de tai nckh nam 2022

library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(tidyverse)
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.3      ✔ forcats 0.5.2 
## ✔ purrr   0.3.5      
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(dplyr)  
library(table1) 
## 
## Attaching package: 'table1'
## 
## The following objects are masked from 'package:base':
## 
##     units, units<-
thuan = read.csv("D:\\OneDrive - UMP\\000 -2021-2022\\00 LVT\\bvlvt02112022.csv", header=T)
thuan$congviec = recode(thuan$congviec, "1"="AA", 
                        "2"="BB", "3"="CC",
                        "4"= "DD","5"="EE",
                        .default = NA_character_ )
thuan$gioi = recode(thuan$gioi, "1"="nam", "2"="nu", .default = NA_character_ )
attach(thuan)
names(thuan)
##  [1] "id"       "gioi"     "thang"    "nam"      "thamnien" "a3"      
##  [7] "tuoi"     "congviec" "a5"       "uwes1"    "uwes2"    "uwes3"   
## [13] "uwes4"    "uwes5"    "uwes6"    "uwes7"    "uwes8"    "uwes9"   
## [19] "uwes_tol" "gjs1"     "gjs2"     "gjs3"     "gjs4"     "gjs5"    
## [25] "gjs6"     "gjs7"     "gjs8"     "gjs9"     "gjs10"    "gjs_tol" 
## [31] "wss1"     "wss2"     "wss3"     "wss4"     "wss5"     "wss6"    
## [37] "wss7"     "wss8"     "wss_tol"  "brcs1"    "brcs2"    "brcs3"   
## [43] "brcs4"    "brcs_tol" "brs1"     "brs2"     "brs3"     "brs4"    
## [49] "brs5"     "brs6"     "brs_tol"
 library(table1)
 
 table1(~ factor(uwes1)+ factor(uwes2)+ factor(uwes3)
        + factor(uwes4)+ factor(uwes5) + factor(uwes6) 
        + factor(uwes7)+ factor(uwes8)
        + factor(uwes9), data=thuan, transpose = F)
Overall
(N=532)
factor(uwes1)
0 8 (1.5%)
1 12 (2.3%)
2 30 (5.6%)
3 108 (20.3%)
4 42 (7.9%)
5 190 (35.7%)
6 142 (26.7%)
factor(uwes2)
0 4 (0.8%)
1 8 (1.5%)
2 24 (4.5%)
3 112 (21.1%)
4 42 (7.9%)
5 216 (40.6%)
6 126 (23.7%)
factor(uwes3)
0 4 (0.8%)
1 16 (3.0%)
2 26 (4.9%)
3 74 (13.9%)
4 64 (12.0%)
5 184 (34.6%)
6 164 (30.8%)
factor(uwes4)
0 10 (1.9%)
1 14 (2.6%)
2 32 (6.0%)
3 70 (13.2%)
4 76 (14.3%)
5 188 (35.3%)
6 142 (26.7%)
factor(uwes5)
0 18 (3.4%)
1 24 (4.5%)
2 28 (5.3%)
3 86 (16.2%)
4 62 (11.7%)
5 172 (32.3%)
6 142 (26.7%)
factor(uwes6)
0 10 (1.9%)
1 14 (2.6%)
2 28 (5.3%)
3 70 (13.2%)
4 68 (12.8%)
5 200 (37.6%)
6 142 (26.7%)
factor(uwes7)
0 10 (1.9%)
1 8 (1.5%)
2 22 (4.1%)
3 68 (12.8%)
4 48 (9.0%)
5 182 (34.2%)
6 194 (36.5%)
factor(uwes8)
0 14 (2.6%)
1 14 (2.6%)
2 30 (5.6%)
3 76 (14.3%)
4 84 (15.8%)
5 190 (35.7%)
6 124 (23.3%)
factor(uwes9)
0 20 (3.8%)
1 26 (4.9%)
2 38 (7.1%)
3 90 (16.9%)
4 70 (13.2%)
5 178 (33.5%)
6 110 (20.7%)
table1(~ factor(gjs1) + factor(gjs2) + factor(gjs3)
       + factor(gjs4) + factor(gjs5) +
         factor(gjs6) + factor(gjs7) + 
         factor(gjs8) + factor(gjs9) + 
         factor(gjs10) , data=thuan)
Overall
(N=532)
factor(gjs1)
1 4 (0.8%)
2 26 (4.9%)
3 94 (17.7%)
4 274 (51.5%)
5 134 (25.2%)
factor(gjs2)
1 4 (0.8%)
2 2 (0.4%)
3 54 (10.2%)
4 310 (58.3%)
5 162 (30.5%)
factor(gjs3)
1 8 (1.5%)
2 14 (2.6%)
3 110 (20.7%)
4 268 (50.4%)
5 132 (24.8%)
factor(gjs4)
1 14 (2.6%)
2 38 (7.1%)
3 100 (18.8%)
4 248 (46.6%)
5 132 (24.8%)
factor(gjs5)
1 16 (3.0%)
2 36 (6.8%)
3 142 (26.7%)
4 224 (42.1%)
5 114 (21.4%)
factor(gjs6)
1 14 (2.6%)
2 46 (8.6%)
3 100 (18.8%)
4 240 (45.1%)
5 132 (24.8%)
factor(gjs7)
1 44 (8.3%)
2 118 (22.2%)
3 110 (20.7%)
4 168 (31.6%)
5 92 (17.3%)
factor(gjs8)
1 4 (0.8%)
2 38 (7.1%)
3 86 (16.2%)
4 252 (47.4%)
5 152 (28.6%)
factor(gjs9)
1 4 (0.8%)
2 4 (0.8%)
3 120 (22.6%)
4 290 (54.5%)
5 114 (21.4%)
factor(gjs10)
1 2 (0.4%)
2 24 (4.5%)
3 108 (20.3%)
4 254 (47.7%)
5 144 (27.1%)
table1(~ factor(wss1) + factor(wss2) + 
         factor(wss3) + factor(wss4) + 
         factor(wss5) + factor(wss6) + 
         factor(wss7) + factor(wss8),
       data=thuan, transpose = T)
factor(wss1) factor(wss2) factor(wss3) factor(wss4) factor(wss5) factor(wss6) factor(wss7) factor(wss8)
Overall
(N=532)
:
1: 42 (7.9%)
2: 162 (30.5%)
3: 234 (44.0%)
4: 68 (12.8%)
5: 26 (4.9%)
:
1: 94 (17.7%)
2: 172 (32.3%)
3: 172 (32.3%)
4: 62 (11.7%)
5: 32 (6.0%)
:
1: 68 (12.8%)
2: 176 (33.1%)
3: 202 (38.0%)
4: 62 (11.7%)
5: 24 (4.5%)
:
1: 90 (16.9%)
2: 142 (26.7%)
3: 216 (40.6%)
4: 58 (10.9%)
5: 26 (4.9%)
:
1: 114 (21.4%)
2: 136 (25.6%)
3: 196 (36.8%)
4: 64 (12.0%)
5: 22 (4.1%)
:
1: 26 (4.9%)
2: 66 (12.4%)
3: 170 (32.0%)
4: 218 (41.0%)
5: 52 (9.8%)
:
1: 22 (4.1%)
2: 104 (19.5%)
3: 232 (43.6%)
4: 130 (24.4%)
5: 44 (8.3%)
:
1: 12 (2.3%)
2: 82 (15.4%)
3: 230 (43.2%)
4: 166 (31.2%)
5: 42 (7.9%)
table1(~ factor(brcs1)+ factor(brcs2)+ factor(brcs3)+ factor(brcs4), data=thuan)
Overall
(N=532)
factor(brcs1)
2 2 (0.4%)
3 216 (40.6%)
4 236 (44.4%)
5 78 (14.7%)
factor(brcs2)
2 2 (0.4%)
3 176 (33.1%)
4 266 (50.0%)
5 88 (16.5%)
factor(brcs3)
2 2 (0.4%)
3 164 (30.8%)
4 274 (51.5%)
5 92 (17.3%)
factor(brcs4)
2 8 (1.5%)
3 170 (32.0%)
4 250 (47.0%)
5 104 (19.5%)
table1(~ factor(brs1)+ factor(brs2)+ factor(brs3)+
          factor(brs4)+ factor(brs5)+ factor(brs6), data=thuan)
Overall
(N=532)
factor(brs1)
2 24 (4.5%)
3 104 (19.5%)
4 316 (59.4%)
5 88 (16.5%)
factor(brs2)
2 56 (10.5%)
3 200 (37.6%)
4 198 (37.2%)
5 78 (14.7%)
factor(brs3)
2 66 (12.4%)
3 156 (29.3%)
4 244 (45.9%)
5 66 (12.4%)
factor(brs4)
1 20 (3.8%)
2 130 (24.4%)
3 164 (30.8%)
4 138 (25.9%)
5 80 (15.0%)
factor(brs5)
1 10 (1.9%)
2 44 (8.3%)
3 164 (30.8%)
4 224 (42.1%)
5 90 (16.9%)
factor(brs6)
1 18 (3.4%)
2 106 (19.9%)
3 182 (34.2%)
4 144 (27.1%)
5 82 (15.4%)
library(factoextra)
library(ggdendro)
## 
## Attaching package: 'ggdendro'
## The following object is masked from 'package:table1':
## 
##     label
library(dendextend)
## 
## ---------------------
## Welcome to dendextend version 1.16.0
## Type citation('dendextend') for how to cite the package.
## 
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
## 
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## You may ask questions at stackoverflow, use the r and dendextend tags: 
##   https://stackoverflow.com/questions/tagged/dendextend
## 
##  To suppress this message use:  suppressPackageStartupMessages(library(dendextend))
## ---------------------
## 
## Attaching package: 'dendextend'
## The following object is masked from 'package:ggdendro':
## 
##     theme_dendro
## The following object is masked from 'package:stats':
## 
##     cutree
library(tidyverse)
library(cluster)
library(cluster.datasets)
#gioi + thamnien + a3 + tuoi + congviec +  a5 + 
uwes = data.frame(uwes1, uwes2, uwes3, uwes4, uwes5, uwes6, uwes7, uwes8, uwes9)
gjs = data.frame(gjs1, gjs2, gjs3, gjs4, gjs5, gjs6, gjs7, gjs8, gjs9, gjs10) 
wss = data.frame(wss1, wss2, wss3, wss4, wss5, wss6, wss7, wss8)
brcs = data.frame(brcs1, brcs2, brcs3, brcs4)
brs = data.frame(brs1, brs2, brs3, brs4, brs5, brs6)
OME = data.frame(uwes1, uwes2, uwes3, uwes4, uwes5, uwes6, uwes7, uwes8, uwes9,
                gjs1, gjs2, gjs3, gjs4, gjs5, gjs6, gjs7, gjs8, gjs9, gjs10,
                  wss1, wss2, wss3, wss4, wss5, wss6, wss7, wss8,
                  brs1, brs2, brs3, brs4, brs5, brs6, thamnien)
ome.tp = data.frame(uwes_tol, gjs_tol, wss_tol, brcs_tol, brs_tol)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
omega(ome.tp)
## Loading required namespace: GPArotation
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in cov2cor(t(w) %*% r %*% w): diag(.) had 0 or NA entries; non-finite
## result is doubtful

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.67 
## G.6:                   0.69 
## Omega Hierarchical:    0.65 
## Omega H asymptotic:    0.83 
## Omega Total            0.78 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##              g   F1*   F2*   F3*   h2   u2   p2
## uwes_tol  0.61  0.49             0.62 0.38 0.60
## gjs_tol   0.65  0.48             0.65 0.35 0.65
## wss_tol-             -0.52       0.28 0.72 0.00
## brcs_tol  0.76                   0.56 0.44 1.04
## brs_tol   0.61        0.25       0.49 0.51 0.76
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 1.74 0.47 0.35 0.00 
## 
## general/max  3.67   max/min =   Inf
## mean percent general =  0.61    with sd =  0.38 and cv of  0.62 
## Explained Common Variance of the general factor =  0.68 
## 
## The degrees of freedom are -2  and the fit is  0 
## The number of observations was  532  with Chi Square =  0  with prob <  NA
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  NA
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5  and the fit is  0.23 
## The number of observations was  532  with Chi Square =  121.96  with prob <  1.2e-24
## The root mean square of the residuals is  0.11 
## The df corrected root mean square of the residuals is  0.16 
## 
## RMSEA index =  0.21  and the 10 % confidence intervals are  0.179 0.243
## BIC =  90.58 
## 
## Measures of factor score adequacy             
##                                                  g   F1*   F2* F3*
## Correlation of scores with factors            0.86  0.66  0.60   0
## Multiple R square of scores with factors      0.74  0.44  0.36   0
## Minimum correlation of factor score estimates 0.48 -0.13 -0.28  -1
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2* F3*
## Omega total for total scores and subscales    0.78 0.78 0.58  NA
## Omega general for total scores and subscales  0.65 0.49 0.54  NA
## Omega group for total scores and subscales    0.10 0.29 0.05  NA
omega(uwes)

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.96 
## G.6:                   0.97 
## Omega Hierarchical:    0.94 
## Omega H asymptotic:    0.96 
## Omega Total            0.98 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##          g   F1*   F2*   F3*   h2   u2   p2
## uwes1 0.87                   0.77 0.23 0.97
## uwes2 0.91                   0.84 0.16 0.98
## uwes3 0.92                   0.86 0.14 0.98
## uwes4 0.92                   0.86 0.14 0.98
## uwes5 0.88              0.48 1.00 0.00 0.77
## uwes6 0.88                   0.79 0.21 0.98
## uwes7 0.83                   0.69 0.31 0.99
## uwes8 0.77        0.55       0.89 0.11 0.66
## uwes9 0.68        0.62       0.85 0.15 0.54
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 6.54 0.06 0.70 0.25 
## 
## general/max  9.39   max/min =   11.4
## mean percent general =  0.87    with sd =  0.17 and cv of  0.2 
## Explained Common Variance of the general factor =  0.87 
## 
## The degrees of freedom are 12  and the fit is  0.13 
## The number of observations was  532  with Chi Square =  66.08  with prob <  1.7e-09
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  0.02
## RMSEA index =  0.092  and the 10 % confidence intervals are  0.071 0.114
## BIC =  -9.24
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 27  and the fit is  0.92 
## The number of observations was  532  with Chi Square =  483.4  with prob <  4.1e-85
## The root mean square of the residuals is  0.06 
## The df corrected root mean square of the residuals is  0.07 
## 
## RMSEA index =  0.178  and the 10 % confidence intervals are  0.165 0.193
## BIC =  313.93 
## 
## Measures of factor score adequacy             
##                                                  g   F1*  F2*  F3*
## Correlation of scores with factors            0.98  0.22 0.89 0.92
## Multiple R square of scores with factors      0.96  0.05 0.79 0.85
## Minimum correlation of factor score estimates 0.91 -0.90 0.57 0.70
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.98 0.96 0.93 0.99
## Omega general for total scores and subscales  0.94 0.95 0.56 0.77
## Omega group for total scores and subscales    0.03 0.01 0.37 0.23
omega(gjs)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in cov2cor(t(w) %*% r %*% w): diag(.) had 0 or NA entries; non-finite
## result is doubtful

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.93 
## G.6:                   0.94 
## Omega Hierarchical:    0.91 
## Omega H asymptotic:    0.96 
## Omega Total            0.95 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##          g   F1*   F2*   F3*   h2   u2   p2
## gjs1  0.74        0.26       0.63 0.37 0.88
## gjs2  0.49        0.45       0.46 0.54 0.51
## gjs3  0.82                   0.72 0.28 0.94
## gjs4  0.86                   0.74 0.26 0.99
## gjs5  0.88                   0.77 0.23 1.00
## gjs6  0.86                   0.74 0.26 1.00
## gjs7  0.72       -0.21       0.59 0.41 0.87
## gjs8  0.69              0.48 0.71 0.29 0.68
## gjs9  0.64              0.21 0.46 0.54 0.89
## gjs10 0.85                   0.77 0.23 0.94
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 5.84 0.00 0.39 0.38 
## 
## general/max  15.07   max/min =   Inf
## mean percent general =  0.87    with sd =  0.16 and cv of  0.18 
## Explained Common Variance of the general factor =  0.88 
## 
## The degrees of freedom are 18  and the fit is  0.14 
## The number of observations was  532  with Chi Square =  73.73  with prob <  1e-08
## The root mean square of the residuals is  0.02 
## The df corrected root mean square of the residuals is  0.03
## RMSEA index =  0.076  and the 10 % confidence intervals are  0.059 0.095
## BIC =  -39.25
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 35  and the fit is  0.42 
## The number of observations was  532  with Chi Square =  220.4  with prob <  9.4e-29
## The root mean square of the residuals is  0.05 
## The df corrected root mean square of the residuals is  0.06 
## 
## RMSEA index =  0.1  and the 10 % confidence intervals are  0.087 0.113
## BIC =  0.72 
## 
## Measures of factor score adequacy             
##                                                  g F1*   F2*   F3*
## Correlation of scores with factors            0.97   0  0.69  0.68
## Multiple R square of scores with factors      0.95   0  0.48  0.47
## Minimum correlation of factor score estimates 0.89  -1 -0.04 -0.06
## 
##  Total, General and Subset omega for each subset
##                                                  g F1*  F2*  F3*
## Omega total for total scores and subscales    0.95  NA 0.90 0.89
## Omega general for total scores and subscales  0.91  NA 0.88 0.82
## Omega group for total scores and subscales    0.02  NA 0.02 0.07
omega(wss)

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.86 
## G.6:                   0.9 
## Omega Hierarchical:    0.72 
## Omega H asymptotic:    0.77 
## Omega Total            0.93 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##          g   F1*   F2*   F3*   h2   u2   p2
## wss1  0.79  0.22             0.68 0.32 0.91
## wss2  0.83              0.55 1.00 0.00 0.69
## wss3  0.84  0.30             0.80 0.20 0.88
## wss4  0.76  0.26             0.65 0.35 0.89
## wss5  0.76                   0.64 0.36 0.91
## wss6  0.34        0.62       0.52 0.48 0.23
## wss7              0.71       0.54 0.46 0.07
## wss8  0.28        0.87       0.84 0.16 0.10
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 3.40 0.25 1.66 0.35 
## 
## general/max  2.05   max/min =   6.61
## mean percent general =  0.58    with sd =  0.38 and cv of  0.66 
## Explained Common Variance of the general factor =  0.6 
## 
## The degrees of freedom are 7  and the fit is  0.02 
## The number of observations was  532  with Chi Square =  11.96  with prob <  0.1
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  0.02
## RMSEA index =  0.036  and the 10 % confidence intervals are  0 0.071
## BIC =  -31.98
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 20  and the fit is  1.18 
## The number of observations was  532  with Chi Square =  622.45  with prob <  5.3e-119
## The root mean square of the residuals is  0.18 
## The df corrected root mean square of the residuals is  0.21 
## 
## RMSEA index =  0.238  and the 10 % confidence intervals are  0.222 0.254
## BIC =  496.92 
## 
## Measures of factor score adequacy             
##                                                  g   F1*  F2*  F3*
## Correlation of scores with factors            0.93  0.45 0.92 0.84
## Multiple R square of scores with factors      0.86  0.21 0.86 0.70
## Minimum correlation of factor score estimates 0.72 -0.59 0.71 0.40
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.93 0.89 0.83 1.00
## Omega general for total scores and subscales  0.72 0.82 0.10 0.69
## Omega group for total scores and subscales    0.19 0.08 0.73 0.31
omega(brcs)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in cov2cor(t(w) %*% r %*% w): diag(.) had 0 or NA entries; non-finite
## result is doubtful

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.9 
## G.6:                   0.89 
## Omega Hierarchical:    0.85 
## Omega H asymptotic:    0.9 
## Omega Total            0.94 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##          g   F1*   F2*   F3*   h2   u2   p2
## brcs1 0.69        0.54       0.82 0.18 0.59
## brcs2 0.84              0.24 0.73 0.27 0.96
## brcs3 0.78        0.46 -0.23 0.83 0.17 0.73
## brcs4 0.92                   0.87 0.13 0.96
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 2.64 0.00 0.50 0.14 
## 
## general/max  5.25   max/min =   Inf
## mean percent general =  0.81    with sd =  0.18 and cv of  0.23 
## Explained Common Variance of the general factor =  0.8 
## 
## The degrees of freedom are -3  and the fit is  0 
## The number of observations was  532  with Chi Square =  0  with prob <  NA
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  NA
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 2  and the fit is  0.3 
## The number of observations was  532  with Chi Square =  159.53  with prob <  2.3e-35
## The root mean square of the residuals is  0.1 
## The df corrected root mean square of the residuals is  0.17 
## 
## RMSEA index =  0.385  and the 10 % confidence intervals are  0.336 0.437
## BIC =  146.98 
## 
## Measures of factor score adequacy             
##                                                  g F1*  F2*   F3*
## Correlation of scores with factors            0.96   0 0.82  0.65
## Multiple R square of scores with factors      0.91   0 0.67  0.42
## Minimum correlation of factor score estimates 0.83  -1 0.33 -0.16
## 
##  Total, General and Subset omega for each subset
##                                                  g F1*  F2* F3*
## Omega total for total scores and subscales    0.94  NA 0.91 0.9
## Omega general for total scores and subscales  0.85  NA 0.62 0.9
## Omega group for total scores and subscales    0.08  NA 0.28 0.0
omega(brs)

## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.85 
## G.6:                   0.87 
## Omega Hierarchical:    0.6 
## Omega H asymptotic:    0.65 
## Omega Total            0.93 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##         g   F1*   F2*   F3*   h2   u2   p2
## brs1 0.42        0.90       1.00 0.00 0.18
## brs2 1.00                   1.00 0.00 1.00
## brs3 0.42  0.39  0.33       0.43 0.57 0.40
## brs4 0.61  0.66             0.81 0.19 0.46
## brs5 0.49  0.54             0.54 0.46 0.44
## brs6 0.60  0.72             0.87 0.13 0.41
## 
## With Sums of squares  of:
##    g  F1*  F2*  F3* 
## 2.32 1.39 0.94 0.00 
## 
## general/max  1.67   max/min =   322.82
## mean percent general =  0.48    with sd =  0.27 and cv of  0.57 
## Explained Common Variance of the general factor =  0.5 
## 
## The degrees of freedom are 0  and the fit is  0.02 
## The number of observations was  532  with Chi Square =  8.99  with prob <  NA
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  NA
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 9  and the fit is  1.57 
## The number of observations was  532  with Chi Square =  830.03  with prob <  7.3e-173
## The root mean square of the residuals is  0.23 
## The df corrected root mean square of the residuals is  0.29 
## 
## RMSEA index =  0.414  and the 10 % confidence intervals are  0.391 0.439
## BIC =  773.54 
## 
## Measures of factor score adequacy             
##                                                  g  F1* F2*   F3*
## Correlation of scores with factors            1.00 0.94   1  0.09
## Multiple R square of scores with factors      0.99 0.88   1  0.01
## Minimum correlation of factor score estimates 0.98 0.76   1 -0.98
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.93 0.87 1.00 1.00
## Omega general for total scores and subscales  0.60 0.40 0.18 0.99
## Omega group for total scores and subscales    0.29 0.47 0.82 0.00
library(NbClust)
 OME %>%select(uwes1, uwes2, uwes3, uwes4, uwes5, 
         uwes6, uwes7,uwes8, uwes9,
           gjs1, gjs2, gjs3, gjs4, gjs5, 
           gjs6, gjs7, gjs8, gjs9, gjs10, 
           wss1, wss2, wss3, wss4, wss5, wss6, wss7, wss8,
          brs1, brs2, brs3, brs4, brs5, brs6)%>% 
 dist()%>% hclust()%>% as.dendrogram ()-> dend
 dend %>% as.dendrogram(border = 2,lty = 2, lwd = 6, text_cex = 2, x = 2) %>%
  color_branches(k = 4) %>%
  color_labels(k = 4) %>%
  plot()

df = scale(OME)
fviz_nbclust(df, kmeans, method="wss") + labs(subthitle="Elbow methhod")

fviz_nbclust(df, kmeans, method="silhouette") + labs(subthitle="silhouette")

fviz_nbclust(df, kmeans, nstart=400, method="gap_stat", nboot=20) + labs(subthitle="PP")
## Warning: did not converge in 10 iterations

## Warning: did not converge in 10 iterations

## Warning: did not converge in 10 iterations

## Warning: did not converge in 10 iterations

## Warning: did not converge in 10 iterations

## Warning: did not converge in 10 iterations

## Warning: did not converge in 10 iterations

## Warning: did not converge in 10 iterations

## Warning: did not converge in 10 iterations

km = kmeans(df, centers=4, nstart=400)
fviz_cluster(km, df, ellipse.type="norm") 

# hopkins
c1 = get_clust_tendency(df, n=400, graph=T)

c1$hopkins
## [1] 0.7445335
print(c1$plot)

gap = clusGap(df, FUN = kmeans, nstart = 250, K.max = 10, B = 10)
fviz_gap_stat(gap)

km = kmeans(df,4, nstart=250)
fviz_cluster(km, df)

# kiem tra xm giai thich bao nhieu %

sil = silhouette(km$cluster, dist(df))
fviz_silhouette(sil)
##   cluster size ave.sil.width
## 1       1  138          0.18
## 2       2   58          0.27
## 3       3  202          0.14
## 4       4  134          0.13

# cach khac

library(FactoMineR)
pca.ome <- PCA(OME, graph = FALSE)
get_eig(pca.ome)
##         eigenvalue variance.percent cumulative.variance.percent
## Dim.1  11.97826158       35.2301811                    35.23018
## Dim.2   4.77693474       14.0498080                    49.27999
## Dim.3   2.73129974        8.0332345                    57.31322
## Dim.4   2.45179242        7.2111542                    64.52438
## Dim.5   1.51055495        4.4428087                    68.96719
## Dim.6   1.05753668        3.1104020                    72.07759
## Dim.7   0.87930383        2.5861877                    74.66378
## Dim.8   0.86236281        2.5363612                    77.20014
## Dim.9   0.78759741        2.3164630                    79.51660
## Dim.10  0.66510860        1.9562018                    81.47280
## Dim.11  0.65971259        1.9403311                    83.41313
## Dim.12  0.49630380        1.4597171                    84.87285
## Dim.13  0.47673432        1.4021598                    86.27501
## Dim.14  0.44629829        1.3126420                    87.58765
## Dim.15  0.41237936        1.2128805                    88.80053
## Dim.16  0.38160784        1.1223760                    89.92291
## Dim.17  0.34174561        1.0051342                    90.92804
## Dim.18  0.30551950        0.8985868                    91.82663
## Dim.19  0.29136070        0.8569432                    92.68357
## Dim.20  0.27069506        0.7961619                    93.47973
## Dim.21  0.25829267        0.7596843                    94.23942
## Dim.22  0.23253622        0.6839300                    94.92335
## Dim.23  0.21559224        0.6340948                    95.55744
## Dim.24  0.18989773        0.5585227                    96.11597
## Dim.25  0.17522741        0.5153747                    96.63134
## Dim.26  0.17207582        0.5061054                    97.13745
## Dim.27  0.16746134        0.4925333                    97.62998
## Dim.28  0.14231115        0.4185622                    98.04854
## Dim.29  0.13955347        0.4104514                    98.45899
## Dim.30  0.13577214        0.3993298                    98.85832
## Dim.31  0.11183524        0.3289272                    99.18725
## Dim.32  0.10562528        0.3106626                    99.49791
## Dim.33  0.08714520        0.2563094                    99.75422
## Dim.34  0.08356426        0.2457772                   100.00000
fviz_screeplot(pca.ome, addlabels=T, ylim = c(0, 50))

var <- get_pca_var(pca.ome)
var
## Principal Component Analysis Results for variables
##  ===================================================
##   Name       Description                                    
## 1 "$coord"   "Coordinates for the variables"                
## 2 "$cor"     "Correlations between variables and dimensions"
## 3 "$cos2"    "Cos2 for the variables"                       
## 4 "$contrib" "contributions of the variables"
head(var$coord)
##           Dim.1       Dim.2     Dim.3      Dim.4      Dim.5
## uwes1 0.8088926  0.01163001 0.1176360 -0.2780873 0.09543588
## uwes2 0.8154224 -0.04862415 0.1628397 -0.3504950 0.05884299
## uwes3 0.8467865 -0.02913339 0.1558574 -0.3580510 0.02279204
## uwes4 0.8392867 -0.05821053 0.1458257 -0.3431431 0.08006149
## uwes5 0.8457610 -0.03770585 0.1084617 -0.2425841 0.13154022
## uwes6 0.8061857 -0.05892272 0.1805785 -0.3512779 0.06082302
head(var$contrib)
##          Dim.1       Dim.2     Dim.3    Dim.4      Dim.5
## uwes1 5.462456 0.002831465 0.5066538 3.154122 0.60295763
## uwes2 5.551004 0.049494249 0.9708476 5.010488 0.22922023
## uwes3 5.986240 0.017767759 0.8893763 5.228850 0.03438981
## uwes4 5.880671 0.070933885 0.7785718 4.802494 0.42433692
## uwes5 5.971749 0.029762420 0.4307087 2.400164 1.14546170
## uwes6 5.425957 0.072680220 1.1938859 5.032895 0.24490604
fviz_pca_var(pca.ome, col.var = "blue")

fviz_pca_var(pca.ome, col.var="contrib",
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),repel = T )
## Warning: ggrepel: 17 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

fviz_contrib(pca.ome, choice = "var", axes = 1, top = 10)

fviz_contrib(pca.ome, choice = "var", axes = 2, top = 10)

ind <- get_pca_ind(pca.ome)
ind
## Principal Component Analysis Results for individuals
##  ===================================================
##   Name       Description                       
## 1 "$coord"   "Coordinates for the individuals" 
## 2 "$cos2"    "Cos2 for the individuals"        
## 3 "$contrib" "contributions of the individuals"
head(ind$coord)
##        Dim.1       Dim.2      Dim.3       Dim.4     Dim.5
## 1 -4.6654070 -0.90823690  0.4224287  0.67267844 1.2364928
## 2 -4.6654070 -0.90823690  0.4224287  0.67267844 1.2364928
## 3  0.2284159  1.34978452  0.8587337 -0.32759573 1.6970776
## 4 -6.9929796  0.01790024 -0.5273573  0.07830325 0.5583694
## 5 -2.0087876 -0.51964124 -0.1880761  0.59004007 1.3039404
## 6 -2.0329380 -1.08541533 -0.3140483 -1.18757830 0.5933732
fviz_pca_ind(pca.ome, col.ind = "cos2",gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),repel = T)
## Warning: ggrepel: 447 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

fviz_pca_biplot(pca.ome, repel = TRUE)
## Warning: ggrepel: 444 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 14 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

fviz_pca_ind(pca.ome,label = "none", palette = c("#00AFBB", "#E7B800", "#FC4E07"),addEllipses = T)

library(lavaan)
## This is lavaan 0.6-12
## lavaan is FREE software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
## 
##     cor2cov
library(lavaanPlot)
library(OpenMx)
## 
## Attaching package: 'OpenMx'
## The following object is masked from 'package:psych':
## 
##     tr
m1a  <- ' UWES = ~ uwes1 + uwes2 + uwes3 + uwes4 + uwes5 + uwes6 + uwes7 + uwes8 + uwes9
          GJS = ~ gjs1 + gjs2 + gjs3 + gjs4 + gjs5 + gjs6 + gjs7 + gjs8 + gjs9 + gjs10
          WSS = ~ wss1+ wss2+ wss3+ wss4+ wss5+ wss6+ wss7+ wss8
          BRCS = ~ brcs1+ brcs2+ brcs3+ brcs4
          BRS = ~ brs1+ brs2+ brs3+ brs4+ brs5+ brs6 
          CH = ~ gioi*congviec + gioi*thamnien + congviec*thamnien ' 

 m1a.1 <- cfa(m1a, data=thuan, std.lv=T) 
 summary(m1a.1, std=T) 
## lavaan 0.6-12 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        93
##   Number of equality constraints                     1
## 
##   Number of observations                           532
## 
## Model Test User Model:
##                                                       
##   Test statistic                              4576.818
##   Degrees of freedom                               688
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   UWES =~                                                               
##     uwes1             1.257    0.050   25.195    0.000    1.257    0.868
##     uwes2             1.188    0.045   26.685    0.000    1.188    0.899
##     uwes3             1.293    0.046   28.268    0.000    1.293    0.929
##     uwes4             1.342    0.048   28.133    0.000    1.342    0.926
##     uwes5             1.433    0.055   26.104    0.000    1.433    0.887
##     uwes6             1.276    0.049   26.267    0.000    1.276    0.890
##     uwes7             1.166    0.050   23.375    0.000    1.166    0.828
##     uwes8             1.164    0.053   21.799    0.000    1.164    0.791
##     uwes9             1.169    0.061   19.090    0.000    1.169    0.720
##   GJS =~                                                                
##     gjs1              0.618    0.031   19.813    0.000    0.618    0.744
##     gjs2              0.354    0.028   12.667    0.000    0.354    0.522
##     gjs3              0.681    0.030   22.789    0.000    0.681    0.818
##     gjs4              0.819    0.034   24.091    0.000    0.819    0.848
##     gjs5              0.849    0.034   25.249    0.000    0.849    0.873
##     gjs6              0.830    0.035   23.637    0.000    0.830    0.838
##     gjs7              0.884    0.046   19.128    0.000    0.884    0.725
##     gjs8              0.666    0.034   19.842    0.000    0.666    0.745
##     gjs9              0.488    0.029   17.112    0.000    0.488    0.667
##     gjs10             0.715    0.029   24.782    0.000    0.715    0.863
##   WSS =~                                                                
##     wss1              0.780    0.034   22.869    0.000    0.780    0.827
##     wss2              0.926    0.039   23.738    0.000    0.926    0.848
##     wss3              0.848    0.036   23.859    0.000    0.848    0.850
##     wss4              0.816    0.039   20.987    0.000    0.816    0.782
##     wss5              0.885    0.039   22.521    0.000    0.885    0.819
##     wss6              0.361    0.043    8.391    0.000    0.361    0.366
##     wss7              0.204    0.043    4.756    0.000    0.204    0.212
##     wss8              0.277    0.039    7.044    0.000    0.277    0.310
##   BRCS =~                                                               
##     brcs1             0.573    0.026   22.154    0.000    0.573    0.814
##     brcs2             0.562    0.026   22.031    0.000    0.562    0.811
##     brcs3             0.607    0.024   25.053    0.000    0.607    0.881
##     brcs4             0.617    0.027   22.849    0.000    0.617    0.830
##   BRS =~                                                                
##     brs1              0.235    0.032    7.380    0.000    0.235    0.324
##     brs2              0.598    0.034   17.658    0.000    0.598    0.691
##     brs3              0.502    0.035   14.274    0.000    0.502    0.584
##     brs4              0.976    0.038   25.640    0.000    0.976    0.891
##     brs5              0.688    0.035   19.678    0.000    0.688    0.747
##     brs6              0.961    0.036   26.342    0.000    0.961    0.906
##   CH =~                                                                 
##     congvic (gioi)    0.864    0.143    6.025    0.000    0.864    0.754
##     thamnin (gioi)    0.864    0.143    6.025    0.000    0.864    0.171
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   UWES ~~                                                               
##     GJS               0.669    0.026   25.867    0.000    0.669    0.669
##     WSS              -0.250    0.043   -5.772    0.000   -0.250   -0.250
##     BRCS              0.545    0.033   16.279    0.000    0.545    0.545
##     BRS               0.225    0.044    5.146    0.000    0.225    0.225
##     CH                0.068    0.059    1.156    0.248    0.068    0.068
##   GJS ~~                                                                
##     WSS              -0.227    0.044   -5.120    0.000   -0.227   -0.227
##     BRCS              0.569    0.033   17.300    0.000    0.569    0.569
##     BRS               0.251    0.044    5.737    0.000    0.251    0.251
##     CH                0.100    0.060    1.655    0.098    0.100    0.100
##   WSS ~~                                                                
##     BRCS             -0.071    0.047   -1.490    0.136   -0.071   -0.071
##     BRS               0.290    0.044    6.644    0.000    0.290    0.290
##     CH               -0.176    0.065   -2.725    0.006   -0.176   -0.176
##   BRCS ~~                                                               
##     BRS               0.348    0.042    8.208    0.000    0.348    0.348
##     CH                0.155    0.064    2.421    0.015    0.155    0.155
##   BRS ~~                                                                
##     CH                0.173    0.065    2.684    0.007    0.173    0.173
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .uwes1             0.516    0.035   14.784    0.000    0.516    0.246
##    .uwes2             0.336    0.024   14.211    0.000    0.336    0.192
##    .uwes3             0.266    0.020   13.158    0.000    0.266    0.137
##    .uwes4             0.298    0.022   13.277    0.000    0.298    0.142
##    .uwes5             0.556    0.038   14.467    0.000    0.556    0.213
##    .uwes6             0.426    0.030   14.400    0.000    0.426    0.207
##    .uwes7             0.623    0.041   15.225    0.000    0.623    0.314
##    .uwes8             0.813    0.053   15.482    0.000    0.813    0.375
##    .uwes9             1.271    0.081   15.777    0.000    1.271    0.482
##    .gjs1              0.308    0.020   15.233    0.000    0.308    0.447
##    .gjs2              0.334    0.021   15.985    0.000    0.334    0.727
##    .gjs3              0.229    0.016   14.541    0.000    0.229    0.330
##    .gjs4              0.262    0.019   14.073    0.000    0.262    0.281
##    .gjs5              0.225    0.017   13.509    0.000    0.225    0.238
##    .gjs6              0.293    0.021   14.253    0.000    0.293    0.298
##    .gjs7              0.704    0.046   15.346    0.000    0.704    0.474
##    .gjs8              0.356    0.023   15.228    0.000    0.356    0.446
##    .gjs9              0.297    0.019   15.613    0.000    0.297    0.555
##    .gjs10             0.175    0.013   13.758    0.000    0.175    0.255
##    .wss1              0.280    0.021   13.163    0.000    0.280    0.315
##    .wss2              0.336    0.027   12.607    0.000    0.336    0.282
##    .wss3              0.276    0.022   12.520    0.000    0.276    0.277
##    .wss4              0.424    0.030   14.049    0.000    0.424    0.389
##    .wss5              0.384    0.029   13.355    0.000    0.384    0.329
##    .wss6              0.843    0.052   16.091    0.000    0.843    0.866
##    .wss7              0.877    0.054   16.243    0.000    0.877    0.955
##    .wss8              0.722    0.045   16.159    0.000    0.722    0.904
##    .brcs1             0.168    0.013   13.063    0.000    0.168    0.338
##    .brcs2             0.165    0.013   13.135    0.000    0.165    0.343
##    .brcs3             0.107    0.010   10.554    0.000    0.107    0.224
##    .brcs4             0.171    0.014   12.609    0.000    0.171    0.311
##    .brs1              0.472    0.029   16.144    0.000    0.472    0.895
##    .brs2              0.392    0.026   15.000    0.000    0.392    0.523
##    .brs3              0.487    0.031   15.573    0.000    0.487    0.659
##    .brs4              0.246    0.024   10.257    0.000    0.246    0.205
##    .brs5              0.374    0.026   14.474    0.000    0.374    0.441
##    .brs6              0.201    0.022    9.265    0.000    0.201    0.178
##    .congviec          0.566    0.245    2.306    0.021    0.566    0.431
##    .thamnien         24.862    1.544   16.106    0.000   24.862    0.971
##     UWES              1.000                               1.000    1.000
##     GJS               1.000                               1.000    1.000
##     WSS               1.000                               1.000    1.000
##     BRCS              1.000                               1.000    1.000
##     BRS               1.000                               1.000    1.000
##     CH                1.000                               1.000    1.000

Phần khác

library(semPlot)
fit <- sem(m1a, data = thuan)
lavaanPlot(model = fit, coefs = T, stand = T, covs = T,
           edge_options = list(color="red"),
           node_options = list(color="blue"),
           sig = .05, digits = 2,
           stars = c("regress","latent", "covs"))

Phân tích Bayes

library(BayesFactor)
## Loading required package: coda
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:OpenMx':
## 
##     %&%, expm
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## ************
## Welcome to BayesFactor 0.9.12-4.4. If you have questions, please contact Richard Morey (richarddmorey@gmail.com).
## 
## Type BFManual() to open the manual.
## ************
bf = ttestBF(formula = uwes_tol ~ gioi, data=thuan)
bf
## Bayes factor analysis
## --------------
## [1] Alt., r=0.707 : 0.2293691 ±0.08%
## 
## Against denominator:
##   Null, mu1-mu2 = 0 
## ---
## Bayes factor type: BFindepSample, JZS
mcmc = posterior(bf, iter =1000)
summary(mcmc)
## 
## Iterations = 1:1000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 1000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                     Mean       SD Naive SE Time-series SE
## mu               40.2342  0.49369 0.015612       0.016286
## beta (nam - nu)   1.3428  1.01926 0.032232       0.033818
## sig2            133.5222  8.23227 0.260327       0.263653
## delta             0.1163  0.08806 0.002785       0.002926
## g                 3.0685 36.68015 1.159928       1.242858
## 
## 2. Quantiles for each variable:
## 
##                      2.5%       25%      50%      75%   97.5%
## mu               39.29472  39.90925  40.2200  40.5706  41.159
## beta (nam - nu)  -0.63234   0.65641   1.3028   2.0335   3.302
## sig2            118.48917 127.42468 133.3207 138.7276 150.696
## delta            -0.05435   0.05624   0.1145   0.1765   0.287
## g                 0.07140   0.18444   0.3910   0.8625   8.696
table(mcmc [, 2] <0) # nam nho hon nu
## 
## FALSE  TRUE 
##   909    91
plot(mcmc [, 2], col="blue")

tuyen tinh

bf.lm = lmBF(formula = uwes_tol  ~ gioi, data=thuan)
bf.lm
## Bayes factor analysis
## --------------
## [1] gioi : 0.2293691 ±0.08%
## 
## Against denominator:
##   Intercept only 
## ---
## Bayes factor type: BFlinearModel, JZS
summary(bf.lm)
## Bayes factor analysis
## --------------
## [1] gioi : 0.2293691 ±0.08%
## 
## Against denominator:
##   Intercept only 
## ---
## Bayes factor type: BFlinearModel, JZS
mcmc = posterior(bf.lm, iter =1000)
summary(mcmc)
## 
## Iterations = 1:1000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 1000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##              Mean     SD Naive SE Time-series SE
## mu        40.2653 0.5165  0.01633        0.01633
## gioi-nam   0.6638 0.5057  0.01599        0.01599
## gioi-nu   -0.6638 0.5057  0.01599        0.01599
## sig2     133.5450 8.0881  0.25577        0.25577
## g_gioi     1.0309 4.3101  0.13630        0.13630
## 
## 2. Quantiles for each variable:
## 
##               2.5%       25%      50%      75%    97.5%
## mu        39.26166  39.90849  40.2807  40.6237  41.2716
## gioi-nam  -0.33172   0.31820   0.6612   0.9947   1.6328
## gioi-nu   -1.63276  -0.99469  -0.6612  -0.3182   0.3317
## sig2     118.59792 127.88214 133.4464 138.6075 150.1646
## g_gioi     0.03914   0.09532   0.1852   0.4303   8.6776

hoi qui tuyen tinh

library(rstanarm)
## Loading required package: Rcpp
## This is rstanarm version 2.21.3
## - See https://mc-stan.org/rstanarm/articles/priors for changes to default priors!
## - Default priors may change, so it's safest to specify priors, even if equivalent to the defaults.
## - For execution on a local, multicore CPU with excess RAM we recommend calling
##   options(mc.cores = parallel::detectCores())
## 
## Attaching package: 'rstanarm'
## The following object is masked from 'package:psych':
## 
##     logit
library(BAS)
library(broom)
library(GGally)
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
m1 = stan_glm(uwes_tol ~ congviec, data=thuan)
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
## 
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 0 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.095 seconds (Warm-up)
## Chain 1:                0.119 seconds (Sampling)
## Chain 1:                0.214 seconds (Total)
## Chain 1: 
## 
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2: 
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2: 
## Chain 2: 
## Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
## Chain 2: 
## Chain 2:  Elapsed Time: 0.089 seconds (Warm-up)
## Chain 2:                0.116 seconds (Sampling)
## Chain 2:                0.205 seconds (Total)
## Chain 2: 
## 
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3: 
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3: 
## Chain 3: 
## Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
## Chain 3: 
## Chain 3:  Elapsed Time: 0.102 seconds (Warm-up)
## Chain 3:                0.148 seconds (Sampling)
## Chain 3:                0.25 seconds (Total)
## Chain 3: 
## 
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4: 
## Chain 4: Gradient evaluation took 0 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4: 
## Chain 4: 
## Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
## Chain 4: 
## Chain 4:  Elapsed Time: 0.12 seconds (Warm-up)
## Chain 4:                0.12 seconds (Sampling)
## Chain 4:                0.24 seconds (Total)
## Chain 4:
m1
## stan_glm
##  family:       gaussian [identity]
##  formula:      uwes_tol ~ congviec
##  observations: 532
##  predictors:   5
## ------
##             Median MAD_SD
## (Intercept) 37.9    1.0  
## congviecBB   3.9    1.2  
## congviecCC  -0.3    1.7  
## congviecDD   5.0    1.8  
## congviecEE   0.8    2.3  
## 
## Auxiliary parameter(s):
##       Median MAD_SD
## sigma 11.4    0.3  
## 
## ------
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
summary(m1)
## 
## Model Info:
##  function:     stan_glm
##  family:       gaussian [identity]
##  formula:      uwes_tol ~ congviec
##  algorithm:    sampling
##  sample:       4000 (posterior sample size)
##  priors:       see help('prior_summary')
##  observations: 532
##  predictors:   5
## 
## Estimates:
##               mean   sd   10%   50%   90%
## (Intercept) 37.9    1.0 36.6  37.9  39.1 
## congviecBB   3.9    1.2  2.3   3.9   5.4 
## congviecCC  -0.3    1.7 -2.5  -0.3   1.8 
## congviecDD   4.9    1.8  2.6   5.0   7.1 
## congviecEE   0.8    2.2 -2.0   0.8   3.6 
## sigma       11.4    0.3 11.0  11.4  11.8 
## 
## Fit Diagnostics:
##            mean   sd   10%   50%   90%
## mean_PPD 40.1    0.7 39.3  40.1  41.0 
## 
## The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for details see help('summary.stanreg')).
## 
## MCMC diagnostics
##               mcse Rhat n_eff
## (Intercept)   0.0  1.0  2634 
## congviecBB    0.0  1.0  3110 
## congviecCC    0.0  1.0  3082 
## congviecDD    0.0  1.0  3899 
## congviecEE    0.0  1.0  3734 
## sigma         0.0  1.0  4134 
## mean_PPD      0.0  1.0  4549 
## log-posterior 0.0  1.0  1949 
## 
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).
prior_summary(m1)
## Priors for model 'm1' 
## ------
## Intercept (after predictors centered)
##   Specified prior:
##     ~ normal(location = 40, scale = 2.5)
##   Adjusted prior:
##     ~ normal(location = 40, scale = 29)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [58.11,86.31,88.58,...])
## 
## Auxiliary (sigma)
##   Specified prior:
##     ~ exponential(rate = 1)
##   Adjusted prior:
##     ~ exponential(rate = 0.087)
## ------
## See help('prior_summary.stanreg') for more details
post.r2 = bayes_R2(m1)
summary(post.r2)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.003172 0.027170 0.036769 0.038284 0.047880 0.111365

Da bien cho outcom dịnh luong

m.da = stan_glm(uwes_tol ~ congviec + gioi*thamnien*congviec + tuoi, data=thuan,
                prior = default_prior_coef(family),
                prior_intercept = default_prior_intercept(family),
                prior_aux = exponential(autoscale = T),
                prior_PD = T,
                adapt_delta = NULL,
                QR = F)
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
## 
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 0 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.077 seconds (Warm-up)
## Chain 1:                0.086 seconds (Sampling)
## Chain 1:                0.163 seconds (Total)
## Chain 1: 
## 
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
## Chain 2: 
## Chain 2: Gradient evaluation took 0 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2: 
## Chain 2: 
## Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
## Chain 2: 
## Chain 2:  Elapsed Time: 0.08 seconds (Warm-up)
## Chain 2:                0.08 seconds (Sampling)
## Chain 2:                0.16 seconds (Total)
## Chain 2: 
## 
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
## Chain 3: 
## Chain 3: Gradient evaluation took 0 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3: 
## Chain 3: 
## Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
## Chain 3: 
## Chain 3:  Elapsed Time: 0.078 seconds (Warm-up)
## Chain 3:                0.084 seconds (Sampling)
## Chain 3:                0.162 seconds (Total)
## Chain 3: 
## 
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
## Chain 4: 
## Chain 4: Gradient evaluation took 0 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4: 
## Chain 4: 
## Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
## Chain 4: 
## Chain 4:  Elapsed Time: 0.074 seconds (Warm-up)
## Chain 4:                0.082 seconds (Sampling)
## Chain 4:                0.156 seconds (Total)
## Chain 4:
summary(m.da)
## 
## Model Info:
##  function:     stan_glm
##  family:       gaussian [identity]
##  formula:      uwes_tol ~ congviec + gioi * thamnien * congviec + tuoi
##  algorithm:    sampling
##  sample:       4000 (posterior sample size)
##  priors:       see help('prior_summary')
##  observations: 532
##  predictors:   21
## 
## Estimates:
##                              mean   sd     10%    50%    90% 
## (Intercept)                  43.0  150.5 -149.9   42.3  237.8
## congviecBB                   -1.1   58.2  -77.3   -0.3   72.6
## congviecCC                    0.2   88.6 -113.8    0.2  113.5
## congviecDD                   -0.3   88.6 -114.3   -0.3  112.0
## congviecEE                    0.5  120.7 -153.1   -0.1  151.6
## gioinu                        0.6   57.6  -71.0    0.6   74.9
## thamnien                     -0.1    5.8   -7.3   -0.1    7.3
## tuoi                         -0.1    4.3   -5.6    0.0    5.5
## gioinu:thamnien               0.1    6.1   -7.7    0.2    8.0
## congviecBB:gioinu            -0.9   59.9  -76.8   -1.3   74.6
## congviecCC:gioinu            -0.4  128.9 -165.3   -1.1  165.3
## congviecDD:gioinu             1.5  156.7 -200.3   -0.4  198.7
## congviecEE:gioinu             0.4  145.0 -187.3    0.4  189.1
## congviecBB:thamnien          -0.2   12.7  -16.8   -0.4   15.9
## congviecCC:thamnien           0.1   16.7  -21.4    0.1   22.0
## congviecDD:thamnien           0.1   20.2  -25.5   -0.2   26.0
## congviecEE:thamnien           0.1    7.2   -9.3    0.1    9.3
## congviecBB:gioinu:thamnien   -0.4   16.2  -21.4   -0.4   20.9
## congviecCC:gioinu:thamnien    0.2   20.8  -26.4    0.5   26.6
## congviecDD:gioinu:thamnien    0.5   40.2  -52.3    0.8   52.4
## congviecEE:gioinu:thamnien    0.0    7.1   -9.2    0.2    9.1
## sigma                        11.5   11.2    1.2    8.1   26.2
## 
## MCMC diagnostics
##                            mcse Rhat n_eff
## (Intercept)                1.8  1.0  6774 
## congviecBB                 0.7  1.0  6905 
## congviecCC                 1.1  1.0  6613 
## congviecDD                 1.1  1.0  6546 
## congviecEE                 1.5  1.0  6110 
## gioinu                     0.7  1.0  6225 
## thamnien                   0.1  1.0  7417 
## tuoi                       0.1  1.0  7240 
## gioinu:thamnien            0.1  1.0  7286 
## congviecBB:gioinu          0.7  1.0  7256 
## congviecCC:gioinu          1.4  1.0  8319 
## congviecDD:gioinu          1.9  1.0  6860 
## congviecEE:gioinu          1.7  1.0  7174 
## congviecBB:thamnien        0.2  1.0  7137 
## congviecCC:thamnien        0.2  1.0  6693 
## congviecDD:thamnien        0.2  1.0  8270 
## congviecEE:thamnien        0.1  1.0  7820 
## congviecBB:gioinu:thamnien 0.2  1.0  6886 
## congviecCC:gioinu:thamnien 0.2  1.0  6963 
## congviecDD:gioinu:thamnien 0.5  1.0  7589 
## congviecEE:gioinu:thamnien 0.1  1.0  6329 
## sigma                      0.2  1.0  5480 
## log-posterior              0.1  1.0  1886 
## 
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).
prior_summary(m.da)
## Priors for model 'm.da' 
## ------
## Intercept (after predictors centered)
##   Specified prior:
##     ~ normal(location = 40, scale = 2.5)
##   Adjusted prior:
##     ~ normal(location = 40, scale = 29)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [58.11,86.31,88.58,...])
## 
## Auxiliary (sigma)
##   Specified prior:
##     ~ exponential(rate = 1)
##   Adjusted prior:
##     ~ exponential(rate = 0.087)
## ------
## See help('prior_summary.stanreg') for more details
post.r2.m.da = bayes_R2(m.da)
summary(post.r2.m.da)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.4268  0.9826  0.9957  0.9823  0.9992  1.0000

#exp(coefficients(m.da)) # exp(confint(m.da)) # Tương tự có thể dùng cách khác

library(MCMCpack)
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked _by_ '.GlobalEnv':
## 
##     OME
## The following object is masked from 'package:dplyr':
## 
##     select
## ##
## ## Markov Chain Monte Carlo Package (MCMCpack)
## ## Copyright (C) 2003-2022 Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park
## ##
## ## Support provided by the U.S. National Science Foundation
## ## (Grants SES-0350646 and SES-0350613)
## ##
## 
## Attaching package: 'MCMCpack'
## The following object is masked from 'package:OpenMx':
## 
##     vech
library(broom)
posterior = MCMCregress(formula= uwes_tol ~ congviec, b0=0, B0=0.01,
                        data=thuan, verbose=1000)
## 
## 
## MCMCregress iteration 1 of 11000 
## beta = 
##   38.95438
##    3.25862
##   -0.65702
##    3.82715
##   -2.07595
## sigma2 =  133.28743
## 
## 
## MCMCregress iteration 1001 of 11000 
## beta = 
##   36.88854
##    5.40816
##   -1.22882
##    6.94356
##    5.25650
## sigma2 =  138.17597
## 
## 
## MCMCregress iteration 2001 of 11000 
## beta = 
##   37.34851
##    4.43741
##   -0.67343
##    5.05991
##    4.18612
## sigma2 =  128.20106
## 
## 
## MCMCregress iteration 3001 of 11000 
## beta = 
##   37.49809
##    4.24768
##    2.31207
##    5.72699
##    0.07868
## sigma2 =  126.97501
## 
## 
## MCMCregress iteration 4001 of 11000 
## beta = 
##   36.20236
##    5.17951
##   -1.08205
##    4.69871
##    1.24844
## sigma2 =  135.10380
## 
## 
## MCMCregress iteration 5001 of 11000 
## beta = 
##   37.30842
##    4.71932
##   -0.51615
##    4.55272
##    2.85432
## sigma2 =  126.28800
## 
## 
## MCMCregress iteration 6001 of 11000 
## beta = 
##   36.79915
##    4.48369
##    0.41630
##    4.51543
##    2.12132
## sigma2 =  133.26854
## 
## 
## MCMCregress iteration 7001 of 11000 
## beta = 
##   36.62721
##    4.89230
##    0.16056
##    4.72504
##    2.80937
## sigma2 =  111.80068
## 
## 
## MCMCregress iteration 8001 of 11000 
## beta = 
##   37.60595
##    3.27644
##    1.57067
##    3.59207
##   -2.42057
## sigma2 =  140.61759
## 
## 
## MCMCregress iteration 9001 of 11000 
## beta = 
##   37.11475
##    5.13868
##    1.55237
##    6.57697
##    2.84493
## sigma2 =  135.85121
## 
## 
## MCMCregress iteration 10001 of 11000 
## beta = 
##   36.85370
##    6.02170
##   -0.94371
##    6.13341
##    0.82122
## sigma2 =  126.40923
plot(posterior, col= "red")

raftery.diag(posterior)
## 
## Quantile (q) = 0.025
## Accuracy (r) = +/- 0.005
## Probability (s) = 0.95 
##                                                    
##              Burn-in  Total Lower bound  Dependence
##              (M)      (N)   (Nmin)       factor (I)
##  (Intercept) 2        3680  3746         0.982     
##  congviecBB  2        3802  3746         1.010     
##  congviecCC  2        3741  3746         0.999     
##  congviecDD  2        3834  3746         1.020     
##  congviecEE  2        3710  3746         0.990     
##  sigma2      2        3680  3746         0.982
summary(posterior)                     
## 
## Iterations = 1001:11000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                   Mean     SD Naive SE Time-series SE
## (Intercept)  37.585220 0.9548 0.009548       0.009548
## congviecBB    4.099785 1.2125 0.012125       0.012125
## congviecCC   -0.009223 1.6601 0.016601       0.016601
## congviecDD    5.098020 1.6895 0.016895       0.016895
## congviecEE    1.074506 2.1865 0.021865       0.022144
## sigma2      130.424244 8.0903 0.080903       0.080903
## 
## 2. Quantiles for each variable:
## 
##                2.5%      25%        50%     75%   97.5%
## (Intercept)  35.702  36.9448  37.582004  38.234  39.461
## congviecBB    1.696   3.2801   4.113517   4.909   6.414
## congviecCC   -3.243  -1.1264  -0.001409   1.107   3.214
## congviecDD    1.849   3.9312   5.084197   6.243   8.430
## congviecEE   -3.314  -0.3648   1.077564   2.510   5.353
## sigma2      115.265 124.9167 130.113319 135.557 147.256
apply(posterior, 2, quantile, probs=c(0.025, 0.5, 0.975))
##       (Intercept) congviecBB   congviecCC congviecDD congviecEE   sigma2
## 2.5%     35.70248   1.695555 -3.242690215   1.849044  -3.314267 115.2649
## 50%      37.58200   4.113517 -0.001408582   5.084197   1.077564 130.1133
## 97.5%    39.46135   6.413691  3.214152577   8.430052   5.353425 147.2561
library(nnet)
require(brms)
## Loading required package: brms
## Loading 'brms' package (version 2.18.0). Useful instructions
## can be found by typing help('brms'). A more detailed introduction
## to the package is available through vignette('brms_overview').
## 
## Attaching package: 'brms'
## The following objects are masked from 'package:MCMCpack':
## 
##     ddirichlet, rdirichlet
## The following objects are masked from 'package:rstanarm':
## 
##     dirichlet, exponential, get_y, lasso, ngrps
## The following object is masked from 'package:psych':
## 
##     cs
## The following object is masked from 'package:stats':
## 
##     ar
m.2 = multinom(uwes_tol ~ congviec, data=thuan)
## # weights:  258 (210 variable)
## initial  value 2000.958462 
## iter  10 value 1648.574858
## iter  20 value 1573.039108
## iter  30 value 1561.982468
## iter  40 value 1560.030397
## iter  50 value 1557.877417
## iter  60 value 1557.692569
## iter  70 value 1557.637142
## iter  80 value 1557.629256
## final  value 1557.628872 
## converged
summary(m.2)
## Warning in sqrt(diag(vc)): NaNs produced
## Call:
## multinom(formula = uwes_tol ~ congviec, data = thuan)
## 
## Coefficients:
##      (Intercept) congviecBB congviecCC  congviecDD  congviecEE
## 4  -1.020607e-04 -35.718952  19.172306 -19.8789973  -9.0803859
## 9  -2.660375e+01  38.514248  -2.569582  -0.2549817   0.4421150
## 10 -1.095017e-04 -41.048907 -29.621361 -22.2837786  -8.2569823
## 14 -2.660375e+01  38.514248  -2.569582  -0.2549817   0.4421150
## 15 -2.940663e+01  41.317323  -9.107669  -6.4978207  64.1604153
## 18 -1.095017e-04 -41.048907 -29.621361 -22.2837786  -8.2569823
## 19 -2.660375e+01  38.514248  -2.569582  -0.2549817   0.4421150
## 20 -1.082178e-04 -37.347641 -27.319007  21.2810783  -9.0436800
## 21 -3.363748e+01  45.547802  -7.496265  54.9187231  -1.7228803
## 22  6.930376e-01 -40.368834  17.786000 -27.2376099 -14.9658300
## 23 -1.899663e-04  11.910660  19.172470 -19.1189838  -9.5600365
## 24 -1.388822e-04  11.910659  18.479327 -19.9811662  -9.6471472
## 25 -1.114447e-04  11.910595 -25.306455 -19.7831209  33.6554969
## 26  6.930062e-01  11.910804 -32.014260 -26.2304377 -14.5062884
## 27  1.609285e+00  12.380901  16.869522 -33.0939824  32.0460523
## 28 -3.710485e+01  50.114281  55.583717  58.3853743  -3.9994490
## 29 -2.660375e+01  38.514248  -2.569582  -0.2549817   0.4421150
## 30 -3.565540e+01  47.566168  54.134676  57.6294611  -4.1677510
## 31 -3.153585e+01  -1.693606  50.014930  -1.1338836   0.1378777
## 32  1.386061e+00  11.623442 -37.418655 -32.1804420 -21.2161692
## 33  6.929671e-01  11.217522 -33.430924 -27.4037995 -14.9584860
## 34  6.929833e-01  11.910969  17.785878 -25.3378835 -14.6328881
## 35  1.480421e-05  13.009094  18.479599 -19.1605159  -9.4757937
## 36  1.609345e+00  11.687552  17.563098  20.3648867  32.0457335
## 37 -3.683675e+01  48.747222  56.009117  -8.5259920  70.4917673
## 38 -3.231798e+01  44.228490  50.797225  -4.1788204  -1.5983787
## 39  6.931899e-01 -43.610384 -35.170636 -28.8174602 -14.8055082
## 40  6.931335e-01  11.217746 -31.164027  21.6864928 -14.7113719
## 41 -3.129368e+01  43.897491  49.773188  -4.8450555  -2.1903719
## 42  6.931749e-01  12.316069 -31.195904  20.5881594 -14.7932889
## 43  6.932481e-01  13.296832 -32.361852 -26.2024414 -14.4614565
## 44  1.386151e+00 -39.386033 -35.819129  20.5880563  32.2694854
## 45  1.386084e+00  13.297173  19.038975  21.8409170  33.3679729
## 46  1.098582e+00  10.812088  18.073887  20.1823999 -18.6410926
## 47  1.098810e+00  13.008994 -36.068048 -30.2105940 -18.3926044
## 48 -9.729509e-05  13.009450 -24.095644  21.9743861  -9.7155563
## 49 -1.509637e-04  13.520236 -25.182844  21.2811726 -10.1323810
## 50  6.930185e-01  12.316319  18.479081  21.6866414 -16.2905335
## 51 -3.625380e+01  48.857762  54.732458  58.2280390  -4.3790747
## 52  1.791680e+00  12.064857  17.786093  19.4891660 -25.6373993
## 53 -3.129392e+01  43.897317  49.773120  -4.8450555  -2.1903719
## 54  1.609366e+00  13.073867 -56.659693  20.3648892  33.6553633
## 
## Std. Errors:
##    (Intercept)   congviecBB   congviecCC   congviecDD   congviecEE
## 4    0.9999792 5.790644e-14 8.426963e-01 4.838881e-14          NaN
## 9    0.4580379 4.580379e-01          NaN 2.629645e-13 1.058308e-13
## 10   0.9999811          NaN 8.042607e-14 1.057609e-13 9.598539e-14
## 14   0.4580379 4.580379e-01          NaN          NaN          NaN
## 15   0.4999216 5.106816e-01 1.541841e-14          NaN 4.325946e-01
## 18   0.9999811 4.684536e-14 9.761089e-15 6.308333e-14          NaN
## 19   0.4580379 4.580379e-01          NaN 3.929610e-14          NaN
## 20   0.9999807          NaN 5.958965e-15 9.520202e-01          NaN
## 21   0.5301336 5.433450e-01          NaN 5.640066e-01 2.197052e-14
## 22   0.8660008          NaN 8.427119e-01          NaN 4.550272e-15
## 23   1.0000011 9.794753e-01 8.402711e-01 1.275250e-15          NaN
## 24   0.9999883 9.794514e-01 9.628707e-01          NaN          NaN
## 25   0.9999814 9.800911e-01 2.057787e-15          NaN 8.952190e-01
## 26   0.8660053 7.056084e-01 6.183705e-17          NaN          NaN
## 27   0.7745700 4.269545e-01 7.591616e-01 2.186898e-16 7.150989e-01
## 28   0.5319993 4.113830e-01 5.705950e-01 5.834044e-01 3.681431e-16
## 29   0.4580379 4.580379e-01          NaN 3.968289e-16 4.353436e-16
## 30   0.5378102 5.747721e-01 5.755947e-01 4.834546e-01 2.610153e-16
## 31   0.4608407 5.747580e-16 4.608407e-01 1.536419e-16          NaN
## 32   0.7905507 5.512777e-01          NaN 7.863494e-17 1.421851e-17
## 33   0.8660109 8.548130e-01 2.025028e-18          NaN 4.094768e-21
## 34   0.8660086 7.041334e-01 8.415473e-01 2.972904e-20 5.936603e-21
## 35   0.9999499 8.055459e-01 9.627380e-01 1.014571e-17 7.140943e-19
## 36   0.7745662 4.898335e-01 5.953060e-01 5.853734e-01 7.151172e-01
## 37   0.5371769 5.719025e-01 4.646177e-01 7.754315e-29 5.748419e-01
## 38   0.5165800 5.506451e-01 5.525654e-01 7.195207e-25 3.943948e-29
## 39   0.8659788 6.841841e-24 4.227323e-23 8.262700e-22 4.551223e-21
## 40   0.8659869 8.538899e-01 2.419063e-21 6.326366e-01 5.431748e-21
## 41   0.4892241 4.457613e-01 5.296500e-01 1.040092e-24 6.141732e-29
## 42   0.8659809 6.472361e-01 2.342546e-21 8.297551e-01 5.002508e-21
## 43   0.8659703 5.685764e-01 7.159239e-22 1.179829e-20 6.679488e-21
## 44   0.7905436 9.052780e-22 4.272062e-23 6.045413e-01 7.283170e-01
## 45   0.7905488 4.188776e-01 4.670463e-01 4.577082e-01 5.348187e-01
## 46   0.8164613 8.066846e-01 6.425082e-01 7.848227e-01 1.506040e-22
## 47   0.8164381 4.891202e-01 2.538575e-23 2.982563e-22 1.835092e-22
## 48   0.9999779 8.064163e-01 1.697718e-18 8.290164e-01 5.506197e-19
## 49   0.9999913 7.669966e-01 5.742673e-19 9.505916e-01 3.650390e-19
## 50   0.8660035 6.456660e-01 6.967072e-01 6.313852e-01 1.171183e-21
## 51   0.5229913 4.462874e-01 5.632490e-01 4.689759e-01 3.482099e-32
## 52   0.7637309 4.187387e-01 5.164041e-01 7.381728e-01 2.497936e-25
## 53   0.4892523 4.458272e-01 5.297191e-01 1.019967e-24 6.020471e-29
## 54   0.7745648 3.917580e-01 4.724023e-32 5.859143e-01 4.689042e-01
## 
## Residual Deviance: 3115.258 
## AIC: 3535.258

#exp(coefficients(m.2)) #exp(confint(m.2))

library(bayesplot)
## This is bayesplot version 1.10.0
## - Online documentation and vignettes at mc-stan.org/bayesplot
## - bayesplot theme set to bayesplot::theme_default()
##    * Does _not_ affect other ggplot2 plots
##    * See ?bayesplot_theme_set for details on theme setting
library(ggplot2)

p = ggplot(thuan, aes(x = uwes_tol, group=congviec))
p + geom_density(aes(fill = congviec), alpha=0.5) + theme_light(base_size = 12)

library(rstan)
## Loading required package: StanHeaders
## 
## rstan version 2.26.13 (Stan version 2.26.1)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
## For within-chain threading using `reduce_sum()` or `map_rect()` Stan functions,
## change `threads_per_chain` option:
## rstan_options(threads_per_chain = 1)
## Do not specify '-march=native' in 'LOCAL_CPPFLAGS' or a Makevars file
## 
## Attaching package: 'rstan'
## The following object is masked from 'package:coda':
## 
##     traceplot
## The following object is masked from 'package:psych':
## 
##     lookup
## The following object is masked from 'package:tidyr':
## 
##     extract
library(shinystan)
## Loading required package: shiny
## 
## This is shinystan version 2.6.0
library(rstanarm)
library(psych)
library(brms)
set.seed(123)

Có Intercept

family = “poisson”, prior = prior)

prior0 = get_prior(uwes_tol ~ congviec + gioi + congviec*gioi, family = gaussian, data=thuan)
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
bf.1 = brm(data=thuan, uwes1 ~ congviec + gioi + congviec*gioi, 
           prior0, family = gaussian, chains = 2, iter = 1000)
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
## Compiling Stan program...
## Start sampling
## 
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 0.000132 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.32 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:   1 / 1000 [  0%]  (Warmup)
## Chain 1: Iteration: 100 / 1000 [ 10%]  (Warmup)
## Chain 1: Iteration: 200 / 1000 [ 20%]  (Warmup)
## Chain 1: Iteration: 300 / 1000 [ 30%]  (Warmup)
## Chain 1: Iteration: 400 / 1000 [ 40%]  (Warmup)
## Chain 1: Iteration: 500 / 1000 [ 50%]  (Warmup)
## Chain 1: Iteration: 501 / 1000 [ 50%]  (Sampling)
## Chain 1: Iteration: 600 / 1000 [ 60%]  (Sampling)
## Chain 1: Iteration: 700 / 1000 [ 70%]  (Sampling)
## Chain 1: Iteration: 800 / 1000 [ 80%]  (Sampling)
## Chain 1: Iteration: 900 / 1000 [ 90%]  (Sampling)
## Chain 1: Iteration: 1000 / 1000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.086 seconds (Warm-up)
## Chain 1:                0.075 seconds (Sampling)
## Chain 1:                0.161 seconds (Total)
## Chain 1: 
## 
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
## Chain 2: 
## Chain 2: Gradient evaluation took 1.8e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2: 
## Chain 2: 
## Chain 2: Iteration:   1 / 1000 [  0%]  (Warmup)
## Chain 2: Iteration: 100 / 1000 [ 10%]  (Warmup)
## Chain 2: Iteration: 200 / 1000 [ 20%]  (Warmup)
## Chain 2: Iteration: 300 / 1000 [ 30%]  (Warmup)
## Chain 2: Iteration: 400 / 1000 [ 40%]  (Warmup)
## Chain 2: Iteration: 500 / 1000 [ 50%]  (Warmup)
## Chain 2: Iteration: 501 / 1000 [ 50%]  (Sampling)
## Chain 2: Iteration: 600 / 1000 [ 60%]  (Sampling)
## Chain 2: Iteration: 700 / 1000 [ 70%]  (Sampling)
## Chain 2: Iteration: 800 / 1000 [ 80%]  (Sampling)
## Chain 2: Iteration: 900 / 1000 [ 90%]  (Sampling)
## Chain 2: Iteration: 1000 / 1000 [100%]  (Sampling)
## Chain 2: 
## Chain 2:  Elapsed Time: 0.118 seconds (Warm-up)
## Chain 2:                0.069 seconds (Sampling)
## Chain 2:                0.187 seconds (Total)
## Chain 2:
summary(bf.1)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: uwes1 ~ congviec + gioi + congviec * gioi 
##    Data: thuan (Number of observations: 532) 
##   Draws: 2 chains, each with iter = 1000; warmup = 500; thin = 1;
##          total post-warmup draws = 1000
## 
## Population-Level Effects: 
##                   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept             4.21      0.16     3.88     4.52 1.00      538      689
## congviecBB            0.39      0.26    -0.09     0.89 1.00      586      584
## congviecCC            0.09      0.28    -0.45     0.67 1.00      603      617
## congviecDD            0.74      0.27     0.23     1.26 1.00      713      595
## congviecEE            0.42      0.48    -0.50     1.35 1.00      804      727
## gioinu               -0.37      0.24    -0.86     0.09 1.00      508      637
## congviecBB:gioinu     0.43      0.33    -0.20     1.07 1.00      552      611
## congviecCC:gioinu     0.36      0.44    -0.48     1.20 1.00      623      509
## congviecDD:gioinu    -0.18      0.46    -1.05     0.76 1.00      816      739
## congviecEE:gioinu     0.03      0.57    -1.17     1.05 1.00      683      706
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     1.43      0.04     1.35     1.52 1.00     1097      594
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
bf.1$fit
## Inference for Stan model: anon_model.
## 2 chains, each with iter=1000; warmup=500; thin=1; 
## post-warmup draws per chain=500, total post-warmup draws=1000.
## 
##                        mean se_mean   sd    2.5%     25%     50%     75%
## b_Intercept            4.21    0.01 0.16    3.88    4.10    4.21    4.32
## b_congviecBB           0.39    0.01 0.26   -0.09    0.22    0.39    0.56
## b_congviecCC           0.09    0.01 0.28   -0.45   -0.09    0.10    0.29
## b_congviecDD           0.74    0.01 0.27    0.23    0.55    0.74    0.92
## b_congviecEE           0.42    0.02 0.48   -0.50    0.09    0.41    0.73
## b_gioinu              -0.37    0.01 0.24   -0.86   -0.53   -0.36   -0.20
## b_congviecBB:gioinu    0.43    0.01 0.33   -0.20    0.23    0.43    0.64
## b_congviecCC:gioinu    0.36    0.02 0.44   -0.48    0.07    0.36    0.65
## b_congviecDD:gioinu   -0.18    0.02 0.46   -1.05   -0.47   -0.20    0.14
## b_congviecEE:gioinu    0.03    0.02 0.57   -1.17   -0.35    0.02    0.43
## sigma                  1.43    0.00 0.04    1.35    1.40    1.43    1.46
## lprior                -9.36    0.00 0.00   -9.37   -9.36   -9.36   -9.36
## lp__                -954.03    0.11 2.35 -959.42 -955.41 -953.61 -952.35
##                       97.5% n_eff Rhat
## b_Intercept            4.52   531 1.00
## b_congviecBB           0.89   565 1.00
## b_congviecCC           0.67   593 1.00
## b_congviecDD           1.26   711 1.00
## b_congviecEE           1.35   795 1.00
## b_gioinu               0.09   503 1.00
## b_congviecBB:gioinu    1.07   530 1.00
## b_congviecCC:gioinu    1.20   604 1.00
## b_congviecDD:gioinu    0.76   817 1.00
## b_congviecEE:gioinu    1.05   671 1.00
## sigma                  1.52  1069 1.00
## lprior                -9.35  1422 1.00
## lp__                -950.60   427 1.01
## 
## Samples were drawn using NUTS(diag_e) at Fri Nov 18 22:05:36 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Không Intercept

prior1 = get_prior(uwes_tol ~ congviec - 1, family = gaussian, data=thuan)
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
bf.2 = brm(data = thuan, uwes_tol ~ congviec-1, prior1, 
                family = gaussian, chains = 2, iter = 1000)
## Found more than one class "family" in cache; using the first, from namespace 'lme4'
## Also defined by 'MatrixModels'
## Compiling Stan program...
## Start sampling
## 
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 3.3e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.33 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:   1 / 1000 [  0%]  (Warmup)
## Chain 1: Iteration: 100 / 1000 [ 10%]  (Warmup)
## Chain 1: Iteration: 200 / 1000 [ 20%]  (Warmup)
## Chain 1: Iteration: 300 / 1000 [ 30%]  (Warmup)
## Chain 1: Iteration: 400 / 1000 [ 40%]  (Warmup)
## Chain 1: Iteration: 500 / 1000 [ 50%]  (Warmup)
## Chain 1: Iteration: 501 / 1000 [ 50%]  (Sampling)
## Chain 1: Iteration: 600 / 1000 [ 60%]  (Sampling)
## Chain 1: Iteration: 700 / 1000 [ 70%]  (Sampling)
## Chain 1: Iteration: 800 / 1000 [ 80%]  (Sampling)
## Chain 1: Iteration: 900 / 1000 [ 90%]  (Sampling)
## Chain 1: Iteration: 1000 / 1000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.14 seconds (Warm-up)
## Chain 1:                0.04 seconds (Sampling)
## Chain 1:                0.18 seconds (Total)
## Chain 1: 
## 
## SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
## Chain 2: 
## Chain 2: Gradient evaluation took 9e-06 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2: 
## Chain 2: 
## Chain 2: Iteration:   1 / 1000 [  0%]  (Warmup)
## Chain 2: Iteration: 100 / 1000 [ 10%]  (Warmup)
## Chain 2: Iteration: 200 / 1000 [ 20%]  (Warmup)
## Chain 2: Iteration: 300 / 1000 [ 30%]  (Warmup)
## Chain 2: Iteration: 400 / 1000 [ 40%]  (Warmup)
## Chain 2: Iteration: 500 / 1000 [ 50%]  (Warmup)
## Chain 2: Iteration: 501 / 1000 [ 50%]  (Sampling)
## Chain 2: Iteration: 600 / 1000 [ 60%]  (Sampling)
## Chain 2: Iteration: 700 / 1000 [ 70%]  (Sampling)
## Chain 2: Iteration: 800 / 1000 [ 80%]  (Sampling)
## Chain 2: Iteration: 900 / 1000 [ 90%]  (Sampling)
## Chain 2: Iteration: 1000 / 1000 [100%]  (Sampling)
## Chain 2: 
## Chain 2:  Elapsed Time: 0.151 seconds (Warm-up)
## Chain 2:                0.032 seconds (Sampling)
## Chain 2:                0.183 seconds (Total)
## Chain 2:
summary(bf.2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: uwes_tol ~ congviec - 1 
##    Data: thuan (Number of observations: 532) 
##   Draws: 2 chains, each with iter = 1000; warmup = 500; thin = 1;
##          total post-warmup draws = 1000
## 
## Population-Level Effects: 
##            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## congviecAA    37.87      0.96    36.02    39.87 1.01     1410      741
## congviecBB    41.71      0.75    40.34    43.25 1.01     1547      701
## congviecCC    37.56      1.39    34.77    40.19 1.00     1629      814
## congviecDD    42.75      1.40    39.99    45.54 1.00     1383      650
## congviecEE    38.75      1.99    34.90    42.63 1.00     1430      796
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    11.41      0.33    10.77    12.07 1.00     1562      845
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
bf.2$fit
## Inference for Stan model: anon_model.
## 2 chains, each with iter=1000; warmup=500; thin=1; 
## post-warmup draws per chain=500, total post-warmup draws=1000.
## 
##                  mean se_mean   sd     2.5%      25%      50%      75%    97.5%
## b_congviecAA    37.87    0.03 0.96    36.02    37.22    37.90    38.49    39.87
## b_congviecBB    41.71    0.02 0.75    40.34    41.20    41.71    42.19    43.25
## b_congviecCC    37.56    0.03 1.39    34.77    36.65    37.57    38.52    40.19
## b_congviecDD    42.75    0.04 1.40    39.99    41.86    42.78    43.64    45.54
## b_congviecEE    38.75    0.05 1.99    34.90    37.40    38.73    40.14    42.63
## sigma           11.41    0.01 0.33    10.77    11.19    11.39    11.63    12.07
## lprior          -3.32    0.00 0.03    -3.37    -3.34    -3.32    -3.30    -3.27
## lp__         -2050.63    0.08 1.65 -2054.68 -2051.58 -2050.38 -2049.36 -2048.25
##              n_eff Rhat
## b_congviecAA  1393    1
## b_congviecBB  1490    1
## b_congviecCC  1611    1
## b_congviecDD  1368    1
## b_congviecEE  1513    1
## sigma         1501    1
## lprior        1500    1
## lp__           470    1
## 
## Samples were drawn using NUTS(diag_e) at Fri Nov 18 22:06:26 2022.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).
pairs(bf.2)

plot(bf.2, ignore_prior = T, theme = ggplot2::theme())

marginal_effects(bf.2, probs=c(0.05,0.95), conditions=congviec)
## Warning: Method 'marginal_effects' is deprecated. Please use
## 'conditional_effects' instead.
## Warning: Argument 'probs' is deprecated. Please use 'prob' instead.
## Warning: The following variables in 'conditions' are not part of the model:
## 'conditions'

# launch_shinystan(bf.1, rstudio = getOption(“shinystan.rstudio”))

Tương tự có thể dùng cách khác

hypothesis(bf.2, "congviecAA > congviecCC", digits = 4)
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (congviecAA)-(con... > 0     0.31      1.75     -2.6     3.17       1.24
##   Post.Prob Star
## 1      0.55     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
hypothesis(bf.2, "congviecBB > congviecCC", digits = 4)
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (congviecBB)-(con... > 0     4.16       1.6      1.5     6.91        999
##   Post.Prob Star
## 1         1    *
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
hypothesis(bf.2, "congviecEE > congviecCC", digits = 4)
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (congviecEE)-(con... > 0     1.19      2.39    -2.81     5.11       2.26
##   Post.Prob Star
## 1      0.69     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.

#KẾT THÚC