##ÖRNEK 2.3

library(wooldridge)
## Warning: package 'wooldridge' was built under R version 4.1.3
data("ceosal1")

##ÖRNEK 6.2 CEOSAL VERİ SETİ

library(rmarkdown)
paged_table(ceosal1)

##Maaş (Salary) Ortalama, en küçük ve en büyük değerler Ortalama Maaş

mean(ceosal1$salary)
## [1] 1281.12
min(ceosal1$salary)
## [1] 223
max(ceosal1$salary)
## [1] 14822

#Özsermaye (roe) Ortalama, en küçük ve en büyük değerler

#Ortalama özsermaye

mean(ceosal1$roe)
## [1] 17.18421

###En küçük ve en büyük özsermaye

mean(ceosal1$roe)
## [1] 17.18421

#Örnek 2.3 SEKK regresyon doğrusu

lm(salary ~ roe, data = ceosal1)
## 
## Call:
## lm(formula = salary ~ roe, data = ceosal1)
## 
## Coefficients:
## (Intercept)          roe  
##       963.2         18.5

roe 0 ise maaş 1000 dolar ile ölçüldüğünden, kesim parametresi bera0, 963,191 dolara eşit olur. Özsermaye getirisi %1 puan artarsa, maaş 18,500 dolar değişecektir.

##Tahmin (roe = 30 ise maaş ne olur?) salary^=963,191+18,501⋅30=1,518,221

##Örnek 2.4 Ücret ve Eğitim Örneği okuyun (sayfa 34), rstudio ile örneği tekrarlayın, wage1 veri setini kullanın

data(wage1)

#Ortalam ücret

mean(wage1$wage)
## [1] 5.896103

#SEKK (ikinci yöntem)

lm(wage1$wage ~ wage1$educ)
## 
## Call:
## lm(formula = wage1$wage ~ wage1$educ)
## 
## Coefficients:
## (Intercept)   wage1$educ  
##     -0.9049       0.5414

#Sekiz yıllık eğitim almış bir kişinin tahmini ücreti −0.90+0.54⋅(8)=3.42

###Örnek 2.5 Oylama Sonuçları ve Kampanya Harcamaları vote1 veri setini kullanın, örneği sayfa 35’den okuyun, tekrar edin.

data(vote1)
lm(vote1$voteA ~ vote1$shareA)
## 
## Call:
## lm(formula = vote1$voteA ~ vote1$shareA)
## 
## Coefficients:
##  (Intercept)  vote1$shareA  
##      26.8122        0.4638

Örnek 2,6 İlk 15 CEO için teorik değerler ve artıklar tablosu model sonuçlarını daha önce almıştık

salary^=963,191+18,501⋅roe

tablonun roe değerlerini biliyoruz, ilk 15 ceo değeri, ilk 15 roe için bir veri seti oluşturalım ve adına roe_15 diyelim. Not: kodun içinde bulunan köşeli parantez, ilgili değişkenin kaç gözlemini almak istediğinizi yazacağınız yerdir.

roe_15 <- ceosal1$roe[1:15]
roe_15
##  [1] 14.1 10.9 23.5  5.9 13.8 20.0 16.4 16.3 10.5 26.3 25.9 26.8 14.8 22.3 56.3

#aynı işlemi tablonun ikinci sütunu salary için de yapalım ve adına salary_15 diyelim

salary_15 <- ceosal1$salary[1:15]
salary_15
##  [1] 1095 1001 1122  578 1368 1145 1078 1094 1237  833  567  933 1339  937 2011

bu iki yeni değişkeni birleştirip tablo için veri seti oluşturalım ve adına Tablo2_2 diyelim. Not: cbind komutu, iki listeyi sütün olarak birleştirir. (cbind, column bind)

Tablo2_2 <- cbind(roe_15, salary_15)
Tablo2_2
##       roe_15 salary_15
##  [1,]   14.1      1095
##  [2,]   10.9      1001
##  [3,]   23.5      1122
##  [4,]    5.9       578
##  [5,]   13.8      1368
##  [6,]   20.0      1145
##  [7,]   16.4      1078
##  [8,]   16.3      1094
##  [9,]   10.5      1237
## [10,]   26.3       833
## [11,]   25.9       567
## [12,]   26.8       933
## [13,]   14.8      1339
## [14,]   22.3       937
## [15,]   56.3      2011

tablonun ilk iki satırını oluşturduk bu iki sütuna üçüncü sütunu yani salaryhat’i eklemeliyiz. Tahmin formülümüzle (betaları bildiğimiz için) üçüncü sütunu ekleyebiliriz.

salaryhat <- 963.191 + 18.501 * roe_15
uhat <- salary_15 - salaryhat

#bu dört sütunu aynı tabloda toplayabiriz

Tablo2_2 <- cbind(roe_15, salary_15, salaryhat, uhat)

###Tablo 2.2 yi gösterelim

Tablo2_2 
##       roe_15 salary_15 salaryhat        uhat
##  [1,]   14.1      1095  1224.055 -129.055107
##  [2,]   10.9      1001  1164.852 -163.851893
##  [3,]   23.5      1122  1397.965 -275.964500
##  [4,]    5.9       578  1072.347 -494.346902
##  [5,]   13.8      1368  1218.505  149.495196
##  [6,]   20.0      1145  1333.211 -188.211000
##  [7,]   16.4      1078  1266.607 -188.607393
##  [8,]   16.3      1094  1264.757 -170.757286
##  [9,]   10.5      1237  1157.452   79.548500
## [10,]   26.3       833  1449.767 -616.767286
## [11,]   25.9       567  1442.367 -875.366893
## [12,]   26.8       933  1459.018 -526.017786
## [13,]   14.8      1339  1237.006  101.994196
## [14,]   22.3       937  1375.763 -438.763286
## [15,]   56.3      2011  2004.797    6.202714