cps78_86 regresyon modeli

library(wooldridge) 
library(rmarkdown) 
data("fertil1")
paged_table(fertil1)
data("cps78_85")
paged_table(cps78_85)
require(dplyr)
## Zorunlu paket yükleniyor: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
cps78_85 %>%
  group_by(year) %>%
  summarise(n= n())
## # A tibble: 2 x 2
##    year     n
##   <int> <int>
## 1    78   550
## 2    85   534
summary(lm(lwage ~ y85*(educ + female) + exper + I(exper^2) + union, data = cps78_85,-1))
## 
## Call:
## lm(formula = lwage ~ y85 * (educ + female) + exper + I(exper^2) + 
##     union, data = cps78_85, subset = -1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5614 -0.2579  0.0101  0.2657  2.1162 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.617e-01  9.352e-02   4.937 9.18e-07 ***
## y85          1.161e-01  1.238e-01   0.938   0.3484    
## educ         7.463e-02  6.678e-03  11.176  < 2e-16 ***
## female      -3.179e-01  3.665e-02  -8.673  < 2e-16 ***
## exper        2.956e-02  3.568e-03   8.286 3.46e-16 ***
## I(exper^2)  -3.995e-04  7.755e-05  -5.152 3.07e-07 ***
## union        2.016e-01  3.031e-02   6.651 4.62e-11 ***
## y85:educ     1.850e-02  9.355e-03   1.978   0.0482 *  
## y85:female   8.618e-02  5.133e-02   1.679   0.0935 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4128 on 1074 degrees of freedom
## Multiple R-squared:  0.4258, Adjusted R-squared:  0.4215 
## F-statistic: 99.56 on 8 and 1074 DF,  p-value: < 2.2e-16