UYGULAMALI EKONOMETRİ VİZE ÖDEVİ

Trafik Ölümlerine İlişkin Eyalet Düzeyinde Enine Kesit Verileri

library(wooldridge)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(rmarkdown)

Wooldridge içinden veri seti aldığımız ana paketimizdir. Dplyr veri setlerinin düzenlenmesi, filtrelenmesi, sıralanması ve belirli değişkenlerin hesaplanmasını mümkün kılan 6 ayrı fiile (fonksiyona) sahip olması için kullanılan bir komuttur. Bunlar: select(), mutate(), filter(), arrange(), summarize() ve group_by(). R programlama dilini öğrenmek bu fiilleri kullanmaktan geçiyor.

data("traffic1")
head(traffic1)
##   state admn90 admn85 open90 open85 dthrte90 dthrte85 speed90 speed85
## 1    AL      0      0      0      0      2.6      2.9       1       0
## 2    AK      1      1      1      0      2.1      3.2       0       0
## 3    AZ      1      0      0      0      2.5      4.4       1       0
## 4    AR      0      0      0      0      2.9      3.4       1       0
## 5    CA      1      0      1      1      2.0      2.6       1       0
## 6    CO      1      1      0      0      1.9      2.4       1       0
##      cdthrte cadmn copen cspeed
## 1 -0.3000002     0     0      1
## 2 -1.1000001     0     1      0
## 3 -1.9000001     1     0      1
## 4 -0.5000000     0     0      1
## 5 -0.5999999     1     0      1
## 6 -0.5000001     0     0      1
tail(traffic1)
##    state admn90 admn85 open90 open85 dthrte90 dthrte85 speed90 speed85
## 46    VT      1      0      0      0      1.5      2.5       1       0
## 47    VA      0      0      0      0      1.8      2.1       1       0
## 48    WA      0      1      1      1      1.9      2.3       1       0
## 49    WV      1      1      0      0      3.2      3.6       1       0
## 50    WI      1      0      1      1      1.8      2.1       1       0
## 51    WY      1      1      0      0      2.2      2.7       1       0
##       cdthrte cadmn copen cspeed
## 46 -1.0000000     1     0      1
## 47 -0.3000000     0     0      1
## 48 -0.4000000    -1     0      1
## 49 -0.3999999     0     0      1
## 50 -0.3000000     1     0      1
## 51 -0.5000000     0     0      1

Head ve tail komutu ile ilk 6 ve son 6 verimizi gözlemleyebiliyoruz .

paged_table(traffic1)

Paged_table komutu veri setinin tamamını görmemizi sağlıyor .

summary(traffic1)
##     state               admn90           admn85           open90      
##  Length:51          Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  Class :character   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Mode  :character   Median :1.0000   Median :0.0000   Median :0.0000  
##                     Mean   :0.5686   Mean   :0.4118   Mean   :0.4314  
##                     3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##                     Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      open85          dthrte90        dthrte85       speed90          speed85 
##  Min.   :0.0000   Min.   :1.300   Min.   :1.90   Min.   :0.0000   Min.   :0  
##  1st Qu.:0.0000   1st Qu.:1.850   1st Qu.:2.30   1st Qu.:1.0000   1st Qu.:0  
##  Median :0.0000   Median :2.000   Median :2.60   Median :1.0000   Median :0  
##  Mean   :0.3725   Mean   :2.155   Mean   :2.70   Mean   :0.7843   Mean   :0  
##  3rd Qu.:1.0000   3rd Qu.:2.500   3rd Qu.:3.05   3rd Qu.:1.0000   3rd Qu.:0  
##  Max.   :1.0000   Max.   :3.600   Max.   :4.40   Max.   :1.0000   Max.   :0  
##     cdthrte            cadmn             copen             cspeed      
##  Min.   :-1.9000   Min.   :-1.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:-0.7000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.:1.0000  
##  Median :-0.5000   Median : 0.0000   Median :0.00000   Median :1.0000  
##  Mean   :-0.5451   Mean   : 0.1569   Mean   :0.05882   Mean   :0.7843  
##  3rd Qu.:-0.3000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.:1.0000  
##  Max.   : 0.3000   Max.   : 1.0000   Max.   :1.00000   Max.   :1.0000

Summary bir sütundaki verileri tek bir değere indirgiyor, özetliyor .Bu değer bir değişkenin ortalaması (mean) olabilir.

traffic1%>%
group_by("speed") %>%
summarise("yönetici(cadmn)"= mean(cadmn))
## # A tibble: 1 × 2
##   `"speed"` `yönetici(cadmn)`
##   <chr>                 <dbl>
## 1 speed                 0.157

Belirli değişkenleri / sütunları seçme

traffic1 %>% select(cspeed ,cadmn , copen)
##    cspeed cadmn copen
## 1       1     0     0
## 2       0     0     1
## 3       1     1     0
## 4       1     0     0
## 5       1     1     0
## 6       1     0     0
## 7       0     1     0
## 8       0     0     0
## 9       0     0     0
## 10      1     1     1
## 11      1     0     0
## 12      0     0     0
## 13      1     0     0
## 14      1     1     0
## 15      1     0     0
## 16      1     0     0
## 17      1     1     0
## 18      1     0     0
## 19      1     0     0
## 20      1     0     0
## 21      0     1     0
## 22      0     0     0
## 23      1     0     0
## 24      1     0     0
## 25      1     0     0
## 26      1     0     0
## 27      1     0     0
## 28      1     0     0
## 29      1     0     0
## 30      1     0     0
## 31      0     0     0
## 32      1     0     1
## 33      0     0     0
## 34      1     0     0
## 35      1     0     0
## 36      1     0     0
## 37      1     0     0
## 38      1     0     0
## 39      0     0     0
## 40      0     0     0
## 41      1     0     0
## 42      1     0     0
## 43      1     0     0
## 44      1     0     0
## 45      1     0     0
## 46      1     1     0
## 47      1     0     0
## 48      1    -1     0
## 49      1     0     0
## 50      1     1     0
## 51      1     0     0
traffic1 %>% mutate(open90,open85)
##    state admn90 admn85 open90 open85 dthrte90 dthrte85 speed90 speed85
## 1     AL      0      0      0      0      2.6      2.9       1       0
## 2     AK      1      1      1      0      2.1      3.2       0       0
## 3     AZ      1      0      0      0      2.5      4.4       1       0
## 4     AR      0      0      0      0      2.9      3.4       1       0
## 5     CA      1      0      1      1      2.0      2.6       1       0
## 6     CO      1      1      0      0      1.9      2.4       1       0
## 7     CT      1      0      0      0      1.5      2.0       0       0
## 8     DE      1      1      0      0      2.2      2.2       0       0
## 9     DC      1      1      0      0      1.6      3.0       0       0
## 10    FL      1      0      1      0      2.7      3.4       1       0
## 11    GA      0      0      0      0      2.0      2.7       1       0
## 12    HI      0      0      1      1      2.3      2.0       0       0
## 13    ID      0      0      1      1      2.9      3.5       1       0
## 14    IL      1      0      1      1      1.9      2.3       1       0
## 15    IN      1      1      0      0      1.8      2.6       1       0
## 16    IA      1      1      1      1      2.1      2.4       1       0
## 17    KS      1      0      1      1      2.1      2.6       1       0
## 18    KY      0      0      0      0      2.6      2.6       1       0
## 19    LA      1      1      0      0      2.5      3.0       1       0
## 20    ME      1      1      0      0      1.8      2.4       1       0
## 21    MD      1      0      1      1      1.9      2.3       0       0
## 22    MA      0      0      0      0      1.3      1.9       0       0
## 23    MI      0      0      1      1      1.9      2.4       1       0
## 24    MN      1      1      1      1      1.5      2.0       1       0
## 25    MS      1      1      0      0      3.2      3.6       1       0
## 26    MO      1      1      0      0      2.3      2.6       1       0
## 27    MT      0      0      1      1      2.5      3.1       1       0
## 28    NE      0      0      0      0      1.9      2.1       1       0
## 29    NV      1      1      0      0      3.6      3.9       1       0
## 30    NH      0      0      0      0      1.6      2.6       1       0
## 31    NJ      0      0      0      0      1.5      1.9       0       0
## 32    NM      1      1      1      0      3.1      4.2       1       0
## 33    NY      0      0      0      0      2.0      2.3       0       0
## 34    NC      1      1      1      1      2.3      3.1       1       0
## 35    ND      1      1      1      1      1.9      2.2       1       0
## 36    OH      0      0      0      0      1.8      2.1       1       0
## 37    OK      1      1      1      1      2.0      2.5       1       0
## 38    OR      1      1      1      1      2.2      2.8       1       0
## 39    PA      0      0      0      0      1.9      2.4       0       0
## 40    RI      0      0      0      0      1.3      2.1       0       0
## 41    SC      0      0      1      1      2.9      3.5       1       0
## 42    SD      0      0      1      1      2.3      2.3       1       0
## 43    TN      0      0      0      0      2.6      3.4       1       0
## 44    TX      0      0      0      0      2.0      2.7       1       0
## 45    UT      1      1      1      1      2.0      2.8       1       0
## 46    VT      1      0      0      0      1.5      2.5       1       0
## 47    VA      0      0      0      0      1.8      2.1       1       0
## 48    WA      0      1      1      1      1.9      2.3       1       0
## 49    WV      1      1      0      0      3.2      3.6       1       0
## 50    WI      1      0      1      1      1.8      2.1       1       0
## 51    WY      1      1      0      0      2.2      2.7       1       0
##       cdthrte cadmn copen cspeed
## 1  -0.3000002     0     0      1
## 2  -1.1000001     0     1      0
## 3  -1.9000001     1     0      1
## 4  -0.5000000     0     0      1
## 5  -0.5999999     1     0      1
## 6  -0.5000001     0     0      1
## 7  -0.5000000     1     0      0
## 8   0.0000000     0     0      0
## 9  -1.4000000     0     0      0
## 10 -0.7000000     1     1      1
## 11 -0.7000000     0     0      1
## 12  0.3000000     0     0      0
## 13 -0.5999999     0     0      1
## 14 -0.4000000     1     0      1
## 15 -0.8000000     0     0      1
## 16 -0.3000002     0     0      1
## 17 -0.5000000     1     0      1
## 18  0.0000000     0     0      1
## 19 -0.5000000     0     0      1
## 20 -0.6000001     0     0      1
## 21 -0.4000000     1     0      0
## 22 -0.6000000     0     0      0
## 23 -0.5000001     0     0      1
## 24 -0.5000000     0     0      1
## 25 -0.3999999     0     0      1
## 26 -0.3000000     0     0      1
## 27 -0.5999999     0     0      1
## 28 -0.1999999     0     0      1
## 29 -0.3000002     0     0      1
## 30 -0.9999999     0     0      1
## 31 -0.4000000     0     0      0
## 32 -1.0999999     0     1      1
## 33 -0.3000000     0     0      0
## 34 -0.8000000     0     0      1
## 35 -0.3000001     0     0      1
## 36 -0.3000000     0     0      1
## 37 -0.5000000     0     0      1
## 38 -0.5999999     0     0      1
## 39 -0.5000001     0     0      0
## 40 -0.8000000     0     0      0
## 41 -0.5999999     0     0      1
## 42  0.0000000     0     0      1
## 43 -0.8000002     0     0      1
## 44 -0.7000000     0     0      1
## 45 -0.8000000     0     0      1
## 46 -1.0000000     1     0      1
## 47 -0.3000000     0     0      1
## 48 -0.4000000    -1     0      1
## 49 -0.3999999     0     0      1
## 50 -0.3000000     1     0      1
## 51 -0.5000000     0     0      1

Bağlantı operatörü ( %>% ) kullandığımızda veri setini her seferde fiillerin içerisinde kullanmamıza gerek kalmıyor.

Tablom <- traffic1 %>% filter(cdthrte == -0.5000000)
summary(lm(admn90 ~ open90 + dthrte90 + speed90+ admn85 , data = traffic1 ))
## 
## Call:
## lm(formula = admn90 ~ open90 + dthrte90 + speed90 + admn85, data = traffic1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.05449 -0.25455 -0.04904  0.13376  0.77598 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.33416    0.23853   1.401    0.168    
## open90       0.15060    0.11152   1.350    0.183    
## dthrte90    -0.05454    0.11630  -0.469    0.641    
## speed90      0.02622    0.14538   0.180    0.858    
## admn85       0.64714    0.11270   5.742 7.04e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3883 on 46 degrees of freedom
## Multiple R-squared:  0.4455, Adjusted R-squared:  0.3973 
## F-statistic: 9.241 on 4 and 46 DF,  p-value: 1.446e-05
Tablom2 <- traffic1 %>% filter(cdthrte == -1)
Tablom2
##   state admn90 admn85 open90 open85 dthrte90 dthrte85 speed90 speed85 cdthrte
## 1    VT      1      0      0      0      1.5      2.5       1       0      -1
##   cadmn copen cspeed
## 1     1     0      1

Lm formülü kullanarak Interceptli regresyon oluşmuştur. Intercept admn90 a göre yorumlanmıştır.

summary(lm(admn90 ~ open90 + dthrte90+ speed85 + speed90+ admn85 -1 , data = traffic1 ))
## 
## Call:
## lm(formula = admn90 ~ open90 + dthrte90 + speed85 + speed90 + 
##     admn85 - 1, data = traffic1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.01624 -0.20104 -0.03314  0.15761  0.87326 
## 
## Coefficients: (1 not defined because of singularities)
##          Estimate Std. Error t value Pr(>|t|)    
## open90    0.16962    0.11182   1.517    0.136    
## dthrte90  0.08449    0.06126   1.379    0.174    
## speed85        NA         NA      NA       NA    
## speed90   0.03627    0.14668   0.247    0.806    
## admn85    0.64980    0.11383   5.708 7.42e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3923 on 47 degrees of freedom
## Multiple R-squared:  0.7506, Adjusted R-squared:  0.7294 
## F-statistic: 35.37 on 4 and 47 DF,  p-value: 1.25e-13

Bu regresyonumuzda ise hem Intercepti çıkardık hem de speed85 değişkenini ekledik.

Cilebülbül <- traffic1 %>% 
  mutate (sabit= 6 ) %>%
  mutate(cile= ifelse(open85 == 1,8,2))
Cilebülbül
##    state admn90 admn85 open90 open85 dthrte90 dthrte85 speed90 speed85
## 1     AL      0      0      0      0      2.6      2.9       1       0
## 2     AK      1      1      1      0      2.1      3.2       0       0
## 3     AZ      1      0      0      0      2.5      4.4       1       0
## 4     AR      0      0      0      0      2.9      3.4       1       0
## 5     CA      1      0      1      1      2.0      2.6       1       0
## 6     CO      1      1      0      0      1.9      2.4       1       0
## 7     CT      1      0      0      0      1.5      2.0       0       0
## 8     DE      1      1      0      0      2.2      2.2       0       0
## 9     DC      1      1      0      0      1.6      3.0       0       0
## 10    FL      1      0      1      0      2.7      3.4       1       0
## 11    GA      0      0      0      0      2.0      2.7       1       0
## 12    HI      0      0      1      1      2.3      2.0       0       0
## 13    ID      0      0      1      1      2.9      3.5       1       0
## 14    IL      1      0      1      1      1.9      2.3       1       0
## 15    IN      1      1      0      0      1.8      2.6       1       0
## 16    IA      1      1      1      1      2.1      2.4       1       0
## 17    KS      1      0      1      1      2.1      2.6       1       0
## 18    KY      0      0      0      0      2.6      2.6       1       0
## 19    LA      1      1      0      0      2.5      3.0       1       0
## 20    ME      1      1      0      0      1.8      2.4       1       0
## 21    MD      1      0      1      1      1.9      2.3       0       0
## 22    MA      0      0      0      0      1.3      1.9       0       0
## 23    MI      0      0      1      1      1.9      2.4       1       0
## 24    MN      1      1      1      1      1.5      2.0       1       0
## 25    MS      1      1      0      0      3.2      3.6       1       0
## 26    MO      1      1      0      0      2.3      2.6       1       0
## 27    MT      0      0      1      1      2.5      3.1       1       0
## 28    NE      0      0      0      0      1.9      2.1       1       0
## 29    NV      1      1      0      0      3.6      3.9       1       0
## 30    NH      0      0      0      0      1.6      2.6       1       0
## 31    NJ      0      0      0      0      1.5      1.9       0       0
## 32    NM      1      1      1      0      3.1      4.2       1       0
## 33    NY      0      0      0      0      2.0      2.3       0       0
## 34    NC      1      1      1      1      2.3      3.1       1       0
## 35    ND      1      1      1      1      1.9      2.2       1       0
## 36    OH      0      0      0      0      1.8      2.1       1       0
## 37    OK      1      1      1      1      2.0      2.5       1       0
## 38    OR      1      1      1      1      2.2      2.8       1       0
## 39    PA      0      0      0      0      1.9      2.4       0       0
## 40    RI      0      0      0      0      1.3      2.1       0       0
## 41    SC      0      0      1      1      2.9      3.5       1       0
## 42    SD      0      0      1      1      2.3      2.3       1       0
## 43    TN      0      0      0      0      2.6      3.4       1       0
## 44    TX      0      0      0      0      2.0      2.7       1       0
## 45    UT      1      1      1      1      2.0      2.8       1       0
## 46    VT      1      0      0      0      1.5      2.5       1       0
## 47    VA      0      0      0      0      1.8      2.1       1       0
## 48    WA      0      1      1      1      1.9      2.3       1       0
## 49    WV      1      1      0      0      3.2      3.6       1       0
## 50    WI      1      0      1      1      1.8      2.1       1       0
## 51    WY      1      1      0      0      2.2      2.7       1       0
##       cdthrte cadmn copen cspeed sabit cile
## 1  -0.3000002     0     0      1     6    2
## 2  -1.1000001     0     1      0     6    2
## 3  -1.9000001     1     0      1     6    2
## 4  -0.5000000     0     0      1     6    2
## 5  -0.5999999     1     0      1     6    8
## 6  -0.5000001     0     0      1     6    2
## 7  -0.5000000     1     0      0     6    2
## 8   0.0000000     0     0      0     6    2
## 9  -1.4000000     0     0      0     6    2
## 10 -0.7000000     1     1      1     6    2
## 11 -0.7000000     0     0      1     6    2
## 12  0.3000000     0     0      0     6    8
## 13 -0.5999999     0     0      1     6    8
## 14 -0.4000000     1     0      1     6    8
## 15 -0.8000000     0     0      1     6    2
## 16 -0.3000002     0     0      1     6    8
## 17 -0.5000000     1     0      1     6    8
## 18  0.0000000     0     0      1     6    2
## 19 -0.5000000     0     0      1     6    2
## 20 -0.6000001     0     0      1     6    2
## 21 -0.4000000     1     0      0     6    8
## 22 -0.6000000     0     0      0     6    2
## 23 -0.5000001     0     0      1     6    8
## 24 -0.5000000     0     0      1     6    8
## 25 -0.3999999     0     0      1     6    2
## 26 -0.3000000     0     0      1     6    2
## 27 -0.5999999     0     0      1     6    8
## 28 -0.1999999     0     0      1     6    2
## 29 -0.3000002     0     0      1     6    2
## 30 -0.9999999     0     0      1     6    2
## 31 -0.4000000     0     0      0     6    2
## 32 -1.0999999     0     1      1     6    2
## 33 -0.3000000     0     0      0     6    2
## 34 -0.8000000     0     0      1     6    8
## 35 -0.3000001     0     0      1     6    8
## 36 -0.3000000     0     0      1     6    2
## 37 -0.5000000     0     0      1     6    8
## 38 -0.5999999     0     0      1     6    8
## 39 -0.5000001     0     0      0     6    2
## 40 -0.8000000     0     0      0     6    2
## 41 -0.5999999     0     0      1     6    8
## 42  0.0000000     0     0      1     6    8
## 43 -0.8000002     0     0      1     6    2
## 44 -0.7000000     0     0      1     6    2
## 45 -0.8000000     0     0      1     6    8
## 46 -1.0000000     1     0      1     6    2
## 47 -0.3000000     0     0      1     6    2
## 48 -0.4000000    -1     0      1     6    8
## 49 -0.3999999     0     0      1     6    2
## 50 -0.3000000     1     0      1     6    8
## 51 -0.5000000     0     0      1     6    2

Cilebülbül isimli yeni bir veri datası oluşturduk . Bu yeni datamızın içerisinde traffic1 verileri yer almaktadır , Buna ek olarak sabit isimli ve cile isimli yeni değişkenler ekledik .Cile isimli değişkenimizi ifelse komutu ile open85 değişkenini kullanarak yeni sonuçlar elde ettik .

Model1 <- lm (Tablom$admn90~Tablom$admn85)
Model1
## 
## Call:
## lm(formula = Tablom$admn90 ~ Tablom$admn85)
## 
## Coefficients:
##   (Intercept)  Tablom$admn85  
##        0.6667         0.3333
 Model2 <- lm ( Tablom2 $dthrte90 ~ Tablom2$speed90)
  Model2
## 
## Call:
## lm(formula = Tablom2$dthrte90 ~ Tablom2$speed90)
## 
## Coefficients:
##     (Intercept)  Tablom2$speed90  
##             1.5               NA
require(stargazer)
## Zorunlu paket yükleniyor: stargazer
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer

Require bize library ile aynı işlemi yapmamızı sağlar . Ek olarak indirilmemiş olan paketleri indirerek library yapar .

stargazer(list(Model1 , Model2 ), type = "text")
## 
## ================================================
##                         Dependent variable:     
##                     ----------------------------
##                           admn90       dthrte90 
##                            (1)            (2)   
## ------------------------------------------------
## admn85                    0.333                 
##                          (0.279)                
##                                                 
## speed90                                         
##                                                 
##                                                 
## Constant                 0.667**         1.500  
##                          (0.211)                
##                                                 
## ------------------------------------------------
## Observations                7              1    
## R2                        0.222          0.000  
## Adjusted R2               0.067          0.000  
## Residual Std. Error   0.365 (df = 5)            
## F Statistic         1.429 (df = 1; 5)           
## ================================================
## Note:                *p<0.1; **p<0.05; ***p<0.01

Mutlu Son