 , y = value, fill = fct_inorder(group))) +
geom_col(width = 1, color = 1) +
coord_polar(theta = "y") +
geom_label_repel(data = df2,
aes(y = pos, label = paste0(value, "%")),
size = 4.5, nudge_x = 1, show.legend = FALSE) +
theme(panel.background = element_blank(),
axis.line = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
plot.title = element_text(hjust = 0.5, size = 18)) +
labs(title = "Languages") +
guides(fill = guide_legend(title = "")) +
theme_void() +
xlim(0.5, 2.5)

Table 2. Country production
data_biblio_wos <- biblioAnalysis(wos)
[WARNING] Deprecated: --self-contained. use --embed-resources --standalone
wos_country <-
data_biblio_wos$Countries |>
data.frame() |>
mutate(database = "wos") |>
select(country = Tab, papers = Freq, database ) |>
arrange(desc(papers))
data_biblio_scopus <- biblioAnalysis(scopus)
scopus_country <-
data_biblio_scopus$Countries |>
data.frame() |>
mutate(database = "scopus") |>
select(country = Tab, papers = Freq, database ) |>
arrange(desc(papers))
data_biblio_total <- biblioAnalysis(wos_scopus_tos$df)
total_country <-
data_biblio_total$Countries |>
data.frame() |>
mutate(database = "total") |>
select(country = Tab, papers = Freq, database ) |>
arrange(desc(papers))
wos_scopus_total_country <-
wos_country |>
bind_rows(scopus_country,
total_country) |>
mutate(country = as.character(country)) |>
pivot_wider(names_from = database,
values_from = papers) |>
arrange(desc(total)) |>
slice(1:20) |>
mutate(percentage = total / (table_1 |> pull(total)),
percentage = round(percentage, digits = 2))
wos_scopus_total_country
Table 3. Author production
wos_authors <-
data_biblio_wos$Authors |>
data.frame() |>
rename(authors_wos = AU, papers_wos = Freq) |>
arrange(desc(papers_wos)) |>
slice(1:20) |>
mutate(database_wos = "wos")
[WARNING] Deprecated: --self-contained. use --embed-resources --standalone
scopus_authors <-
data_biblio_scopus$Authors |>
data.frame() |>
rename(authors_scopus = AU, papers_scopus = Freq) |>
arrange(desc(papers_scopus)) |>
slice(1:20) |>
mutate(database_scopus = "scopus")
total_authors <-
data_biblio_total$Authors |>
data.frame() |>
rename(authors_total = AU,
papers_total = Freq) |>
arrange(desc(papers_total)) |>
slice(1:20) |>
mutate(database_total = "total")
wos_scopus_authors <-
wos_authors |>
bind_cols(scopus_authors,
total_authors)
wos_scopus_authors
Table 4. Journal production
wos_journal <-
wos |>
select(journal = SO) |>
na.omit() |>
count(journal, sort = TRUE) |>
slice(1:20) |>
rename(publications = n) |>
mutate(database = "wos")
scopus_journal <-
scopus |>
select(journal = SO) |>
na.omit() |>
count(journal, sort = TRUE) |>
slice(1:20) |>
rename(publications = n) |>
mutate(database = "scopus")
total_journal <-
wos_scopus_tos$df |>
select(journal = SO) |>
na.omit() |>
count(journal, sort = TRUE) |>
slice(1:20) |>
rename(publications = n) |>
mutate(database = "total")
wos_scopus_total_journal <-
wos_journal |>
bind_rows(scopus_journal,
total_journal) |>
pivot_wider(names_from = database,
values_from = publications) |>
arrange(desc(total)) |>
slice(1:20) |>
mutate(percentage = total / table_1 |> pull(total),
percentage = round(percentage, digits = 2))
wos_scopus_total_journal
Figure 3. Co-citation network
Author co-citation network
wos_scopus_author_metatag <-
metaTagExtraction(wos_scopus_tos$df, Field = "CR_AU")
[WARNING] Deprecated: --self-contained. use --embed-resources --standalone
wos_scopus_author_co_citation_matrix <-
biblioNetwork(M = wos_scopus_author_metatag,
analysis = "co-citation",
network = "authors")
plot_net_author_co_citation <-
networkPlot(wos_scopus_author_co_citation_matrix,
weighted = T,
n=30,Title="Author Co-citation Network",
type="fruchterman",
size=T,
edgesize=5,
labelsize=0.7)

Author Collaboration network
wos_scopus_author_collab_matrix <-
biblioNetwork(M = wos_scopus_tos$df,
analysis = "collaboration",
network = "authors")
plot_author_collab <-
networkPlot(NetMatrix = wos_scopus_author_collab_matrix,
weighted=T, n = 30,
Title = "Author Collaboration Network",
type = "fruchterman",
size=T,
edgesize = 5,
labelsize=0.7)

author_collab_tbl_graph <-
graph_from_adjacency_matrix(wos_scopus_author_collab_matrix ,
mode = "undirected",
weighted = TRUE,
diag = FALSE) |>
as_tbl_graph(aca_igraph, directed = FALSE ) |>
activate(nodes) |>
mutate(degree = centrality_degree()) |>
arrange(desc(degree)) |>
slice(1:30)
author_collab_tbl_graph_filtered <-
author_collab_tbl_graph |>
activate(edges) |>
filter(weight > 1) |>
activate(nodes) |>
mutate(components = group_components(type = "weak")) |>
filter(components == 1) |>
mutate(degree = centrality_degree(),
community = as.factor(group_louvain()) )
author_collab_tbl_graph_filtered |>
ggraph(layout = "kk") +
geom_edge_link(alpha = .25,
aes(width = weight)) +
geom_node_point(aes(colour = community,
size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
theme_graph()

Country Collaboration Network
wos_scopus_country_collab_matrix <-
biblioNetwork(M = wos_scopus_tos$df,
analysis = "collaboration",
network = "countries")
plot_country_collab <-
networkPlot(wos_scopus_country_collab_matrix,
weighted=T, n = 30,
Title = "Country Collaboration Network",
type = "fruchterman",
size=T,
edgesize = 5,
labelsize=0.7)

country_collab_tbl_graph <-
graph_from_adjacency_matrix(wos_scopus_country_collab_matrix ,
mode = "undirected",
weighted = TRUE,
diag = FALSE) |>
as_tbl_graph(aca_igraph, directed = FALSE ) |>
activate(nodes) |>
mutate(degree = centrality_degree()) |>
arrange(desc(degree)) |>
slice(1:30)
country_collab_tbl_graph_filtered <-
country_collab_tbl_graph |>
activate(nodes) |>
mutate(components = group_components(type = "weak")) |>
filter(components == 1) |>
mutate(degree = centrality_degree(),
community = as.factor(group_louvain()) )
country_collab_tbl_graph_filtered |>
ggraph(layout = "kk") +
geom_edge_link(alpha = .25,
aes(width = weight)) +
geom_node_point(aes(colour = community,
size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
theme_graph()

Keyword co-occurrence network
wos_scopus_keyword_co_occurrence_matrix <-
biblioNetwork(M = wos_scopus_tos$df,
analysis = "co-occurrences",
[WARNING] Deprecated: --self-contained. use --embed-resources --standalone
network = "keywords",
sep = ";")
plot_net_co_occurrence <-
networkPlot(wos_scopus_keyword_co_occurrence_matrix,
weighted=T, n = 30,
Title = "Keyword Co-occurrence Network",
type = "fruchterman",
size=T,
edgesize = 5,
labelsize=0.7)

keyword_co_occurrence_tbl_graph <-
graph_from_adjacency_matrix(wos_scopus_keyword_co_occurrence_matrix ,
mode = "undirected",
weighted = TRUE,
diag = FALSE) |>
as_tbl_graph(aca_igraph, directed = FALSE ) |>
activate(nodes) |>
mutate(degree = centrality_degree()) |>
arrange(desc(degree)) |>
slice(1:30)
keyword_co_occurrence_weight_tbl <-
keyword_co_occurrence_tbl_graph |>
activate(edges) |>
select(weight) |>
as.data.frame()
threshold <-
quantile(keyword_co_occurrence_weight_tbl |>
select(weight) |>
pull(),
probs = 0.80)
keyword_co_occurrence_tbl_graph_filtered <-
keyword_co_occurrence_tbl_graph |>
activate(edges) |>
filter(weight >= threshold) |>
activate(nodes) |>
mutate(components = group_components(type = "weak")) |>
filter(components == 1) |>
mutate(degree = centrality_degree(),
community = as.factor(group_louvain()) )
keyword_co_occurrence_tbl_graph_filtered |>
ggraph(layout = "kk") +
geom_edge_link(alpha = .25,
aes(width = weight)) +
geom_node_point(aes(colour = community,
size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
theme_graph()

Figure 4. Tree of Science
Tree of Science
tree_of_science
Clustering analysis
Finding the clusters
nodes <- # Create a dataframe with the fullname of articles
tibble(name = V(wos_scopus_tos$graph)$name) |>
left_join(wos_scopus_tos$nodes,
by = c("name" = "ID_TOS"))
wos_scopus_citation_network_1 <- # Add the article names to the citation network
wos_scopus_tos$graph |>
igraph::set.vertex.attribute(name = "full_name",
index = V(wos_scopus_tos$graph)$name,
value = nodes$CITE)
nodes_1 <- # Create a dataframe with subfields (clusters)
tibble(name = V(wos_scopus_citation_network_1)$name,
cluster = V(wos_scopus_citation_network_1)$subfield,
full_name = V(wos_scopus_citation_network_1)$full_name)
nodes_2 <- # Count the number of articles per cluster
nodes_1 |>
count(cluster, sort = TRUE) |>
mutate(cluster_1 = row_number()) |>
select(cluster, cluster_1)
nodes_3 <-
nodes_1 |>
left_join(nodes_2) |>
rename(subfield = cluster_1) |>
select(name, full_name, subfield)
Joining, by = "cluster"
edge_list <-
get.edgelist(wos_scopus_citation_network_1) |>
data.frame() |>
rename(Source = X1, Target = X2)
wos_scopus_citation_network <-
graph.data.frame(d = edge_list,
directed = TRUE,
vertices = nodes_3)
wos_scopus_citation_network |>
summary()
IGRAPH fba5f90 DN-- 2579 4924 --
+ attr: name (v/c), full_name (v/c), subfield (v/n)
Choosing clusters
We proposed the tipping point option to choose the number of
clusters. See this paper:
https://www.nature.com/articles/s41598-021-85041-8
clusters <-
[WARNING] Deprecated: --self-contained. use --embed-resources --standalone
tibble(cluster = V(wos_scopus_citation_network)$subfield) |>
count(cluster, sort = TRUE)
clusters |>
ggplot(aes(x = reorder(cluster, n), y = n)) +
geom_point()

Removing not chosen clusters
wos_scopus_citation_network_clusters <-
wos_scopus_citation_network |>
delete.vertices(which(V(wos_scopus_citation_network)$subfield != 1 & # filter clusters
V(wos_scopus_citation_network)$subfield != 2 &
V(wos_scopus_citation_network)$subfield != 3 &
V(wos_scopus_citation_network)$subfield != 4))
wos_scopus_citation_network_clusters |>
summary()
IGRAPH a1a204b DN-- 927 1580 --
+ attr: name (v/c), full_name (v/c), subfield (v/n)
Cluster 1
pal <- brewer.pal(8,"Dark2")
nodes_full_data <-
tibble(name = V(wos_scopus_citation_network)$name,
cluster = V(wos_scopus_citation_network)$subfield,
full_name = V(wos_scopus_citation_network)$full_name)
cluster_1 <-
wos_scopus_citation_network |>
delete.vertices(which(V(wos_scopus_citation_network)$subfield != 1))
cluster_1_page_rank <-
cluster_1 |>
set.vertex.attribute(name = "page_rank",
value = page_rank(cluster_1)$vector)
cluster_1_df <-
tibble(name = V(cluster_1_page_rank)$name,
full_name = V(cluster_1_page_rank)$full_name,
page_rank = V(cluster_1_page_rank)$page_rank,
cluster = V(cluster_1_page_rank)$subfield,)
nodes_full_data |>
filter(cluster == 1) |>
select(full_name) |>
mutate(full_name = str_extract(full_name, SPC %R% # Regular expressions
one_or_more(WRD) %R%
SPC %R%
one_or_more(or(WRD, ANY_CHAR))),
full_name = str_remove(full_name, OPEN_PAREN %R%
repeated(DGT, 4) %R%
CLOSE_PAREN %R%
one_or_more(or(WRD,ANY_CHAR))),
full_name = str_trim(full_name)) |>
unnest_tokens(output = word, input = full_name) |> # Tokenization
anti_join(stop_words) |> # Removing stop words
filter(word != "doi",
!str_detect(word, "[0-9]")) |> # WoS data
filter(word == str_remove(word, pattern = "citation"),
word == str_remove(word, pattern = "research"), # Words removed
word == str_remove(word, pattern = "pshychology"),
word == str_remove(word, pattern = "science"),
word == str_remove(word, pattern = "sport"),
word == str_remove(word, pattern = "wine"),
word == str_remove(word, pattern = "jmkg"),
word == str_remove(word, pattern = "international"),
word == str_remove(word, pattern = "sci"),
word == str_remove(word, pattern = "journal"),
word == str_remove(word, pattern = "analysis"),
word == str_remove(word, pattern = "res")) |>
count(word, sort = TRUE) |>
with(wordcloud(word,
n,
random.order = FALSE,
max.words = 50,
colors=pal))
Joining, by = "word"

Cluster 2
[WARNING] Deprecated: --self-contained. use --embed-resources --standalone
cluster_2 <-
wos_scopus_citation_network |>
delete.vertices(which(V(wos_scopus_citation_network)$subfield != 2))
cluster_2_page_rank <-
cluster_2 |>
set.vertex.attribute(name = "page_rank",
value = page_rank(cluster_2)$vector)
cluster_2_df <-
tibble(name = V(cluster_2_page_rank)$name,
full_name = V(cluster_2_page_rank)$full_name,
page_rank = V(cluster_2_page_rank)$page_rank,
cluster = V(cluster_2_page_rank)$subfield,)
nodes_full_data |>
filter(cluster == 2) |>
select(full_name) |>
mutate(full_name = str_extract(full_name, SPC %R% # Regular expressions
one_or_more(WRD) %R%
SPC %R%
one_or_more(or(WRD, ANY_CHAR))),
full_name = str_remove(full_name, OPEN_PAREN %R%
repeated(DGT, 4) %R%
CLOSE_PAREN %R%
one_or_more(or(WRD,ANY_CHAR))),
full_name = str_trim(full_name)) |>
unnest_tokens(output = word, input = full_name) |>
anti_join(stop_words) |>
filter(word != "doi",
!str_detect(word, "[0-9]")) |> # WoS data
filter(word == str_remove(word, pattern = "journal"),
word == str_remove(word, pattern = "research"),
word == str_remove(word, pattern = "analysis"),
word == str_remove(word, pattern = "science"),
word == str_remove(word, pattern = "scientometric"),
word == str_remove(word, pattern = "res")) |>
count(word, sort = TRUE) |>
with(wordcloud(word,
n,
random.order = FALSE,
max.words = 50,
colors=pal))
Joining, by = "word"

Cluster 3
cluster_3 <-
wos_scopus_citation_network |>
delete.vertices(which(V(wos_scopus_citation_network)$subfield != 3))
[WARNING] Deprecated: --self-contained. use --embed-resources --standalone
cluster_3_page_rank <-
cluster_3 |>
set.vertex.attribute(name = "page_rank",
value = page_rank(cluster_3)$vector)
cluster_3_df <-
tibble(name = V(cluster_3_page_rank)$name,
full_name = V(cluster_3_page_rank)$full_name,
page_rank = V(cluster_3_page_rank)$page_rank,
cluster = V(cluster_3_page_rank)$subfield,)
nodes_full_data |>
filter(cluster == 3) |>
select(full_name) |>
mutate(full_name = str_extract(full_name, SPC %R% # Regular expressions
one_or_more(WRD) %R%
SPC %R%
one_or_more(or(WRD, ANY_CHAR))),
full_name = str_remove(full_name, OPEN_PAREN %R%
repeated(DGT, 4) %R%
CLOSE_PAREN %R%
one_or_more(or(WRD,ANY_CHAR))),
full_name = str_trim(full_name)) |>
unnest_tokens(output = word, input = full_name) |>
anti_join(stop_words) |>
filter(word != "doi",
!str_detect(word, "[0-9]")) |> # WoS data
filter(word == str_remove(word, pattern = "citation"),
word == str_remove(word, pattern = "research"),
word == str_remove(word, pattern = "analysis"),
word == str_remove(word, pattern = "science"),
word == str_remove(word, pattern = "scientometric"),
word == str_remove(word, pattern = "vulnerability")) |>
count(word, sort = TRUE) |>
with(wordcloud(word,
n,
random.order = FALSE,
max.words = 50,
colors=pal))
Joining, by = "word"

Cluster 4
cluster_4 <-
wos_scopus_citation_network |>
delete.vertices(which(V(wos_scopus_citation_network)$subfield != 4))
cluster_4_page_rank <-
cluster_4 |>
set.vertex.attribute(name = "page_rank",
value = page_rank(cluster_4)$vector)
cluster_4_df <-
tibble(name = V(cluster_4_page_rank)$name,
full_name = V(cluster_4_page_rank)$full_name,
page_rank = V(cluster_4_page_rank)$page_rank,
cluster = V(cluster_4_page_rank)$subfield,)
nodes_full_data |>
filter(cluster == 4) |>
select(full_name) |>
mutate(full_name = str_extract(full_name, SPC %R% # Regular expressions
one_or_more(WRD) %R%
SPC %R%
one_or_more(or(WRD, ANY_CHAR))),
full_name = str_remove(full_name, OPEN_PAREN %R%
repeated(DGT, 4) %R%
CLOSE_PAREN %R%
one_or_more(or(WRD,ANY_CHAR))),
full_name = str_trim(full_name)) |>
unnest_tokens(output = word, input = full_name) |>
anti_join(stop_words) |>
filter(word != "doi",
!str_detect(word, "[0-9]")) |> # WoS data
filter(word == str_remove(word, pattern = "citation"),
word == str_remove(word, pattern = "research"),
word == str_remove(word, pattern = "analysis"),
word == str_remove(word, pattern = "science"),
word == str_remove(word, pattern = "scientometric"),
word == str_remove(word, pattern = "vulnerability")) |>
count(word, sort = TRUE) |>
with(wordcloud(word,
n,
random.order = FALSE,
max.words = 50,
colors=pal))
Joining, by = "word"

Exporting files
write_csv(wos_scopus_tos$df, "wos_scopus_tos.csv") # Exporting all data merged
write_csv(table_1, "table_1.csv") # Exporting table 1
write_csv(wos_scopus_total_country, "table_2_.csv") # Exporting table 2
write_csv(wos_scopus_authors, "table_3.csv") # Exporting table 3
write_csv(wos_scopus_total_journal, "table_4.csv") # Exporting table 4
write_csv(languages, "figure_1.csv") # Exporting data figure 1
write_csv(figure_2_data, "figure_2.csv") # Exporting data figure 2
write.graph(wos_scopus_citation_network, "citation_network_full.graphml", "graphml") # Exporting graph
write.graph(wos_scopus_citation_network_clusters,
"wos_scopus_citation_network_clusters.graphml",
"graphml")
aca_graphml_nodes <-
aca_tbl_graph_filtered |>
activate(nodes) |>
as_tibble() |>
rename(author = name) |>
rownames_to_column("name")
aca_graphml_edges <-
aca_tbl_graph_filtered |>
activate(edges) |>
as_tibble()
aca_graphml <-
graph_from_data_frame(d = aca_graphml_edges,
directed = FALSE,
vertices = aca_graphml_nodes)
write_graph(aca_graphml, "aca_graph.graphml", "graphml") # Export author co-citation graph
author_collab_graphml_nodes <-
author_collab_tbl_graph_filtered |>
activate(nodes) |>
as_tibble() |>
rename(author = name) |>
rownames_to_column("name")
author_collab_graphml_edges <-
author_collab_tbl_graph_filtered |>
activate(edges) |>
as_tibble()
author_collab_graphml <-
graph_from_data_frame(d = author_collab_graphml_edges,
directed = FALSE,
vertices = author_collab_graphml_nodes)
write_graph(author_collab_graphml, "author_collab_graphml.graphml", "graphml") # Export author co-citation graph
country_collab_graphml_nodes <-
country_collab_tbl_graph_filtered |>
activate(nodes) |>
as_tibble() |>
rename(author = name) |>
rownames_to_column("name")
country_collab_graphml_edges <-
country_collab_tbl_graph_filtered |>
activate(edges) |>
as_tibble()
country_collab_graphml <-
graph_from_data_frame(d = country_collab_graphml_edges,
directed = FALSE,
vertices = country_collab_graphml_nodes)
write_graph(country_collab_graphml, "country_collab_graphml.graphml", "graphml") # Export author co-citation graph
write.csv(tree_of_science, "tree_of_science.csv") # Exporting Tree of Science
write.csv(cluster_1_df, "cluster_1.csv") # Exporting cluster 1
write.csv(cluster_2_df, "cluster_2.csv") # Exporting cluster 2
write.csv(cluster_3_df, "cluster_3.csv") # Exporting cluster 3
write.csv(cluster_4_df, "cluster_4.csv") # Exporting cluster 4
write.csv(nodes_full_data, "nodes_full_data.csv") # Exporting all nodes
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCmVkaXRvcl9vcHRpb25zOiAKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCi0tLQoKIyBDcmVhdGluZyB0aGUgZW52aXJvbm1lbnQKCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeSh0b3NyKQpsaWJyYXJ5KGJpYmxpb21ldHJpeCkKbGlicmFyeShsdWJyaWRhdGUpCmxpYnJhcnkoaWdyYXBoKQpsaWJyYXJ5KHRpZHl0ZXh0KQpsaWJyYXJ5KHdvcmRjbG91ZCkKbGlicmFyeShyZWJ1cykKbGlicmFyeShnZ3JlcGVsKSAjIGltcHJvdmUgZG9udXQgdmlzdWFsaXphdGlvbgpsaWJyYXJ5KGdncmFwaCkKbGlicmFyeSh2aXNOZXR3b3JrKSAKbGlicmFyeSh0aWR5Z3JhcGgpCmBgYAoKVGhpcyB0ZW1wbGF0ZSBpcyBiYXNlZCBpbiB0aGlzIHBhcGVyCgpodHRwczovL3JldmlzdGFzLnVjbS5lcy9pbmRleC5waHAvUkVWRS9hcnRpY2xlL3ZpZXcvNzU1NjYvNDU2NDQ1NjU1NzQ2NwoKRm9yIGEgZGV0YWlsIGV4cGxhbmF0aW9uIG9mIGhvdyB0byB1c2UgaXQsIHBsZWFzZSB3YXRjaCB0aGlzIHZpZGVvIAoKaHR0cHM6Ly93d3cueW91dHViZS5jb20vd2F0Y2g/dj1qdEtTaWZ2TnZUTQoKIyBEYXRhIGdldHRpbmcKCmBgYHtyfQp3b3Nfc2NvcHVzX3RvcyA8LSAKICB0b3NyOjp0b3NyX2xvYWQoInNhdmVkcmVjcyBOb3YgMjIudHh0IiwKICAgICAgICAgICAgICAgICAgInNjb3B1cyBOb3YgMjIuYmliIikgCiAgICAgICAgICAgICAgICAgCnRyZWVfb2Zfc2NpZW5jZSA8LSAKICB0b3NyOjp0b3NSKCJzYXZlZHJlY3MgTm92IDIyLnR4dCIsIAogICAgICAgICAgICAgInNjb3B1cyBOb3YgMjIuYmliIikKCndvcyA8LSAKICBiaWJsaW9tZXRyaXg6OmNvbnZlcnQyZGYoYygic2F2ZWRyZWNzIE5vdiAyMi50eHQiKSkgICMgY3JlYXRlIGRhdGFmcmFtZSBmcm9tIHdvcyBmaWxlCgpzY29wdXMgPC0gCiAgYmlibGlvbWV0cml4Ojpjb252ZXJ0MmRmKCJzY29wdXMgTm92IDIyLmJpYiIsICMgQ3JlYXRlIGRhdGFmcmFtZSBmcm9tIHNjb3B1cyBmaWxlCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGRic291cmNlID0gInNjb3B1cyIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICBmb3JtYXQgPSAiYmlidGV4IikKYGBgCgojIyBUYWJsZSAxLiBTZWFyY2ggQ3JpdGVyaWEKCmBgYHtyfQp0YWJsZV8xIDwtIAogIHRpYmJsZSh3b3MgPSBsZW5ndGgod29zJFNSKSwgIyBDcmVhdGUgYSBkYXRhZnJhbWUgd2l0aCB0aGUgdmFsdWVzLgogICAgICAgICBzY29wdXMgPSBsZW5ndGgoc2NvcHVzJFNSKSwgCiAgICAgICAgIHRvdGFsID0gbGVuZ3RoKHdvc19zY29wdXNfdG9zJGRmJFNSKSkKdGFibGVfMQpgYGAKCiMjIEZpZ3VyZSAxLiBMYW5ndWFnZXMKCmBgYHtyfQptYWluX2xhbmd1YWdlcyA8LSAKICB3b3Nfc2NvcHVzX3RvcyRkZiB8PiAKICBzZWxlY3QoTEEpIHw+IAogIHNlcGFyYXRlX3Jvd3MoTEEsIHNlcCA9ICI7ICIpIHw+IAogIGNvdW50KExBLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoMTo1KQoKb3RoZXJfbGFuZ3VhZ2VzIDwtIAogIHdvc19zY29wdXNfdG9zJGRmIHw+IAogIHNlcGFyYXRlX3Jvd3MoTEEsIHNlcCA9ICI7ICIpIHw+IAogIHNlbGVjdChMQSkgfD4gCiAgY291bnQoTEEsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSg2Om4pIHw+IAogIHN1bW1hcmlzZShuID0gc3VtKG4pKSB8PiAKICBtdXRhdGUoTEEgPSAiT1RIRVJTIikgfD4gCiAgc2VsZWN0KExBLCBuKQoKbGFuZ3VhZ2VzIDwtIAogIG1haW5fbGFuZ3VhZ2VzIHw+IAogIGJpbmRfcm93cyhvdGhlcl9sYW5ndWFnZXMpIHw+IAogIG11dGF0ZShwZXJjZW50YWdlID0gbiAvIHN1bShuKSwKICAgICAgICAgcGVyY2VudGFnZSA9IHJvdW5kKHBlcmNlbnRhZ2UsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZGlnaXRzID0gMikgKSB8PiAKICByZW5hbWUobGFuZ3VhZ2UgPSBMQSkgfD4KICBzZWxlY3QobGFuZ3VhZ2UsIHBlcmNlbnRhZ2UsIGNvdW50ID0gbikKCmxhbmd1YWdlcwpgYGAKCgpgYGB7cn0KZGYgPC0gbGFuZ3VhZ2VzIHw+IAogIHJlbmFtZSh2YWx1ZSA9IHBlcmNlbnRhZ2UsIGdyb3VwID0gbGFuZ3VhZ2UpIHw+CiAgbXV0YXRlKHZhbHVlID0gdmFsdWUgKiAxMDApIHw+IAogIHNlbGVjdCh2YWx1ZSwgZ3JvdXApCgpkZjIgPC0gZGYgJT4lIAogIG11dGF0ZShjc3VtID0gcmV2KGN1bXN1bShyZXYodmFsdWUpKSksIAogICAgICAgICBwb3MgPSB2YWx1ZS8yICsgbGVhZChjc3VtLCAxKSwKICAgICAgICAgcG9zID0gaWZfZWxzZShpcy5uYShwb3MpLCB2YWx1ZS8yLCBwb3MpKQoKZ2dwbG90KGRmLCBhZXMoeCA9IDIgLCB5ID0gdmFsdWUsIGZpbGwgPSBmY3RfaW5vcmRlcihncm91cCkpKSArCiAgZ2VvbV9jb2wod2lkdGggPSAxLCBjb2xvciA9IDEpICsKICBjb29yZF9wb2xhcih0aGV0YSA9ICJ5IikgKwogIGdlb21fbGFiZWxfcmVwZWwoZGF0YSA9IGRmMiwKICAgICAgICAgICAgICAgICAgIGFlcyh5ID0gcG9zLCBsYWJlbCA9IHBhc3RlMCh2YWx1ZSwgIiUiKSksCiAgICAgICAgICAgICAgICAgICBzaXplID0gNC41LCBudWRnZV94ID0gMSwgc2hvdy5sZWdlbmQgPSBGQUxTRSkgKwogIHRoZW1lKHBhbmVsLmJhY2tncm91bmQgPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgYXhpcy5saW5lID0gZWxlbWVudF9ibGFuaygpLCAKICAgICAgICBheGlzLnRleHQgPSBlbGVtZW50X2JsYW5rKCksCiAgICAgICAgYXhpcy50aWNrcyA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBheGlzLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLAogICAgICAgIHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUsIHNpemUgPSAxOCkpICsKICBsYWJzKHRpdGxlID0gIkxhbmd1YWdlcyIpICsKICBndWlkZXMoZmlsbCA9IGd1aWRlX2xlZ2VuZCh0aXRsZSA9ICIiKSkgKwogIHRoZW1lX3ZvaWQoKSArCiAgeGxpbSgwLjUsIDIuNSkKYGBgCgojIyBGaWd1cmUgMi4gU2NpZW50aWZpYyBQcm9kdWN0aW9uCgpgYGB7cn0Kd29zX2FudWFsX3Byb2R1Y3Rpb24gPC0gCiAgd29zIHw+IAogIHNlbGVjdChQWSkgfD4gCiAgY291bnQoUFksIHNvcnQgPSBUUlVFKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgZmlsdGVyKFBZID49IDIwMDAsCiAgICAgICAgIFBZIDwgeWVhcih0b2RheSgpKSkgfD4gCiAgbXV0YXRlKHJlZl90eXBlID0gIndvcyIpCgpzY29wdXNfYW51YWxfcHJvZHVjdGlvbiAgPC0gCiAgc2NvcHVzIHw+IAogIHNlbGVjdChQWSkgfD4gCiAgY291bnQoUFksIHNvcnQgPSBUUlVFKSB8PiAKICBuYS5vbWl0KCkgfD4gCiAgZmlsdGVyKFBZID49IDIwMDAsCiAgICAgICAgIFBZIDwgeWVhcih0b2RheSgpKSkgfD4KICBtdXRhdGUocmVmX3R5cGUgPSAic2NvcHVzIikKCnRvdGFsX2FudWFsX3Byb2R1Y3Rpb24gPC0gCiAgd29zX3Njb3B1c190b3MkZGYgfD4gCiAgc2VsZWN0KFBZKSB8PiAKICBjb3VudChQWSwgc29ydCA9IFRSVUUpIHw+IAogIG5hLm9taXQoKSB8PiAKICBmaWx0ZXIoUFkgPj0gMjAwMCwKICAgICAgICAgUFkgPCB5ZWFyKHRvZGF5KCkpKSB8PgogIG11dGF0ZShyZWZfdHlwZSA9ICJ0b3RhbCIpCgp3b3Nfc2NvcHVzX3RvdGFsX2FubnVhbF9wcm9kdWN0aW9uIDwtIAogIHdvc19hbnVhbF9wcm9kdWN0aW9uIHw+IAogIGJpbmRfcm93cyhzY29wdXNfYW51YWxfcHJvZHVjdGlvbiwKICAgICAgICAgICAgdG90YWxfYW51YWxfcHJvZHVjdGlvbikgCgpmaWd1cmVfMl9kYXRhIDwtIAogIHdvc19zY29wdXNfdG90YWxfYW5udWFsX3Byb2R1Y3Rpb24gfD4gCiAgbXV0YXRlKFBZID0gcmVwbGFjZV9uYShQWSwgcmVwbGFjZSA9IDApKSB8PiAKICBwaXZvdF93aWRlcihuYW1lc19mcm9tID0gcmVmX3R5cGUsIAogICAgICAgICAgICAgIHZhbHVlc19mcm9tID0gbikgfD4gCiAgYXJyYW5nZShkZXNjKFBZKSkKCmZpZ3VyZV8yX2RhdGEgCmBgYAoKYGBge3J9Cndvc19zY29wdXNfdG90YWxfYW5udWFsX3Byb2R1Y3Rpb24gfD4gCiAgZ2dwbG90KGFlcyh4ID0gUFksIHkgPSBuLCBjb2xvciA9IHJlZl90eXBlKSkgKwogIGdlb21fbGluZSgpICsKICBsYWJzKHRpdGxlID0gIkFubnVhbCBTY2llbnRpZmljIFByb2R1Y3Rpb24iLCAKICAgICAgIHggPSAieWVhcnMiLAogICAgICAgeSA9ICJwYXBlcnMiKSArCiAgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSkpIApgYGAKCiMjIFRhYmxlIDIuIENvdW50cnkgcHJvZHVjdGlvbgoKYGBge3J9CmRhdGFfYmlibGlvX3dvcyA8LSBiaWJsaW9BbmFseXNpcyh3b3MpCgp3b3NfY291bnRyeSA8LSAKICBkYXRhX2JpYmxpb193b3MkQ291bnRyaWVzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAid29zIikgfD4gCiAgc2VsZWN0KGNvdW50cnkgPSBUYWIsIHBhcGVycyA9IEZyZXEsIGRhdGFiYXNlICkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVycykpIAoKZGF0YV9iaWJsaW9fc2NvcHVzIDwtIGJpYmxpb0FuYWx5c2lzKHNjb3B1cykKCnNjb3B1c19jb3VudHJ5IDwtIAogIGRhdGFfYmlibGlvX3Njb3B1cyRDb3VudHJpZXMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIG11dGF0ZShkYXRhYmFzZSA9ICJzY29wdXMiKSB8PiAKICBzZWxlY3QoY291bnRyeSA9IFRhYiwgcGFwZXJzID0gRnJlcSwgZGF0YWJhc2UgKSB8PiAKICBhcnJhbmdlKGRlc2MocGFwZXJzKSkgCgpkYXRhX2JpYmxpb190b3RhbCA8LSBiaWJsaW9BbmFseXNpcyh3b3Nfc2NvcHVzX3RvcyRkZikKCnRvdGFsX2NvdW50cnkgPC0gCiAgZGF0YV9iaWJsaW9fdG90YWwkQ291bnRyaWVzIHw+IAogIGRhdGEuZnJhbWUoKSB8PiAKICBtdXRhdGUoZGF0YWJhc2UgPSAidG90YWwiKSB8PiAKICBzZWxlY3QoY291bnRyeSA9IFRhYiwgcGFwZXJzID0gRnJlcSwgZGF0YWJhc2UgKSB8PiAKICBhcnJhbmdlKGRlc2MocGFwZXJzKSkgCgp3b3Nfc2NvcHVzX3RvdGFsX2NvdW50cnkgPC0gCiAgd29zX2NvdW50cnkgfD4gCiAgYmluZF9yb3dzKHNjb3B1c19jb3VudHJ5LCAKICAgICAgICAgICAgdG90YWxfY291bnRyeSkgfD4gCiAgbXV0YXRlKGNvdW50cnkgPSBhcy5jaGFyYWN0ZXIoY291bnRyeSkpIHw+IAogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBkYXRhYmFzZSwgCiAgICAgICAgICAgICAgdmFsdWVzX2Zyb20gPSBwYXBlcnMpIHw+IAogIGFycmFuZ2UoZGVzYyh0b3RhbCkpIHw+IAogIHNsaWNlKDE6MjApIHw+IAogIG11dGF0ZShwZXJjZW50YWdlID0gdG90YWwgLyAodGFibGVfMSB8PiBwdWxsKHRvdGFsKSksCiAgICAgICAgIHBlcmNlbnRhZ2UgPSByb3VuZChwZXJjZW50YWdlLCBkaWdpdHMgPSAyKSkKCndvc19zY29wdXNfdG90YWxfY291bnRyeQpgYGAKCiMjIFRhYmxlIDMuIEF1dGhvciBwcm9kdWN0aW9uCgpgYGB7cn0Kd29zX2F1dGhvcnMgPC0gCiAgZGF0YV9iaWJsaW9fd29zJEF1dGhvcnMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShhdXRob3JzX3dvcyA9IEFVLCBwYXBlcnNfd29zID0gRnJlcSkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVyc193b3MpKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICBtdXRhdGUoZGF0YWJhc2Vfd29zID0gIndvcyIpCgoKc2NvcHVzX2F1dGhvcnMgPC0gCiAgZGF0YV9iaWJsaW9fc2NvcHVzJEF1dGhvcnMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShhdXRob3JzX3Njb3B1cyA9IEFVLCBwYXBlcnNfc2NvcHVzID0gRnJlcSkgfD4gCiAgYXJyYW5nZShkZXNjKHBhcGVyc19zY29wdXMpKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICBtdXRhdGUoZGF0YWJhc2Vfc2NvcHVzID0gInNjb3B1cyIpCgp0b3RhbF9hdXRob3JzIDwtIAogIGRhdGFfYmlibGlvX3RvdGFsJEF1dGhvcnMgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShhdXRob3JzX3RvdGFsID0gQVUsIAogICAgICAgICBwYXBlcnNfdG90YWwgPSBGcmVxKSB8PiAKICBhcnJhbmdlKGRlc2MocGFwZXJzX3RvdGFsKSkgfD4gCiAgc2xpY2UoMToyMCkgfD4gCiAgbXV0YXRlKGRhdGFiYXNlX3RvdGFsID0gInRvdGFsIikKCndvc19zY29wdXNfYXV0aG9ycyA8LSAKICB3b3NfYXV0aG9ycyB8PiAKICBiaW5kX2NvbHMoc2NvcHVzX2F1dGhvcnMsCiAgICAgICAgICAgIHRvdGFsX2F1dGhvcnMpCgp3b3Nfc2NvcHVzX2F1dGhvcnMKYGBgCgojIyBUYWJsZSA0LiBKb3VybmFsIHByb2R1Y3Rpb24KCmBgYHtyfQp3b3Nfam91cm5hbCA8LSAKICB3b3MgfD4gCiAgc2VsZWN0KGpvdXJuYWwgPSBTTykgfD4gCiAgbmEub21pdCgpIHw+IAogIGNvdW50KGpvdXJuYWwsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICByZW5hbWUocHVibGljYXRpb25zID0gbikgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gIndvcyIpCgpzY29wdXNfam91cm5hbCA8LSAKICBzY29wdXMgfD4gCiAgc2VsZWN0KGpvdXJuYWwgPSBTTykgfD4gCiAgbmEub21pdCgpIHw+IAogIGNvdW50KGpvdXJuYWwsIHNvcnQgPSBUUlVFKSB8PiAKICBzbGljZSgxOjIwKSB8PiAKICByZW5hbWUocHVibGljYXRpb25zID0gbikgfD4gCiAgbXV0YXRlKGRhdGFiYXNlID0gInNjb3B1cyIpCgp0b3RhbF9qb3VybmFsIDwtIAogIHdvc19zY29wdXNfdG9zJGRmIHw+IAogIHNlbGVjdChqb3VybmFsID0gU08pIHw+IAogIG5hLm9taXQoKSB8PiAKICBjb3VudChqb3VybmFsLCBzb3J0ID0gVFJVRSkgfD4gCiAgc2xpY2UoMToyMCkgfD4gCiAgcmVuYW1lKHB1YmxpY2F0aW9ucyA9IG4pIHw+IAogIG11dGF0ZShkYXRhYmFzZSA9ICJ0b3RhbCIpCgp3b3Nfc2NvcHVzX3RvdGFsX2pvdXJuYWwgPC0gCiAgd29zX2pvdXJuYWwgfD4gCiAgYmluZF9yb3dzKHNjb3B1c19qb3VybmFsLCAKICAgICAgICAgICAgdG90YWxfam91cm5hbCkgfD4gCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IGRhdGFiYXNlLCAKICAgICAgICAgICAgICB2YWx1ZXNfZnJvbSA9IHB1YmxpY2F0aW9ucykgfD4gCiAgYXJyYW5nZShkZXNjKHRvdGFsKSkgfD4gCiAgc2xpY2UoMToyMCkgfD4gCiAgbXV0YXRlKHBlcmNlbnRhZ2UgPSB0b3RhbCAvIHRhYmxlXzEgfD4gcHVsbCh0b3RhbCksCiAgICAgICAgIHBlcmNlbnRhZ2UgPSByb3VuZChwZXJjZW50YWdlLCBkaWdpdHMgPSAyKSkKCgp3b3Nfc2NvcHVzX3RvdGFsX2pvdXJuYWwKYGBgCgojIyBGaWd1cmUgMy4gQ28tY2l0YXRpb24gbmV0d29yawoKIyMjIEF1dGhvciBjby1jaXRhdGlvbiBuZXR3b3JrCgpgYGB7cn0Kd29zX3Njb3B1c19hdXRob3JfbWV0YXRhZyA8LSAKICBtZXRhVGFnRXh0cmFjdGlvbih3b3Nfc2NvcHVzX3RvcyRkZiwgRmllbGQgPSAiQ1JfQVUiKQoKd29zX3Njb3B1c19hdXRob3JfY29fY2l0YXRpb25fbWF0cml4IDwtIAogIGJpYmxpb05ldHdvcmsoTSA9IHdvc19zY29wdXNfYXV0aG9yX21ldGF0YWcsIAogICAgICAgICAgICAgICAgYW5hbHlzaXMgPSAiY28tY2l0YXRpb24iLCAKICAgICAgICAgICAgICAgIG5ldHdvcmsgPSAiYXV0aG9ycyIpCgpwbG90X25ldF9hdXRob3JfY29fY2l0YXRpb24gPC0KICBuZXR3b3JrUGxvdCh3b3Nfc2NvcHVzX2F1dGhvcl9jb19jaXRhdGlvbl9tYXRyaXgsCiAgICAgICAgICAgICAgd2VpZ2h0ZWQgPSBULAogICAgICAgICAgICAgIG49MzAsVGl0bGU9IkF1dGhvciBDby1jaXRhdGlvbiBOZXR3b3JrIiwKICAgICAgICAgICAgICB0eXBlPSJmcnVjaHRlcm1hbiIsIAogICAgICAgICAgICAgIHNpemU9VCwgCiAgICAgICAgICAgICAgZWRnZXNpemU9NSwKICAgICAgICAgICAgICBsYWJlbHNpemU9MC43KQpgYGAKCiMjIyBBdXRob3IgQ29sbGFib3JhdGlvbiBuZXR3b3JrCgpgYGB7cn0Kd29zX3Njb3B1c19hdXRob3JfY29sbGFiX21hdHJpeCA8LSAKICBiaWJsaW9OZXR3b3JrKE0gPSB3b3Nfc2NvcHVzX3RvcyRkZiwgCiAgICAgICAgICAgICAgICBhbmFseXNpcyA9ICJjb2xsYWJvcmF0aW9uIiwgCiAgICAgICAgICAgICAgICBuZXR3b3JrID0gImF1dGhvcnMiKQoKcGxvdF9hdXRob3JfY29sbGFiIDwtIAogIG5ldHdvcmtQbG90KE5ldE1hdHJpeCA9IHdvc19zY29wdXNfYXV0aG9yX2NvbGxhYl9tYXRyaXgsIAogICAgICAgICAgICAgIHdlaWdodGVkPVQsIG4gPSAzMCwgCiAgICAgICAgICAgICAgVGl0bGUgPSAiQXV0aG9yIENvbGxhYm9yYXRpb24gTmV0d29yayIsIAogICAgICAgICAgICAgIHR5cGUgPSAiZnJ1Y2h0ZXJtYW4iLCAKICAgICAgICAgICAgICBzaXplPVQsCiAgICAgICAgICAgICAgZWRnZXNpemUgPSA1LAogICAgICAgICAgICAgIGxhYmVsc2l6ZT0wLjcpCgphdXRob3JfY29sbGFiX3RibF9ncmFwaCA8LSAKICBncmFwaF9mcm9tX2FkamFjZW5jeV9tYXRyaXgod29zX3Njb3B1c19hdXRob3JfY29sbGFiX21hdHJpeCAsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlID0gInVuZGlyZWN0ZWQiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2VpZ2h0ZWQgPSBUUlVFLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGlhZyA9IEZBTFNFKSB8PiAKICBhc190YmxfZ3JhcGgoYWNhX2lncmFwaCwgZGlyZWN0ZWQgPSBGQUxTRSApIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoZGVncmVlID0gY2VudHJhbGl0eV9kZWdyZWUoKSkgfD4gCiAgYXJyYW5nZShkZXNjKGRlZ3JlZSkpIHw+IAogIHNsaWNlKDE6MzApCgphdXRob3JfY29sbGFiX3RibF9ncmFwaF9maWx0ZXJlZCA8LSAKICBhdXRob3JfY29sbGFiX3RibF9ncmFwaCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgZmlsdGVyKHdlaWdodCA+IDEpIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBtdXRhdGUoY29tcG9uZW50cyA9IGdyb3VwX2NvbXBvbmVudHModHlwZSA9ICJ3ZWFrIikpIHw+CiAgZmlsdGVyKGNvbXBvbmVudHMgPT0gMSkgfD4KICBtdXRhdGUoZGVncmVlID0gY2VudHJhbGl0eV9kZWdyZWUoKSwKICAgICAgICAgY29tbXVuaXR5ID0gYXMuZmFjdG9yKGdyb3VwX2xvdXZhaW4oKSkgKQoKYXV0aG9yX2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgZ2dyYXBoKGxheW91dCA9ICJrayIpICsgCiAgZ2VvbV9lZGdlX2xpbmsoYWxwaGEgPSAuMjUsIAogICAgICAgICAgICAgICAgIGFlcyh3aWR0aCA9IHdlaWdodCkpICsKICBnZW9tX25vZGVfcG9pbnQoYWVzKGNvbG91ciA9IGNvbW11bml0eSwgCiAgICAgICAgICAgICAgICAgICAgICBzaXplID0gZGVncmVlKSkgKwogIGdlb21fbm9kZV90ZXh0KGFlcyhsYWJlbCA9IG5hbWUpLCByZXBlbCA9IFRSVUUpICsKICB0aGVtZV9ncmFwaCgpCmBgYAoKIyMjIENvdW50cnkgQ29sbGFib3JhdGlvbiBOZXR3b3JrCgpgYGB7cn0Kd29zX3Njb3B1c19jb3VudHJ5X2NvbGxhYl9tYXRyaXggPC0gCiAgYmlibGlvTmV0d29yayhNID0gd29zX3Njb3B1c190b3MkZGYsIAogICAgICAgICAgICAgICAgYW5hbHlzaXMgPSAiY29sbGFib3JhdGlvbiIsIAogICAgICAgICAgICAgICAgbmV0d29yayA9ICJjb3VudHJpZXMiKQoKcGxvdF9jb3VudHJ5X2NvbGxhYiA8LSAKICBuZXR3b3JrUGxvdCh3b3Nfc2NvcHVzX2NvdW50cnlfY29sbGFiX21hdHJpeCwgCiAgICAgICAgICAgICAgd2VpZ2h0ZWQ9VCwgbiA9IDMwLCAKICAgICAgICAgICAgICBUaXRsZSA9ICJDb3VudHJ5IENvbGxhYm9yYXRpb24gTmV0d29yayIsIAogICAgICAgICAgICAgIHR5cGUgPSAiZnJ1Y2h0ZXJtYW4iLCAKICAgICAgICAgICAgICBzaXplPVQsCiAgICAgICAgICAgICAgZWRnZXNpemUgPSA1LAogICAgICAgICAgICAgIGxhYmVsc2l6ZT0wLjcpCgpjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGggPC0gCiAgZ3JhcGhfZnJvbV9hZGphY2VuY3lfbWF0cml4KHdvc19zY29wdXNfY291bnRyeV9jb2xsYWJfbWF0cml4ICwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGUgPSAidW5kaXJlY3RlZCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3ZWlnaHRlZCA9IFRSVUUsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkaWFnID0gRkFMU0UpIHw+IAogIGFzX3RibF9ncmFwaChhY2FfaWdyYXBoLCBkaXJlY3RlZCA9IEZBTFNFICkgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpKSB8PiAKICBhcnJhbmdlKGRlc2MoZGVncmVlKSkgfD4gCiAgc2xpY2UoMTozMCkKCmNvdW50cnlfY29sbGFiX3RibF9ncmFwaF9maWx0ZXJlZCA8LSAKICBjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGggfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIG11dGF0ZShjb21wb25lbnRzID0gZ3JvdXBfY29tcG9uZW50cyh0eXBlID0gIndlYWsiKSkgfD4KICBmaWx0ZXIoY29tcG9uZW50cyA9PSAxKSB8PgogIG11dGF0ZShkZWdyZWUgPSBjZW50cmFsaXR5X2RlZ3JlZSgpLAogICAgICAgICBjb21tdW5pdHkgPSBhcy5mYWN0b3IoZ3JvdXBfbG91dmFpbigpKSApCgpjb3VudHJ5X2NvbGxhYl90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgZ2dyYXBoKGxheW91dCA9ICJrayIpICsgCiAgZ2VvbV9lZGdlX2xpbmsoYWxwaGEgPSAuMjUsIAogICAgICAgICAgICAgICAgIGFlcyh3aWR0aCA9IHdlaWdodCkpICsKICBnZW9tX25vZGVfcG9pbnQoYWVzKGNvbG91ciA9IGNvbW11bml0eSwgCiAgICAgICAgICAgICAgICAgICAgICBzaXplID0gZGVncmVlKSkgKwogIGdlb21fbm9kZV90ZXh0KGFlcyhsYWJlbCA9IG5hbWUpLCByZXBlbCA9IFRSVUUpICsKICB0aGVtZV9ncmFwaCgpCmBgYAoKIyMjIEtleXdvcmQgY28tb2NjdXJyZW5jZSBuZXR3b3JrCgpgYGB7cn0Kd29zX3Njb3B1c19rZXl3b3JkX2NvX29jY3VycmVuY2VfbWF0cml4IDwtIAogIGJpYmxpb05ldHdvcmsoTSA9IHdvc19zY29wdXNfdG9zJGRmLCAKICAgICAgICAgICAgICAgIGFuYWx5c2lzID0gImNvLW9jY3VycmVuY2VzIiwgCiAgICAgICAgICAgICAgICBuZXR3b3JrID0gImtleXdvcmRzIiwgCiAgICAgICAgICAgICAgICBzZXAgPSAiOyIpCgpwbG90X25ldF9jb19vY2N1cnJlbmNlIDwtIAogIG5ldHdvcmtQbG90KHdvc19zY29wdXNfa2V5d29yZF9jb19vY2N1cnJlbmNlX21hdHJpeCwgCiAgICAgICAgICAgICAgd2VpZ2h0ZWQ9VCwgbiA9IDMwLCAKICAgICAgICAgICAgICBUaXRsZSA9ICJLZXl3b3JkIENvLW9jY3VycmVuY2UgTmV0d29yayIsIAogICAgICAgICAgICAgIHR5cGUgPSAiZnJ1Y2h0ZXJtYW4iLCAKICAgICAgICAgICAgICBzaXplPVQsCiAgICAgICAgICAgICAgZWRnZXNpemUgPSA1LAogICAgICAgICAgICAgIGxhYmVsc2l6ZT0wLjcpCgprZXl3b3JkX2NvX29jY3VycmVuY2VfdGJsX2dyYXBoIDwtIAogIGdyYXBoX2Zyb21fYWRqYWNlbmN5X21hdHJpeCh3b3Nfc2NvcHVzX2tleXdvcmRfY29fb2NjdXJyZW5jZV9tYXRyaXggLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9kZSA9ICJ1bmRpcmVjdGVkIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdlaWdodGVkID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpYWcgPSBGQUxTRSkgfD4gCiAgYXNfdGJsX2dyYXBoKGFjYV9pZ3JhcGgsIGRpcmVjdGVkID0gRkFMU0UgKSB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgbXV0YXRlKGRlZ3JlZSA9IGNlbnRyYWxpdHlfZGVncmVlKCkpIHw+IAogIGFycmFuZ2UoZGVzYyhkZWdyZWUpKSB8PiAKICBzbGljZSgxOjMwKQoKa2V5d29yZF9jb19vY2N1cnJlbmNlX3dlaWdodF90YmwgPC0gCiAga2V5d29yZF9jb19vY2N1cnJlbmNlX3RibF9ncmFwaCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgc2VsZWN0KHdlaWdodCkgfD4gCiAgYXMuZGF0YS5mcmFtZSgpCgp0aHJlc2hvbGQgPC0gCiAgcXVhbnRpbGUoa2V5d29yZF9jb19vY2N1cnJlbmNlX3dlaWdodF90YmwgfD4gCiAgICAgICAgICAgICBzZWxlY3Qod2VpZ2h0KSB8PiAKICAgICAgICAgICAgIHB1bGwoKSwgCiAgICAgICAgICAgcHJvYnMgPSAwLjgwKQoKa2V5d29yZF9jb19vY2N1cnJlbmNlX3RibF9ncmFwaF9maWx0ZXJlZCA8LSAKICBrZXl3b3JkX2NvX29jY3VycmVuY2VfdGJsX2dyYXBoIHw+IAogIGFjdGl2YXRlKGVkZ2VzKSB8PiAKICBmaWx0ZXIod2VpZ2h0ID49IHRocmVzaG9sZCkgfD4gCiAgYWN0aXZhdGUobm9kZXMpIHw+IAogIG11dGF0ZShjb21wb25lbnRzID0gZ3JvdXBfY29tcG9uZW50cyh0eXBlID0gIndlYWsiKSkgfD4gCiAgZmlsdGVyKGNvbXBvbmVudHMgPT0gMSkgfD4gCiAgbXV0YXRlKGRlZ3JlZSA9IGNlbnRyYWxpdHlfZGVncmVlKCksCiAgICAgICAgIGNvbW11bml0eSA9IGFzLmZhY3Rvcihncm91cF9sb3V2YWluKCkpICkKCmtleXdvcmRfY29fb2NjdXJyZW5jZV90YmxfZ3JhcGhfZmlsdGVyZWQgfD4gCiAgZ2dyYXBoKGxheW91dCA9ICJrayIpICsgCiAgZ2VvbV9lZGdlX2xpbmsoYWxwaGEgPSAuMjUsIAogICAgICAgICAgICAgICAgIGFlcyh3aWR0aCA9IHdlaWdodCkpICsKICBnZW9tX25vZGVfcG9pbnQoYWVzKGNvbG91ciA9IGNvbW11bml0eSwgCiAgICAgICAgICAgICAgICAgICAgICBzaXplID0gZGVncmVlKSkgKwogIGdlb21fbm9kZV90ZXh0KGFlcyhsYWJlbCA9IG5hbWUpLCByZXBlbCA9IFRSVUUpICsKICB0aGVtZV9ncmFwaCgpCmBgYAoKIyMgRmlndXJlIDQuIFRyZWUgb2YgU2NpZW5jZQoKIyMjIFRyZWUgb2YgU2NpZW5jZQoKYGBge3J9CnRyZWVfb2Zfc2NpZW5jZQpgYGAKCiMjIyBDbHVzdGVyaW5nIGFuYWx5c2lzCgpGaW5kaW5nIHRoZSBjbHVzdGVycwoKYGBge3J9Cm5vZGVzIDwtICAjIENyZWF0ZSBhIGRhdGFmcmFtZSB3aXRoIHRoZSBmdWxsbmFtZSBvZiBhcnRpY2xlcyAKICB0aWJibGUobmFtZSA9IFYod29zX3Njb3B1c190b3MkZ3JhcGgpJG5hbWUpIHw+IAogIGxlZnRfam9pbih3b3Nfc2NvcHVzX3RvcyRub2RlcywgCiAgICAgICAgICAgIGJ5ID0gYygibmFtZSIgPSAiSURfVE9TIikpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSA8LSAjIEFkZCB0aGUgYXJ0aWNsZSBuYW1lcyB0byB0aGUgY2l0YXRpb24gbmV0d29yawogIHdvc19zY29wdXNfdG9zJGdyYXBoIHw+IAogIGlncmFwaDo6c2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJmdWxsX25hbWUiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGluZGV4ID0gVih3b3Nfc2NvcHVzX3RvcyRncmFwaCkkbmFtZSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IG5vZGVzJENJVEUpCgpub2Rlc18xIDwtICMgQ3JlYXRlIGEgZGF0YWZyYW1lIHdpdGggc3ViZmllbGRzIChjbHVzdGVycykKICB0aWJibGUobmFtZSA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrXzEpJG5hbWUsCiAgICAgICAgIGNsdXN0ZXIgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29ya18xKSRzdWJmaWVsZCwKICAgICAgICAgZnVsbF9uYW1lID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSkkZnVsbF9uYW1lKQoKbm9kZXNfMiA8LSAjIENvdW50IHRoZSBudW1iZXIgb2YgYXJ0aWNsZXMgcGVyIGNsdXN0ZXIKICBub2Rlc18xIHw+IAogIGNvdW50KGNsdXN0ZXIsIHNvcnQgPSBUUlVFKSB8PiAKICBtdXRhdGUoY2x1c3Rlcl8xID0gcm93X251bWJlcigpKSB8PiAKICBzZWxlY3QoY2x1c3RlciwgY2x1c3Rlcl8xKQoKbm9kZXNfMyA8LSAKICBub2Rlc18xIHw+IAogIGxlZnRfam9pbihub2Rlc18yKSB8PiAKICByZW5hbWUoc3ViZmllbGQgPSBjbHVzdGVyXzEpIHw+IAogIHNlbGVjdChuYW1lLCBmdWxsX25hbWUsIHN1YmZpZWxkKQoKZWRnZV9saXN0IDwtIAogIGdldC5lZGdlbGlzdCh3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfMSkgfD4gCiAgZGF0YS5mcmFtZSgpIHw+IAogIHJlbmFtZShTb3VyY2UgPSBYMSwgVGFyZ2V0ID0gWDIpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgPC0gCiAgZ3JhcGguZGF0YS5mcmFtZShkID0gZWRnZV9saXN0LCAKICAgICAgICAgICAgICAgICAgIGRpcmVjdGVkID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICB2ZXJ0aWNlcyA9IG5vZGVzXzMpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgc3VtbWFyeSgpCmBgYAoKQ2hvb3NpbmcgY2x1c3RlcnMKCldlIHByb3Bvc2VkIHRoZSB0aXBwaW5nIHBvaW50IG9wdGlvbiB0byBjaG9vc2UgdGhlIG51bWJlciBvZiBjbHVzdGVycy4gU2VlIHRoaXMgcGFwZXI6CgpodHRwczovL3d3dy5uYXR1cmUuY29tL2FydGljbGVzL3M0MTU5OC0wMjEtODUwNDEtOAoKYGBge3J9CmNsdXN0ZXJzIDwtIAogIHRpYmJsZShjbHVzdGVyID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkKSB8PiAKICBjb3VudChjbHVzdGVyLCBzb3J0ID0gVFJVRSkKCmNsdXN0ZXJzIHw+IAogIGdncGxvdChhZXMoeCA9IHJlb3JkZXIoY2x1c3RlciwgbiksIHkgPSBuKSkgKwogIGdlb21fcG9pbnQoKSAKYGBgCgpSZW1vdmluZyBub3QgY2hvc2VuIGNsdXN0ZXJzCgpgYGB7cn0Kd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrX2NsdXN0ZXJzIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDEgJiAjIGZpbHRlciBjbHVzdGVycyAKICAgICAgICAgICAgICAgICAgICAgICAgICBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gMiAmCiAgICAgICAgICAgICAgICAgICAgICAgICAgVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDMgICYKICAgICAgICAgICAgICAgICAgICAgICAgICBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gNCkpCgp3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfY2x1c3RlcnMgfD4gCiAgc3VtbWFyeSgpCmBgYAoKIyMjIENsdXN0ZXIgMQoKYGBge3J9CnBhbCA8LSBicmV3ZXIucGFsKDgsIkRhcmsyIikKCm5vZGVzX2Z1bGxfZGF0YSA8LSAKICB0aWJibGUobmFtZSA9IFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRuYW1lLAogICAgICAgICBjbHVzdGVyID0gVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkLAogICAgICAgICBmdWxsX25hbWUgPSBWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkZnVsbF9uYW1lKQoKY2x1c3Rlcl8xIDwtIAogIHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yayB8PiAKICBkZWxldGUudmVydGljZXMod2hpY2goVih3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmspJHN1YmZpZWxkICE9IDEpKQoKY2x1c3Rlcl8xX3BhZ2VfcmFuayA8LSAKICBjbHVzdGVyXzEgfD4gCiAgc2V0LnZlcnRleC5hdHRyaWJ1dGUobmFtZSA9ICJwYWdlX3JhbmsiLCAKICAgICAgICAgICAgICAgICAgICAgICB2YWx1ZSA9IHBhZ2VfcmFuayhjbHVzdGVyXzEpJHZlY3RvcikKCmNsdXN0ZXJfMV9kZiA8LSAKICB0aWJibGUobmFtZSA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkbmFtZSwKICAgICAgICAgZnVsbF9uYW1lID0gVihjbHVzdGVyXzFfcGFnZV9yYW5rKSRmdWxsX25hbWUsCiAgICAgICAgIHBhZ2VfcmFuayA9IFYoY2x1c3Rlcl8xX3BhZ2VfcmFuaykkcGFnZV9yYW5rLAogICAgICAgICBjbHVzdGVyID0gVihjbHVzdGVyXzFfcGFnZV9yYW5rKSRzdWJmaWVsZCwpCgpub2Rlc19mdWxsX2RhdGEgfD4gCiAgZmlsdGVyKGNsdXN0ZXIgPT0gMSkgfD4gCiAgc2VsZWN0KGZ1bGxfbmFtZSkgfD4gCiAgbXV0YXRlKGZ1bGxfbmFtZSA9IHN0cl9leHRyYWN0KGZ1bGxfbmFtZSwgU1BDICVSJSAgIyBSZWd1bGFyIGV4cHJlc3Npb25zIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKFdSRCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNQQyAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELCBBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3JlbW92ZShmdWxsX25hbWUsIE9QRU5fUEFSRU4gJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVwZWF0ZWQoREdULCA0KSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDTE9TRV9QQVJFTiAlUiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCxBTllfQ0hBUikpKSwKICAgICAgICAgZnVsbF9uYW1lID0gc3RyX3RyaW0oZnVsbF9uYW1lKSkgIHw+IAogIHVubmVzdF90b2tlbnMob3V0cHV0ID0gd29yZCwgaW5wdXQgPSBmdWxsX25hbWUpIHw+ICMgVG9rZW5pemF0aW9uCiAgYW50aV9qb2luKHN0b3Bfd29yZHMpIHw+ICAjIFJlbW92aW5nIHN0b3Agd29yZHMKICBmaWx0ZXIod29yZCAhPSAiZG9pIiwKICAgICAgICAgIXN0cl9kZXRlY3Qod29yZCwgIlswLTldIikpIHw+ICAjIFdvUyBkYXRhCiAgZmlsdGVyKHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImNpdGF0aW9uIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInJlc2VhcmNoIiksICAjIFdvcmRzIHJlbW92ZWQKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAicHNoeWNob2xvZ3kiKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVuY2UiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic3BvcnQiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAid2luZSIpLAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJqbWtnIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImludGVybmF0aW9uYWwiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAic2NpIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImpvdXJuYWwiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiYW5hbHlzaXMiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAicmVzIikpIHw+CiAgY291bnQod29yZCwgc29ydCA9IFRSVUUpIHw+IAogIHdpdGgod29yZGNsb3VkKHdvcmQsIAogICAgICAgICAgICAgICAgIG4sIAogICAgICAgICAgICAgICAgIHJhbmRvbS5vcmRlciA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICBtYXgud29yZHMgPSA1MCwgCiAgICAgICAgICAgICAgICAgY29sb3JzPXBhbCkpCmBgYAoKIyMjIENsdXN0ZXIgMgoKYGBge3J9CmNsdXN0ZXJfMiA8LSAKICB3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmsgfD4gCiAgZGVsZXRlLnZlcnRpY2VzKHdoaWNoKFYod29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrKSRzdWJmaWVsZCAhPSAyKSkKCmNsdXN0ZXJfMl9wYWdlX3JhbmsgPC0gCiAgY2x1c3Rlcl8yIHw+IAogIHNldC52ZXJ0ZXguYXR0cmlidXRlKG5hbWUgPSAicGFnZV9yYW5rIiwgCiAgICAgICAgICAgICAgICAgICAgICAgdmFsdWUgPSBwYWdlX3JhbmsoY2x1c3Rlcl8yKSR2ZWN0b3IpCgpjbHVzdGVyXzJfZGYgPC0gCiAgdGliYmxlKG5hbWUgPSBWKGNsdXN0ZXJfMl9wYWdlX3JhbmspJG5hbWUsCiAgICAgICAgIGZ1bGxfbmFtZSA9IFYoY2x1c3Rlcl8yX3BhZ2VfcmFuaykkZnVsbF9uYW1lLAogICAgICAgICBwYWdlX3JhbmsgPSBWKGNsdXN0ZXJfMl9wYWdlX3JhbmspJHBhZ2VfcmFuaywKICAgICAgICAgY2x1c3RlciA9IFYoY2x1c3Rlcl8yX3BhZ2VfcmFuaykkc3ViZmllbGQsKQoKbm9kZXNfZnVsbF9kYXRhIHw+IAogIGZpbHRlcihjbHVzdGVyID09IDIpIHw+IAogIHNlbGVjdChmdWxsX25hbWUpIHw+IAogIG11dGF0ZShmdWxsX25hbWUgPSBzdHJfZXh0cmFjdChmdWxsX25hbWUsIFNQQyAlUiUgICMgUmVndWxhciBleHByZXNzaW9ucyAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShXUkQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTUEMgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9uZV9vcl9tb3JlKG9yKFdSRCwgQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl9yZW1vdmUoZnVsbF9uYW1lLCBPUEVOX1BBUkVOICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlcGVhdGVkKERHVCwgNCkgJVIlIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ0xPU0VfUEFSRU4gJVIlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsQU5ZX0NIQVIpKSksCiAgICAgICAgIGZ1bGxfbmFtZSA9IHN0cl90cmltKGZ1bGxfbmFtZSkpICB8PiAKICB1bm5lc3RfdG9rZW5zKG91dHB1dCA9IHdvcmQsIGlucHV0ID0gZnVsbF9uYW1lKSB8PiAKICBhbnRpX2pvaW4oc3RvcF93b3JkcykgfD4KICBmaWx0ZXIod29yZCAhPSAiZG9pIiwKICAgICAgICAgIXN0cl9kZXRlY3Qod29yZCwgIlswLTldIikpIHw+ICAjIFdvUyBkYXRhCiAgZmlsdGVyKHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImpvdXJuYWwiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAicmVzZWFyY2giKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImFuYWx5c2lzIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbmNlIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVudG9tZXRyaWMiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAicmVzIikpIHw+CiAgY291bnQod29yZCwgc29ydCA9IFRSVUUpIHw+IAogIHdpdGgod29yZGNsb3VkKHdvcmQsIAogICAgICAgICAgICAgICAgIG4sIAogICAgICAgICAgICAgICAgIHJhbmRvbS5vcmRlciA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICBtYXgud29yZHMgPSA1MCwgCiAgICAgICAgICAgICAgICAgY29sb3JzPXBhbCkpCmBgYAoKIyMjIENsdXN0ZXIgMwoKYGBge3J9CgpjbHVzdGVyXzMgPC0gCiAgd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrIHw+IAogIGRlbGV0ZS52ZXJ0aWNlcyh3aGljaChWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gMykpCgpjbHVzdGVyXzNfcGFnZV9yYW5rIDwtIAogIGNsdXN0ZXJfMyB8PiAKICBzZXQudmVydGV4LmF0dHJpYnV0ZShuYW1lID0gInBhZ2VfcmFuayIsIAogICAgICAgICAgICAgICAgICAgICAgIHZhbHVlID0gcGFnZV9yYW5rKGNsdXN0ZXJfMykkdmVjdG9yKQoKY2x1c3Rlcl8zX2RmIDwtIAogIHRpYmJsZShuYW1lID0gVihjbHVzdGVyXzNfcGFnZV9yYW5rKSRuYW1lLAogICAgICAgICBmdWxsX25hbWUgPSBWKGNsdXN0ZXJfM19wYWdlX3JhbmspJGZ1bGxfbmFtZSwKICAgICAgICAgcGFnZV9yYW5rID0gVihjbHVzdGVyXzNfcGFnZV9yYW5rKSRwYWdlX3JhbmssCiAgICAgICAgIGNsdXN0ZXIgPSBWKGNsdXN0ZXJfM19wYWdlX3JhbmspJHN1YmZpZWxkLCkKCm5vZGVzX2Z1bGxfZGF0YSB8PiAKICBmaWx0ZXIoY2x1c3RlciA9PSAzKSB8PiAKICBzZWxlY3QoZnVsbF9uYW1lKSB8PiAKICBtdXRhdGUoZnVsbF9uYW1lID0gc3RyX2V4dHJhY3QoZnVsbF9uYW1lLCBTUEMgJVIlICAjIFJlZ3VsYXIgZXhwcmVzc2lvbnMgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUoV1JEKSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgU1BDICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsIEFOWV9DSEFSKSkpLAogICAgICAgICBmdWxsX25hbWUgPSBzdHJfcmVtb3ZlKGZ1bGxfbmFtZSwgT1BFTl9QQVJFTiAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZXBlYXRlZChER1QsIDQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENMT1NFX1BBUkVOICVSJQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELEFOWV9DSEFSKSkpLAogICAgICAgICBmdWxsX25hbWUgPSBzdHJfdHJpbShmdWxsX25hbWUpKSAgfD4gCiAgdW5uZXN0X3Rva2VucyhvdXRwdXQgPSB3b3JkLCBpbnB1dCA9IGZ1bGxfbmFtZSkgfD4gCiAgYW50aV9qb2luKHN0b3Bfd29yZHMpIHw+CiAgZmlsdGVyKHdvcmQgIT0gImRvaSIsCiAgICAgICAgICFzdHJfZGV0ZWN0KHdvcmQsICJbMC05XSIpKSB8PiAgIyBXb1MgZGF0YSAKICBmaWx0ZXIod29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiY2l0YXRpb24iKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAicmVzZWFyY2giKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImFuYWx5c2lzIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbmNlIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVudG9tZXRyaWMiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAidnVsbmVyYWJpbGl0eSIpKSB8PgogIGNvdW50KHdvcmQsIHNvcnQgPSBUUlVFKSB8PiAKICB3aXRoKHdvcmRjbG91ZCh3b3JkLCAKICAgICAgICAgICAgICAgICBuLCAKICAgICAgICAgICAgICAgICByYW5kb20ub3JkZXIgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgbWF4LndvcmRzID0gNTAsIAogICAgICAgICAgICAgICAgIGNvbG9ycz1wYWwpKQpgYGAKIyMjIENsdXN0ZXIgNAoKYGBge3J9CgpjbHVzdGVyXzQgPC0gCiAgd29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrIHw+IAogIGRlbGV0ZS52ZXJ0aWNlcyh3aGljaChWKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaykkc3ViZmllbGQgIT0gNCkpCgpjbHVzdGVyXzRfcGFnZV9yYW5rIDwtIAogIGNsdXN0ZXJfNCB8PiAKICBzZXQudmVydGV4LmF0dHJpYnV0ZShuYW1lID0gInBhZ2VfcmFuayIsIAogICAgICAgICAgICAgICAgICAgICAgIHZhbHVlID0gcGFnZV9yYW5rKGNsdXN0ZXJfNCkkdmVjdG9yKQoKY2x1c3Rlcl80X2RmIDwtIAogIHRpYmJsZShuYW1lID0gVihjbHVzdGVyXzRfcGFnZV9yYW5rKSRuYW1lLAogICAgICAgICBmdWxsX25hbWUgPSBWKGNsdXN0ZXJfNF9wYWdlX3JhbmspJGZ1bGxfbmFtZSwKICAgICAgICAgcGFnZV9yYW5rID0gVihjbHVzdGVyXzRfcGFnZV9yYW5rKSRwYWdlX3JhbmssCiAgICAgICAgIGNsdXN0ZXIgPSBWKGNsdXN0ZXJfNF9wYWdlX3JhbmspJHN1YmZpZWxkLCkKCm5vZGVzX2Z1bGxfZGF0YSB8PiAKICBmaWx0ZXIoY2x1c3RlciA9PSA0KSB8PiAKICBzZWxlY3QoZnVsbF9uYW1lKSB8PiAKICBtdXRhdGUoZnVsbF9uYW1lID0gc3RyX2V4dHJhY3QoZnVsbF9uYW1lLCBTUEMgJVIlICAjIFJlZ3VsYXIgZXhwcmVzc2lvbnMgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUoV1JEKSAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgU1BDICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmVfb3JfbW9yZShvcihXUkQsIEFOWV9DSEFSKSkpLAogICAgICAgICBmdWxsX25hbWUgPSBzdHJfcmVtb3ZlKGZ1bGxfbmFtZSwgT1BFTl9QQVJFTiAlUiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICByZXBlYXRlZChER1QsIDQpICVSJSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENMT1NFX1BBUkVOICVSJQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb25lX29yX21vcmUob3IoV1JELEFOWV9DSEFSKSkpLAogICAgICAgICBmdWxsX25hbWUgPSBzdHJfdHJpbShmdWxsX25hbWUpKSAgfD4gCiAgdW5uZXN0X3Rva2VucyhvdXRwdXQgPSB3b3JkLCBpbnB1dCA9IGZ1bGxfbmFtZSkgfD4gCiAgYW50aV9qb2luKHN0b3Bfd29yZHMpIHw+IAogIGZpbHRlcih3b3JkICE9ICJkb2kiLAogICAgICAgICAhc3RyX2RldGVjdCh3b3JkLCAiWzAtOV0iKSkgfD4gICMgV29TIGRhdGEKICBmaWx0ZXIod29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAiY2l0YXRpb24iKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAicmVzZWFyY2giKSwgCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gImFuYWx5c2lzIiksIAogICAgICAgICB3b3JkID09IHN0cl9yZW1vdmUod29yZCwgcGF0dGVybiA9ICJzY2llbmNlIiksCiAgICAgICAgIHdvcmQgPT0gc3RyX3JlbW92ZSh3b3JkLCBwYXR0ZXJuID0gInNjaWVudG9tZXRyaWMiKSwKICAgICAgICAgd29yZCA9PSBzdHJfcmVtb3ZlKHdvcmQsIHBhdHRlcm4gPSAidnVsbmVyYWJpbGl0eSIpKSB8PgogIGNvdW50KHdvcmQsIHNvcnQgPSBUUlVFKSB8PiAKICB3aXRoKHdvcmRjbG91ZCh3b3JkLCAKICAgICAgICAgICAgICAgICBuLCAKICAgICAgICAgICAgICAgICByYW5kb20ub3JkZXIgPSBGQUxTRSwgCiAgICAgICAgICAgICAgICAgbWF4LndvcmRzID0gNTAsIAogICAgICAgICAgICAgICAgIGNvbG9ycz1wYWwpKQpgYGAKCiMgRXhwb3J0aW5nIGZpbGVzCgpgYGB7cn0KCndyaXRlX2Nzdih3b3Nfc2NvcHVzX3RvcyRkZiwgIndvc19zY29wdXNfdG9zLmNzdiIpICMgRXhwb3J0aW5nIGFsbCBkYXRhIG1lcmdlZAoKd3JpdGVfY3N2KHRhYmxlXzEsICJ0YWJsZV8xLmNzdiIpICMgRXhwb3J0aW5nIHRhYmxlIDEKd3JpdGVfY3N2KHdvc19zY29wdXNfdG90YWxfY291bnRyeSwgInRhYmxlXzJfLmNzdiIpICAjIEV4cG9ydGluZyB0YWJsZSAyCndyaXRlX2Nzdih3b3Nfc2NvcHVzX2F1dGhvcnMsICJ0YWJsZV8zLmNzdiIpICMgRXhwb3J0aW5nIHRhYmxlIDMKd3JpdGVfY3N2KHdvc19zY29wdXNfdG90YWxfam91cm5hbCwgInRhYmxlXzQuY3N2IikgIyBFeHBvcnRpbmcgdGFibGUgNAoKCndyaXRlX2NzdihsYW5ndWFnZXMsICJmaWd1cmVfMS5jc3YiKSAjIEV4cG9ydGluZyBkYXRhIGZpZ3VyZSAxIAp3cml0ZV9jc3YoZmlndXJlXzJfZGF0YSwgImZpZ3VyZV8yLmNzdiIpICMgRXhwb3J0aW5nIGRhdGEgZmlndXJlIDIKCndyaXRlLmdyYXBoKHdvc19zY29wdXNfY2l0YXRpb25fbmV0d29yaywgImNpdGF0aW9uX25ldHdvcmtfZnVsbC5ncmFwaG1sIiwgImdyYXBobWwiKSAjIEV4cG9ydGluZyBncmFwaAp3cml0ZS5ncmFwaCh3b3Nfc2NvcHVzX2NpdGF0aW9uX25ldHdvcmtfY2x1c3RlcnMsIAogICAgICAgICAgICAid29zX3Njb3B1c19jaXRhdGlvbl9uZXR3b3JrX2NsdXN0ZXJzLmdyYXBobWwiLCAKICAgICAgICAgICAgImdyYXBobWwiKQoKYWNhX2dyYXBobWxfbm9kZXMgPC0gCiAgYWNhX3RibF9ncmFwaF9maWx0ZXJlZCB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgYXNfdGliYmxlKCkgfD4gCiAgcmVuYW1lKGF1dGhvciA9IG5hbWUpIHw+IAogIHJvd25hbWVzX3RvX2NvbHVtbigibmFtZSIpCgphY2FfZ3JhcGhtbF9lZGdlcyA8LSAKICBhY2FfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGFjdGl2YXRlKGVkZ2VzKSB8PiAKICBhc190aWJibGUoKSAKCmFjYV9ncmFwaG1sIDwtIAogIGdyYXBoX2Zyb21fZGF0YV9mcmFtZShkID0gYWNhX2dyYXBobWxfZWRnZXMsIAogICAgICAgICAgICAgICAgICAgICAgICBkaXJlY3RlZCA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICAgICAgICAgdmVydGljZXMgPSBhY2FfZ3JhcGhtbF9ub2RlcykKCndyaXRlX2dyYXBoKGFjYV9ncmFwaG1sLCAiYWNhX2dyYXBoLmdyYXBobWwiLCAiZ3JhcGhtbCIpICMgRXhwb3J0IGF1dGhvciBjby1jaXRhdGlvbiBncmFwaAoKYXV0aG9yX2NvbGxhYl9ncmFwaG1sX25vZGVzIDwtIAogIGF1dGhvcl9jb2xsYWJfdGJsX2dyYXBoX2ZpbHRlcmVkIHw+IAogIGFjdGl2YXRlKG5vZGVzKSB8PiAKICBhc190aWJibGUoKSB8PiAKICByZW5hbWUoYXV0aG9yID0gbmFtZSkgfD4gCiAgcm93bmFtZXNfdG9fY29sdW1uKCJuYW1lIikKCmF1dGhvcl9jb2xsYWJfZ3JhcGhtbF9lZGdlcyA8LSAKICBhdXRob3JfY29sbGFiX3RibF9ncmFwaF9maWx0ZXJlZCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgYXNfdGliYmxlKCkgCgphdXRob3JfY29sbGFiX2dyYXBobWwgPC0gCiAgZ3JhcGhfZnJvbV9kYXRhX2ZyYW1lKGQgPSBhdXRob3JfY29sbGFiX2dyYXBobWxfZWRnZXMsIAogICAgICAgICAgICAgICAgICAgICAgICBkaXJlY3RlZCA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICAgICAgICAgdmVydGljZXMgPSBhdXRob3JfY29sbGFiX2dyYXBobWxfbm9kZXMpCgp3cml0ZV9ncmFwaChhdXRob3JfY29sbGFiX2dyYXBobWwsICJhdXRob3JfY29sbGFiX2dyYXBobWwuZ3JhcGhtbCIsICJncmFwaG1sIikgIyBFeHBvcnQgYXV0aG9yIGNvLWNpdGF0aW9uIGdyYXBoCgpjb3VudHJ5X2NvbGxhYl9ncmFwaG1sX25vZGVzIDwtIAogIGNvdW50cnlfY29sbGFiX3RibF9ncmFwaF9maWx0ZXJlZCB8PiAKICBhY3RpdmF0ZShub2RlcykgfD4gCiAgYXNfdGliYmxlKCkgfD4gCiAgcmVuYW1lKGF1dGhvciA9IG5hbWUpIHw+IAogIHJvd25hbWVzX3RvX2NvbHVtbigibmFtZSIpCgpjb3VudHJ5X2NvbGxhYl9ncmFwaG1sX2VkZ2VzIDwtIAogIGNvdW50cnlfY29sbGFiX3RibF9ncmFwaF9maWx0ZXJlZCB8PiAKICBhY3RpdmF0ZShlZGdlcykgfD4gCiAgYXNfdGliYmxlKCkgCgpjb3VudHJ5X2NvbGxhYl9ncmFwaG1sIDwtIAogIGdyYXBoX2Zyb21fZGF0YV9mcmFtZShkID0gY291bnRyeV9jb2xsYWJfZ3JhcGhtbF9lZGdlcywgCiAgICAgICAgICAgICAgICAgICAgICAgIGRpcmVjdGVkID0gRkFMU0UsIAogICAgICAgICAgICAgICAgICAgICAgICB2ZXJ0aWNlcyA9IGNvdW50cnlfY29sbGFiX2dyYXBobWxfbm9kZXMpCgp3cml0ZV9ncmFwaChjb3VudHJ5X2NvbGxhYl9ncmFwaG1sLCAiY291bnRyeV9jb2xsYWJfZ3JhcGhtbC5ncmFwaG1sIiwgImdyYXBobWwiKSAjIEV4cG9ydCBhdXRob3IgY28tY2l0YXRpb24gZ3JhcGgKCndyaXRlLmNzdih0cmVlX29mX3NjaWVuY2UsICJ0cmVlX29mX3NjaWVuY2UuY3N2IikgIyBFeHBvcnRpbmcgVHJlZSBvZiBTY2llbmNlCgp3cml0ZS5jc3YoY2x1c3Rlcl8xX2RmLCAiY2x1c3Rlcl8xLmNzdiIpICMgRXhwb3J0aW5nIGNsdXN0ZXIgMQp3cml0ZS5jc3YoY2x1c3Rlcl8yX2RmLCAiY2x1c3Rlcl8yLmNzdiIpICMgRXhwb3J0aW5nIGNsdXN0ZXIgMgp3cml0ZS5jc3YoY2x1c3Rlcl8zX2RmLCAiY2x1c3Rlcl8zLmNzdiIpICMgRXhwb3J0aW5nIGNsdXN0ZXIgMwp3cml0ZS5jc3YoY2x1c3Rlcl80X2RmLCAiY2x1c3Rlcl80LmNzdiIpICMgRXhwb3J0aW5nIGNsdXN0ZXIgNAoKd3JpdGUuY3N2KG5vZGVzX2Z1bGxfZGF0YSwgIm5vZGVzX2Z1bGxfZGF0YS5jc3YiKSAjIEV4cG9ydGluZyBhbGwgbm9kZXMKYGBgCgo=