library(ISLR2)
library(tree)
library(rpart)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
  1. Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that dis- plays each of these quantities as a function of ˆp m1 . The x-axis should display ˆp m1 , ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy. Hint: In a setting with two classes, ˆp m1 = 1 − ˆp m2 . You could make this plot by hand, but it will be much easier to make in R.
p = seq(0, 1, 0.001)
gini.index = 2 * p * (1 - p)
class.error = 1 - pmax(p, 1 - p)
cross.entropy = - (p * log(p) + (1 - p) * log(1 - p))
matplot(p, cbind(gini.index, class.error, cross.entropy), ylab = "gini.index, class.error, cross.entropy", col = c("red", "green", "orange"))

9. This problem involves the OJ data set which is part of the ISLR2 package.

(a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.

attach(OJ)
train.OJ= sample(1:nrow(OJ),800)
OJ.train= OJ[train,]
OJ.test = OJ[-train,]

(b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have? 7 variables were used int the tree construction. The training error rate is 0.095. There are 15 terminal nodes on the tree.

OJ.tree = tree(Purchase~., data = OJ.train)
summary(OJ.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"        "PriceDiff"      "StoreID"        "DiscMM"        
## [5] "PriceCH"        "SalePriceMM"    "WeekofPurchase"
## Number of terminal nodes:  15 
## Residual mean deviance:  0.3951 = 73.09 / 185 
## Misclassification error rate: 0.095 = 19 / 200
plot(OJ.tree)
text(OJ.tree, pretty= 0)

(c) Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed. 13) LoyalCH > 0.70936 79 37.280 CH ( 0.93671 0.06329 )

OJ.tree
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 200 242.600 CH ( 0.70500 0.29500 )  
##     2) LoyalCH < 0.592 75  95.480 MM ( 0.33333 0.66667 )  
##       4) LoyalCH < 0.060978 18   0.000 MM ( 0.00000 1.00000 ) *
##       5) LoyalCH > 0.060978 57  78.160 MM ( 0.43860 0.56140 )  
##        10) PriceDiff < 0.065 25  27.550 MM ( 0.24000 0.76000 )  
##          20) StoreID < 2.5 11   0.000 MM ( 0.00000 1.00000 ) *
##          21) StoreID > 2.5 14  19.120 MM ( 0.42857 0.57143 )  
##            42) DiscMM < 0.3 6   5.407 MM ( 0.16667 0.83333 ) *
##            43) DiscMM > 0.3 8  10.590 CH ( 0.62500 0.37500 ) *
##        11) PriceDiff > 0.065 32  43.230 CH ( 0.59375 0.40625 )  
##          22) StoreID < 1.5 5   0.000 CH ( 1.00000 0.00000 ) *
##          23) StoreID > 1.5 27  37.390 CH ( 0.51852 0.48148 )  
##            46) PriceCH < 1.805 5   0.000 MM ( 0.00000 1.00000 ) *
##            47) PriceCH > 1.805 22  28.840 CH ( 0.63636 0.36364 )  
##              94) SalePriceMM < 2.125 7   0.000 CH ( 1.00000 0.00000 ) *
##              95) SalePriceMM > 2.125 15  20.730 MM ( 0.46667 0.53333 ) *
##     3) LoyalCH > 0.592 125  64.700 CH ( 0.92800 0.07200 )  
##       6) PriceDiff < 0.31 94  59.340 CH ( 0.90426 0.09574 )  
##        12) LoyalCH < 0.70936 15  17.400 CH ( 0.73333 0.26667 ) *
##        13) LoyalCH > 0.70936 79  37.280 CH ( 0.93671 0.06329 )  
##          26) WeekofPurchase < 248.5 24  21.630 CH ( 0.83333 0.16667 )  
##            52) WeekofPurchase < 236.5 9   0.000 CH ( 1.00000 0.00000 ) *
##            53) WeekofPurchase > 236.5 15  17.400 CH ( 0.73333 0.26667 )  
##             106) LoyalCH < 0.902367 10   6.502 CH ( 0.90000 0.10000 ) *
##             107) LoyalCH > 0.902367 5   6.730 MM ( 0.40000 0.60000 ) *
##          27) WeekofPurchase > 248.5 55   9.996 CH ( 0.98182 0.01818 )  
##            54) DiscMM < 0.47 48   0.000 CH ( 1.00000 0.00000 ) *
##            55) DiscMM > 0.47 7   5.742 CH ( 0.85714 0.14286 ) *
##       7) PriceDiff > 0.31 31   0.000 CH ( 1.00000 0.00000 ) *

(d) Create a plot of the tree, and interpret the results.

plot(OJ.tree)
text(OJ.tree, pretty = 0)

(e) Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate? Test error rate is 27.8%

OJ.tree.pred = predict(OJ.tree, newdata = OJ.test, type = "class")
table(OJ.tree.pred,OJ.test$Purchase)
##             
## OJ.tree.pred  CH  MM
##           CH 404 134
##           MM 108 224
(108+134)/870
## [1] 0.2781609

(f) Apply the cv.tree() function to the training set in order to determine the optimal tree size.

OJ.cv= cv.tree(OJ.tree,FUN = prune.misclass)
OJ.cv
## $size
## [1] 15 14  9  6  4  2  1
## 
## $dev
## [1] 43 41 37 41 44 43 62
## 
## $k
## [1] -Inf  0.0  0.2  1.0  2.5  3.0 25.0
## 
## $method
## [1] "misclass"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"

(g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.

plot(OJ.cv$size, OJ.cv$dev, type = "b", xlab = "Tree Size", ylab = "cv classification error rate")

(h) Which tree size corresponds to the lowest cross-validated classi- fication error rate? Node six has the lowest cross-validated classifcation error rate. (i) Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.

prune.OJ= prune.tree(OJ.tree,best = 7)

(j) Compare the training error rates between the pruned and unpruned trees. Which is higher?

summary(OJ.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"        "PriceDiff"      "StoreID"        "DiscMM"        
## [5] "PriceCH"        "SalePriceMM"    "WeekofPurchase"
## Number of terminal nodes:  15 
## Residual mean deviance:  0.3951 = 73.09 / 185 
## Misclassification error rate: 0.095 = 19 / 200
summary(prune.OJ)
## 
## Classification tree:
## snip.tree(tree = OJ.tree, nodes = c(21L, 3L))
## Variables actually used in tree construction:
## [1] "LoyalCH"     "PriceDiff"   "StoreID"     "PriceCH"     "SalePriceMM"
## Number of terminal nodes:  8 
## Residual mean deviance:  0.5445 = 104.5 / 192 
## Misclassification error rate: 0.11 = 22 / 200

(k) Compare the test error rates between the pruned and unpruned trees. Which is higher? The pruned tree has a higher test error rate of 0.4137255

OJ.tree.pred = predict(OJ.tree, newdata = OJ.test, type = "class")
table(OJ.tree.pred, OJ.test$Purchase)
##             
## OJ.tree.pred  CH  MM
##           CH 404 134
##           MM 108 224
(108+134)/870
## [1] 0.2781609
prune.OJ.pred= predict(prune.OJ, newdata = OJ.test, type = "class")
table(prune.OJ.pred, OJ.test$Purchase)
##              
## prune.OJ.pred  CH  MM
##            CH 404 103
##            MM 108 255
(108+103)/510
## [1] 0.4137255