Section 1a - lets look at barplots in ggplot2
we’ll start with making a dataframe based on the tooth data
df <- data.frame(dose = c("D0.5", "D1", "D2"),
len = c(4.2, 10, 29.5))
df
## dose len
## 1 D0.5 4.2
## 2 D1 10.0
## 3 D2 29.5
now lets make a second dataframe
df2 <- data.frame(supp=rep(c("VC", "OJ"), each = 3),
dose = rep(c("D0.5", "D1", "D2"), 2),
len = c(6.8, 15, 33, 4.2, 10, 29.5))
df2
## supp dose len
## 1 VC D0.5 6.8
## 2 VC D1 15.0
## 3 VC D2 33.0
## 4 OJ D0.5 4.2
## 5 OJ D1 10.0
## 6 OJ D2 29.5
lets load up ggplot2
library(ggplot2)
lets set parameters for ggplot2
theme_set(
theme_classic() +
theme(legend.position = "top")
)
lets start with some basic bar plots using the tooth data
f <- ggplot(df, aes(x = dose, y = len))
f + geom_col()
now lets change the fill, and add labels to the top
f + geom_col(fill = "darkblue") +
geom_text(aes(label = len), vjust = -0.3)
now lets add labels inside the bars
f + geom_col(fill = "darkblue") +
geom_text(aes(label = len), vjust = 1.6, color = "white")
now lets change the barplot colors by group
f + geom_col(aes(color = dose), fill = "white") +
scale_color_manual(values = c("blue", "gold", "red"))
This is hard to see, lets change the fill
f + geom_col(aes(fill = dose)) +
scale_fill_manual(values = c("blue", "gold", "red"))
now lets do this with multiple groups
ggplot(df2, aes(x = dose, y = len)) +
geom_col(aes(color = supp, fill = supp), position = position_stack()) +
scale_color_manual(values = c("blue", "gold")) +
scale_fill_manual(values = c("blue", "gold"))
p <- ggplot(df2, aes(x = dose, y = len)) +
geom_col(aes(color = supp, fill = supp), position = position_dodge(0.8), width = 0.7)+
scale_color_manual(values = c("blue", "gold")) +
scale_fill_manual(values = c("blue", "gold"))
p
now lets add labels to the dodged barplot
p + geom_text(
aes(label = len, group = supp),
position = position_dodge(0.8),
vjust = -0.3, size = 3.5
)
now what if we want to add labels to our stacked barplots? for this we need dplyr
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df2 <- df2 %>%
group_by(dose) %>%
arrange(dose, desc(supp)) %>%
dplyr::mutate(lab_ypos = cumsum(len) - 0.5 * len)
df2
## # A tibble: 6 × 4
## # Groups: dose [3]
## supp dose len lab_ypos
## <chr> <chr> <dbl> <dbl>
## 1 VC D0.5 6.8 3.4
## 2 OJ D0.5 4.2 8.9
## 3 VC D1 15 7.5
## 4 OJ D1 10 20
## 5 VC D2 33 16.5
## 6 OJ D2 29.5 47.8
now lets recreate our stacked graphs
ggplot(df2, aes(x=dose, y=len)) +
geom_col(aes(fill=supp), width = 0.7) +
geom_text(aes(y=lab_ypos, label=len, group=supp), color="white") +
scale_color_manual(values = c("blue","gold"))+
scale_fill_manual(values = c("blue", "gold"))
Section 1b - lets look at some boxplots
data("ToothGrowth")
Lets change the dose to a factor, and look at the top of the dataframe
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
head(ToothGrowth, 4)
## len supp dose
## 1 4.2 VC 0.5
## 2 11.5 VC 0.5
## 3 7.3 VC 0.5
## 4 5.8 VC 0.5
Lets load ggplot
library(ggplot2)
Lets set the theme for our plots to classic
theme_set(
theme_bw() +
theme(legend.position = "top")
)
lets start with a very basic boxplot with dose vs length
tg <- ggplot(ToothGrowth, aes(x = dose, y = len))
tg + geom_boxplot()
Now lets look at a boxplot with points for the mean
tg +geom_boxplot(notch = TRUE, fill = "lightgrey") +
stat_summary(fun.y = mean, geom = "point", shape = 18, size = 2.5, color = "indianred")
## Warning: `fun.y` is deprecated. Use `fun` instead.
We can also change the scale number of variables included and their order
tg + geom_boxplot() +
scale_x_discrete(limits = c("0.5", "2"))
## Warning: Removed 20 rows containing missing values (stat_boxplot).
Lets put our x axis in descending order
tg + geom_boxplot() +
scale_x_discrete(limits = c("2", "1", "0.5"))
we can also change boxplot colors by groups
tg + geom_boxplot(aes(color = dose)) +
scale_color_manual(values = c("indianred", "blue1", "green2"))
what if we want to display our data subset by oj vs vitamin c?
tg2 <- tg + geom_boxplot(aes(fill = supp), position = position_dodge(0.9)) +
scale_fill_manual(values = c("#999999", "#E69F00"))
tg2
we can also arrange this as two plots with facet_wrap
tg2 + facet_wrap(~supp)
Section 1c - lets look at histograms
set.seed(1234)
wdata = data.frame(
sex = factor(rep(c("F","M"), each = 200)),
weight = c(rnorm(200, 56), rnorm(200, 58))
)
head(wdata, 4)
## sex weight
## 1 F 54.79293
## 2 F 56.27743
## 3 F 57.08444
## 4 F 53.65430
now lets load dplyr
library(ggplot2)
theme_set(
theme_classic() +
theme(legend.position = "bottom")
)
now lets create a ggplot
a <- ggplot(wdata, aes(x = weight))
a + geom_histogram(bins = 30, color = "black", fill = "grey") +
geom_vline(aes(xintercept = mean(weight)),
linetype = "dashed", size = 0.6)
now lets change the color of the group
a + geom_histogram(aes(color = sex, fill = sex), position = "identity") + scale_color_manual(values = c("#00AFBB", "#E7B800"))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
a + geom_histogram(aes(color = sex, fill = sex), position = "identity") + scale_color_manual(values = c("#00AFBB", "#E7B800")) + scale_fill_manual(values = c("indianred", "lightblue"))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
what if we want to combine density plots and histograms?
a + geom_histogram(aes(y = stat(density)),
color = "black", fill = "white") + geom_density(alpha = 0.2, fill = "#FF6666")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
a + geom_histogram(aes(y = stat(density), color = sex), fill = "white", position = "identity") +
geom_density(aes(color = sex), size = 1)+
scale_color_manual(values = c("indianred", "lightblue1"))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
section 1d - lets look at dotplots
lets load the required packages
library(ggplot2)
lets set our theme
theme_set(
theme_dark() +
theme(legend.position = "top")
)
first lets initiate a ggplot object called TQ
data("ToothGrowth")
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
tg <- ggplot(ToothGrowth, aes(x=dose, y=len))
lets create a dotplot with a summary statistic
tg + geom_dotplot(binaxis = "y", stackdir = "center", fill = "white") +
stat_summary(fun = mean, fun.args = list(mult=1))
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
## Warning: Removed 3 rows containing missing values (geom_segment).
lets add a boxplot and dotplot together
tg + geom_boxplot(width=0.5) +
geom_dotplot(binaxis = "y", stackdir = "center", fill = "white")
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
now lets do a violin plot
tg+geom_violin(trim=FALSE) +
geom_dotplot(binaxis = "y", stackdir="center", fill = "#999999")
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
stat_summary(fun=mean, fun.args = list(mult=1))
## geom_pointrange: na.rm = FALSE, orientation = NA
## stat_summary: fun.data = NULL, fun = function (x, ...)
## UseMethod("mean"), fun.max = NULL, fun.min = NULL, fun.args = list(mult = 1), na.rm = FALSE, orientation = NA
## position_identity
now lets make a dotplot with multiple groups
tg + geom_boxplot(width = 0.5)+
geom_dotplot(aes(fill = supp), binaxis = "y", stackdir = "center") +
scale_fill_manual(values = c("indianred", "lightblue1"))
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
tg + geom_boxplot(width = 0.5, position = position_dodge(0.8)) +
geom_dotplot(aes(fill=supp, color=supp), binaxis = "y", stackdir = "center",
dotsize = 0.8, position = position_dodge(0.8))+
scale_fill_manual(values = c("#00AFBB", "#E7B800"))
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
## Line Plots section 1e - lets look at some line plots
We’ll start by making a coustom datafram, kinda like the tooth dataset. This way we can see the lines and stuff that we’re modifying.
df <- data.frame(dose = c("D0.5", "D1", "D2"), len = c(4.2, 10, 29.5))
Now lets create a second dataframe for plotting by groups
df2 <- data.frame(supp = rep(c("VC", "OJ"), each = 3), dose = rep(c("D0.5", "D1", "D2"), 2), len = c(0.8,15,33,4.2,10,29.5))
df2
## supp dose len
## 1 VC D0.5 0.8
## 2 VC D1 15.0
## 3 VC D2 33.0
## 4 OJ D0.5 4.2
## 5 OJ D1 10.0
## 6 OJ D2 29.5
now lets again load ggplot2 and set a theme
library(ggplot2)
theme_set(
theme_gray() +
theme(legend.position = "right")
)
now lets do some basic line plots. First we will build a function to display all the different line types
generateRLineTypes <- function(){
oldPar <- par()
par(font = 2, mar = c(0,0,0,0))
plot(1, pch="", ylim = c(0,6), xlim=c(0,0.7), axes = FALSE, xlab = "", ylab="")
for(i in 0:6) lines(c(0.3,0.7), c(i,i), lty=i, lwd = 3)
text(rep(0.1,6), 0:6, labels = c("0. 'Blank'", "1. 'solid'", "2. 'dashed'", "3. 'dotted'", "4. 'dotdash'", "5. 'longdash'", "6. 'twodash'"))
par(mar=oldPar$mar, font=oldPar$font)
}
generateRLineTypes
## function(){
## oldPar <- par()
## par(font = 2, mar = c(0,0,0,0))
## plot(1, pch="", ylim = c(0,6), xlim=c(0,0.7), axes = FALSE, xlab = "", ylab="")
## for(i in 0:6) lines(c(0.3,0.7), c(i,i), lty=i, lwd = 3)
## text(rep(0.1,6), 0:6, labels = c("0. 'Blank'", "1. 'solid'", "2. 'dashed'", "3. 'dotted'", "4. 'dotdash'", "5. 'longdash'", "6. 'twodash'"))
## par(mar=oldPar$mar, font=oldPar$font)
## }
Now lets build a basic line plot
p <- ggplot(data=df, aes(x=dose, y=len, group=1))
p + geom_line() + geom_point()
Now lets modify the line type and color
p + geom_line(linetype="dashed", color="steelblue") +
geom_point(color="steelblue")
now lets tryp a step graph, which indicates a threshold type progression
p +geom_step() + geom_point()
now lets move on to making multiple groups. First we will create our ggplot object
p <- ggplot(df2, aes(x=dose, y=len, group=supp))
now lets change line types and point shapes by group
p + geom_line(aes(linetype= supp, color=supp)) +
geom_point(aes(shape=supp, color=supp)) +
scale_color_manual(values = c("red", "blue"))
now lets look at line plots with a numeric x axis
df3 <- data.frame(supp=rep(c("VC", "OJ"), each = 3),
dose=rep(c("0.5", "1", "2"), 2),
len=c(6.8,15,33,4.2,10, 29.5))
df3
## supp dose len
## 1 VC 0.5 6.8
## 2 VC 1 15.0
## 3 VC 2 33.0
## 4 OJ 0.5 4.2
## 5 OJ 1 10.0
## 6 OJ 2 29.5
now lets plot where both axises are treated as continuous lables
df3$dose <-as.numeric(as.vector(df3$dose))
ggplot(data = df3, aes(x=dose, y=len, group=supp, color=supp)) +
geom_line() + geom_point()
now lets look at a line graph with having the x axis as dates. we will use the built in economics time series for this:
head(economics)
## # A tibble: 6 × 6
## date pce pop psavert uempmed unemploy
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1967-07-01 507. 198712 12.6 4.5 2944
## 2 1967-08-01 510. 198911 12.6 4.7 2945
## 3 1967-09-01 516. 199113 11.9 4.6 2958
## 4 1967-10-01 512. 199311 12.9 4.9 3143
## 5 1967-11-01 517. 199498 12.8 4.7 3066
## 6 1967-12-01 525. 199657 11.8 4.8 3018
ggplot(data=economics, aes(x=date, y=pop)) +
geom_line()
now lets subset this data
ss <- subset(economics, date > as.Date("2006-1-1"))
ggplot(data=ss, aes(x=date, y=pop)) + geom_line()
we can also change the line size (EX: uneployment variable)
ggplot(data=economics, aes(x=date, y=pop)) +
geom_line(aes(size=unemploy/pop))
we can also plot multiple time-series data
ggplot(economics, aes(x=date))+
geom_line(aes(y=psavert), color="darkred")+
geom_line(aes(y=uempmed), color = "steelblue", linetype="twodash")
Lastly, lets make this into an area plot
ggplot(economics, aes(x=date))+
geom_area(aes(y=psavert), fill = "#999999",
color="#999999", alpha = 0.5) +
geom_area(aes(y=uempmed), fill = "#E69F00",
color = "#E69F00", alpha = 0.5)
## Density plots section 1f - lets look at denstiy plots
a density plot is a nice alternative to a histogram
set.seed(1234)
wdata = data.frame(
sex=factor(rep(c("F", "M"), each = 200)),
weight = c(rnorm(200, 55), rnorm(200, 58))
)
library(dplyr)
mu <- wdata%>%
group_by(sex)%>%
summarise(grp.mean=mean(weight))
now lets load the graphing packages
library(ggplot2)
theme_set(
theme_classic() +
theme(legend.position ="right")
)
now lets do the basic plot function, first we will create a ggplot obj
d <- ggplot(wdata, aes(x=weight))
now lets do a basic density plot
d + geom_density() +
geom_vline(aes(xintercept=mean(weight)), linetype= "dashed")
now lets change the y axis to count instead of density
d + geom_density(aes(y=stat(count)), fill = "lightgray")+
geom_vline(aes(xintercept=mean(weight)), linetype ="dashed")
d + geom_density(aes(color=sex)) +
scale_color_manual(values = c("darkgray", "gold"))
lastly, lets fill the density plots
d +geom_density(aes(fill=sex), alpha=0.4)+
geom_vline(aes(xintercept=grp.mean, color=sex), data =mu, linetype="dashed") +
scale_color_manual(values=c("grey","gold")) +
scale_fill_manual(values = c("grey","gold"))
# Plotly {.tabset}
section 2a - lets look at line plots in plotly first lets load req packages:
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
lets start with a scatter plot or the orange dataset
Orange <- as.data.frame(Orange)
plot_ly(data = Orange, x = ~age, y= ~circumference)
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## No scatter mode specifed:
## Setting the mode to markers
## Read more about this attribute -> https://plotly.com/r/reference/#scatter-mode
now lets add some more info
plot_ly(data = Orange, x=~age, y=~circumference,
color=~Tree, size= ~age,
text=~paste("Tree ID:", Tree, "<br>Age:", age, "Circ:", circumference)
)
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## No scatter mode specifed:
## Setting the mode to markers
## Read more about this attribute -> https://plotly.com/r/reference/#scatter-mode
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
now lets create a random distribution and add it to our dataframe
trace_1 <-rnorm(35, mean=120, sd=10)
new_data <- data.frame(Orange, trace_1)
we will use the random numbers as lines on the graph
plot_ly(data=new_data, x=~age, y=~circumference, color=~Tree, size=~age,
text=~paste("Tree ID:", Tree, "<br>Age:", age, "<br>Circ:", circumference)) %>%
add_trace(y=~trace_1, mode='lines')%>%
add_trace(y=~circumference, mode='markers')
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
now lets create a graph with the opt of showing as a scatter or line, and add lables
plot_ly(data = Orange, x = ~age, y = ~circumference,
color = ~Tree, size = ~circumference,
text = ~paste("Tree ID:", Tree, "<br>Age:", age, "Circ:", circumference))%>%
add_trace(y = ~circumference, mode = 'markers')%>%
layout(
title = "plot or orange data with switchable trace",
updatemenus = list(
list(
type = 'dropdown',
y = 0.8,
buttons = list(
list(metho = 'restyle',
args = list('mode', 'markers'),
label = "Marker"
),
list(method = "restyle",
args = list('mode', 'lines'),
labels = "Lines"
)
)
)
)
)
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
section 2b - lets look at 3D plotly lines First lets load our req packages
library(plotly)
now lets create a random 3d matrix
d <- data.frame(
x<-seq(1,10, by = 0.5),
y <- seq(1,10, by = 0.5)
)
z <- matrix(rnorm(length(d$x) * length(d$y)), nrow = length(d$x), ncol=length(d$y))
now lets plot our 3d data
plot_ly(d, x=~x, y=~y, z=~z)%>%
add_surface()
lets add topography
plot_ly(d, x=~x, y=~y, z=~z)%>%
add_surface(
contours=list(
z=list(
show=TRUE,
usecolormap=TRUE,
highlightcolor="FF0000",
project=list(z=TRUE)
)
)
)
now lets look at a 3d scatter plot
plot_ly(longley, x=~GNP, y=~Population, z=~Employed, marker=list(color=~GNP))%>%
add_markers()
section 3a - lets look at error bars lets load libraries
library(ggplot2)
library(dplyr)
BiocManager::install("plotrix", update=FALSE)
## 'getOption("repos")' replaces Bioconductor standard repositories, see
## '?repositories' for details
##
## replacement repositories:
## CRAN: https://cloud.r-project.org
## Bioconductor version 3.15 (BiocManager 1.30.18), R 4.2.1 (2022-06-23)
## Warning: package(s) not installed when version(s) same as current; use `force = TRUE` to
## re-install: 'plotrix'
theme_set(
theme_classic() +
theme(legend.position='top')
)
lets again use the tooth data for this excercise
df <- ToothGrowth
df$dose <-as.factor(df$dose)
now lets use dplyr for manipulation
library(plotrix)
library(dplyr)
df.summary <- df %>%
group_by(dose) %>%
summarise(
sd = sd(len, na.rm = TRUE),
len = mean(len),
stderr = std.error(len, na.rm = TRUE)
)
df.summary
## # A tibble: 3 × 4
## dose sd len stderr
## <fct> <dbl> <dbl> <dbl>
## 1 0.5 4.50 10.6 NA
## 2 1 4.42 19.7 NA
## 3 2 3.77 26.1 NA
some key functions: 1- geom_crossbar() for hollow bars with middle indicated by horizontal line 2. geom_erorrbar() for error bars 3. Geom_errorbarh() for horizontal error bars 4. geom_linerange() for drawing an interval represented by vertical line 5. geom_pointrange() for creating an interval represented by a vertical line; with a point in the moddle
lets create a ggplot
tg <- ggplot(
df.summary,
aes(x=dose, y=len, ymin=len-sd, ymax = len+sd)
)
now lets look at the mose basic error bars
tg+geom_pointrange()
tg+geom_errorbar(width=0.2)+
geom_point(size=1.5)
now lets create horizontal error bars by manipulating our graph
ggplot(df.summary, aes(x=len, y=dose, xmin=len-sd, xmax=len+sd)) +
geom_point()+
geom_errorbarh(height=0.2)
now lets add jitter points to our data
ggplot(df, aes(dose, len))+
geom_jitter(position=position_jitter(0.2), color="darkgray")+
geom_pointrange(aes(ymin=len-sd, ymax=len+sd), data=df.summary)
error bars on a violin plot
library(ggplot2)
ggplot(df, aes(dose, len)) +
geom_violin(color="darkgray", trim=FALSE)+
geom_pointrange(aes(xmin=len-sd, xmax=len+sd), data=df.summary)
same thing with a line graph
ggplot(df.summary, aes(dose, len))+
geom_line(aes(group=1)) + #always specify this when you have 1 line
geom_errorbar(aes(ymin=len-stderr, ymax=len+stderr), width =0.2)+
geom_point(size=2)
now lets make a bar graph with half error bars
ggplot(df.summary, aes(dose,len)) +
geom_col(fill="lightgrey", color="black")+
geom_errorbar(aes(ymin=len, ymax = len+stderr), width=0.2)
by not specifying wmin=len-stderr, we basically cut the error bar in half
add jitter points to line plots
ggplot(df, aes(dose, len)) +
geom_jitter(position=position_jitter(0.2), color = "darkgrey")+
geom_line(aes(group=1), data=df.summary)+
geom_errorbar(aes(ymin=len-stderr, ymax=len+stderr),
data = df.summary, width=0.2)+
geom_point(data=df.summary, size = 0.2)
what about adding jitterpoints to a barplot
ggplot(df, aes(dose, len))+
geom_col(Data=df.summary, sill= NA, color="black")+
geom_jitter(position=position_jitter(0.2), color="darkgrey")+
geom_errorbar(aes(ymin=len - stderr, ymax=len+stderr),
data=df.summary, width=0.2)
## Warning: Ignoring unknown parameters: Data, sill
what if we wabted to have our error bars per group (EX OJ vs VC)
df.summary2<-df %>%
group_by(dose,supp)%>%
summarise(
sd=sd(len),
stderr=std.error(len),
len=mean(len)
)
## `summarise()` has grouped output by 'dose'. You can override using the
## `.groups` argument.
df.summary2
## # A tibble: 6 × 5
## # Groups: dose [3]
## dose supp sd stderr len
## <fct> <fct> <dbl> <dbl> <dbl>
## 1 0.5 OJ 4.46 1.41 13.2
## 2 0.5 VC 2.75 0.869 7.98
## 3 1 OJ 3.91 1.24 22.7
## 4 1 VC 2.52 0.795 16.8
## 5 2 OJ 2.66 0.840 26.1
## 6 2 VC 4.80 1.52 26.1
now your can see we have mean and error for each dose and supp
ggplot(df.summary2, aes(dose, len)) +
geom_pointrange(
aes(ymin=len-stderr, ymax=len+stderr, color = supp),
position = position_dodge(0.3)
)+
scale_color_manual(values=c("indianred", "lightblue"))
how about line plots with mult error bars
ggplot(df.summary2, aes(dose, len))+
geom_line(aes(linetype=supp, group=supp))+
geom_point()+
geom_errorbar(aes(ymin=len-stderr, ymax=len+stderr, group=supp), width=0.2)
and the same with a bar plot
ggplot(df.summary2, aes(dose, len))+
geom_col(aes(fill=supp), position=position_dodge(0.8), width=0.7)+
geom_errorbar(
aes(ymin=len-sd, ymax=len+sd, group=supp),
width=0.2, position=position_dodge(0.8)
)+
scale_fill_manual(values=c("indianred", "lightblue"))
now lets add some jitterpoints
ggplot(df,aes(dose, len, color = supp))+
geom_jitter(position=position_dodge(0.2))+
geom_line(aes(group=supp), data=df.summary2)+
geom_point()+
geom_errorbar(aes(ymin=len-stderr, ymax=len+stderr, group=supp), data=df.summary2, width=0.2)
ggplot(df, aes(dose, len, color = supp))+
geom_col(data=df.summary2, position=position_dodge(0.8), width=0.7, will="white")+
geom_jitter(
position=position_jitterdodge(jitter.width=0.2, dodge.width=0.8)
)+
geom_errorbar(
aes(ymin=len-stderr, ymax=len+stderr), data=df.summary2, width=0.2, position=position_dodge(0.8)) +
scale_color_manual(values=c("indianred", "lightblue"))+
theme(legend.position="top")
## Warning: Ignoring unknown parameters: will
Section 3b - ECDF
now lets do an empirical cumulative distribution functino. This reports any given numeber perentile of individuals that are above or below that threshold.
set.seed(1234)
wdata=data.frame(
sex=factor(rep(c("F","M"), each = 200)),
weight=c(rnorm(200,50)),rnorm(200,58))
now lets look at our dataframe
head(wdata, 5)
## sex weight rnorm.200..58.
## 1 F 48.79293 58.48523
## 2 F 50.27743 58.69677
## 3 F 51.08444 58.18551
## 4 F 47.65430 58.70073
## 5 F 50.42912 58.31168
now lets load out plotting package
library(ggplot2)
theme_set(
theme_classic()+
theme(legend.position="bottom"))
now lets vreate our ECDF plot
ggplot(wdata,aes(x=weight))+
stat_ecdf(aes(color=sex, linetype=sex),
geom="step", size=1.5)+
scale_color_manual(values=c("#00AFBB", "#E7B900"))+
labs(y="weight")
Section 3c - QQ plots
now lets take a look at qq plots. these are used to determine if the given data follows a normal distribution
#install.packages("ggpubr")
set.seed(1234)
now lets randomly generate some data
wdata=data.frame(
sex=factor(rep(c("F","M"), each=200)),
weight=c(rnorm(200,55),rnorm(200,58))
)
lets set out theme for the graphing with ggplot
library(ggplot2)
theme_set(
theme_classic()+
theme(legend.position="top")
)
create a qqplot of the weight
ggplot(wdata, aes(sample=weight))+
stat_qq(aes(color=sex))+
scale_color_manual(values=c("#0073C2FF", "#FC4E07"))+
labs(y="weight")
library(ggpubr)
ggqqplot(wdata, x="weight",
color="sex",
palettes=c("#0073C2FF", "#FC4E07"),
ggtheme=theme_pubclean())
now what would a non-normal distribution look like
library(mnonr)
data2 <- mnonr::mnonr(n=1000, p=2, ms=3, mk=61, Sigma = matrix(c(1,0.5,0.5,1), 2, 2), initial = NULL)
data2 <- as.data.frame(data2)
now lets plot the nonnormal data
library(ggplot2)
ggplot(data2,aes(sample=V1))+
stat_qq()
ggqqplot(data2, x = "V1",
palette = "#0073C2FF",
ggtheme = theme_pubclean())
Section 3d - Facet Plots
lets look at how to put multiple plots together into a singel figure
library(ggpubr)
library(ggplot2)
theme_set(
theme_bw()+
theme(legend.position = "top")
)
First lets create a nice boxplot
df <- ToothGrowth
df$dose <- as.factor(df$dose)
Lets create the plot object
p <- ggplot(df, aes(x=dose, y=len))+
geom_boxplot(aes(fill=supp), position = position_dodge(0.9))+
scale_fill_manual(values=c("#00AFBB", "#E7B800"))
p
now lets look at the gvplot facit function
p +facet_grid(rows=vars(supp))
now lets do a facet with mult vars
p+facet_grid(rows=vars(dose), cols=vars(supp))
p
now lets look at the facet_wrap function (allows facets to be placed side by side)
p + facet_wrap(vars(dose), ncol=2)
combine mult plots using ggarrange()
start by making some basic plots; first define a color palette and data
my3cols <- c("#E7B800", "#2E9FDF", "#FC4E07")
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
now lets make some basic plots
p <- ggplot(ToothGrowth,aes(x=dose, y=len))
bxp <- p+geom_boxplot(aes(color = dose)) +
scale_color_manual(values = my3cols)
dotplot
dp <- p +geom_dotplot(aes(color=dose, fill=dose), binaxis = 'y', stackdir = 'center') +
scale_color_manual(values=my3cols)+
scale_fill_manual(values=my3cols)
lineplot
lp <- ggplot(economics, aes(x=date, y=psavert)) +
geom_line(color="indianred")
now we can make the figure
figure <- ggarrange(bxp, dp, lp, labels=c("A","B","C"), ncol=2, nrow=2)
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
figure
This looks great, but we can make it look better
figure2 <- ggarrange(
lp,
ggarrange(bxp, dp, ncol=2, labels = c("B","C")),
nrow=2,
labels="A")
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
figure2
fixing two legends that are hte same
ggarrange(
bxp, dp,labels=c("A","B"),
common.legend=TRUE, legend="bottom")
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
lastly we should export the plot
ggexport(figure2, filename="facetfigure.pdf")
## file saved to facetfigure.pdf
exporting mult plots to pdf
ggexport(bxp, dp, lp, filename = "multi.pdf")
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
## file saved to multi.pdf
export to pdf with mult pages and mult cols
ggexport(bxp, dp, lp, bxp, filename="test2.pdf", nrow=2, ncol=1)
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
## file saved to test2.pdf
Section 3E - Heatmaps
lets get started
library(heatmap3)
getting data
data <- ldeaths
data2 <- do.call(cbind, split(data, cycle(data)))
dimnames(data2) <- dimnames(.preformat.ts(data))
now lets generate a heatmap
heatmap(data2)
heatmap(data2, Rowv=NA, Colv=NA)
now lets play with the colors
rc<-rainbow(nrow(data2), start=0, end=0.3)
cc<-rainbow(ncol(data2), start=0, end=0.3)
now lets apply our color selection
heatmap(data2, ColSideColors=cc)
library(RColorBrewer)
heatmap(data2, ColSideColors = cc,
col=colorRampPalette(brewer.pal(8, "PiYG"))
(25))
more that we can customize
library(gplots)
### need to open new window to see, marigin too wide
heatmap.2(data2, ColSideColors=cc,
col=colorRampPalette(brewer.pal(8, "PiYG"))(25))
Section 4A - Missing Values
Missing Values: If you encounter an unusual value in your dataset, and simply want to move on to the rest of the analysis, you have two options:
library(dplyr)
library(ggplot2)
diamonds<-diamonds
diamonds2<-diamonds%>%
filter(between(y,3,20))
In this instance y is the width of the diamond, so anything <3mm or >20mm is excluded. This is not recommended, instead you should replace the unusual values with missing values.
diamonds3<-diamonds%>%
dplyr::mutate(y=ifelse(y<3|y>20, NA,y))
like R, ggplot doesnt just get rid of missing values
ggplot(data=diamonds3, mapping = aes(x=x,y=y))+
geom_point(na.rm=TRUE)
Other times you want to understand what makes obs with missing vals different to the obs with recorded vals. For example, the NYCflights13 dataset, missing values in the dep_time var indicated that the flight was cancelled. So you may want to compare the scheduled dept_times for cancelled and non-cancelled fligths.
install.packages("nycflights13")
## Installing package into '/home/student/R/x86_64-pc-linux-gnu-library/4.2'
## (as 'lib' is unspecified)
library(nycflights13)
nycflights13::flights%>%
dplyr::mutate(
cancelled=is.na(dep_time),
sched_hour=sched_dep_time %/% 100,
sched_min=sched_dep_time %% 100,
sched_dep_time = sched_hour + sched_min / 60
)%>%
ggplot(mapping=aes(sched_dep_time))+
geom_freqpoly(mapping=aes(color=cancelled), bindwith=1/4)
## Warning: Ignoring unknown parameters: bindwith
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Section 4B - Identifying Outliers load req libraries
library(outliers)
library(ggplot2)
and reload the dataset because we removed outliers
library(readxl)
Air_data <- read_excel("Data products/data products _ for final/other_graphs_charts_info_etc./AirQualityUCI.xlsx")
lets create a functions using the grubb test to identify all outliers. the grubbs test identifies outliers in a univariate dataset that is presumed to come from a normal dist:
grubbs.flag <-function(x) {
# lets create a variable called outliers and save nothing to it, we'll ad the vars as we identify them
outliers <- NULL
# we'll create a var called test to identify which univariate we a testing
test <- x
# now using the outliers package, use grubbs.test to find outliers in our vars
grubbs.result <- grubbs.test(test)
# lets get the p vals of all tested vars
pv <- grubbs.result$p.value
#now lets search thru our p vals for ones that are outside 0.5
while(pv<0.05) {
# anything with a p val greater than p=0.05, we add to our empty outliers vector
outliers <- c(outliers, as.numeric(strsplit(grubbs.result$alternatve, "")[[1]][3]))
# now we want to remove those outliers
test <- x[!x %in% outliers]
# and run the grubbs again w/o the outliers
grubbs.result <- grubbs.test(test)
# and save the new pval
pv <- grubbs.result$p.value
}
return(data.frame(X=x, Outliers=(x%in%outliers)))
}
#{r} #indentified_outliers <- grubbs.flag(Air_data$AH) #
## Covariation Section 4C - Covariation
library(ggplot2)
ggplot(data=diamonds, mapping = aes(x=price)) +
geom_freqpoly(mapping = aes(color = cut), bindwidth = 500)
## Warning: Ignoring unknown parameters: bindwidth
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Its hard to see the difference in distribution bc the counts differ so much.
ggplot(diamonds)+
geom_bar(mapping=aes(x=cut))
we’ll display the density (which is the count standardized so that te area under under the curve is 1)
ggplot(data=diamonds, mapping=aes(x=price, y=..density..))+
geom_freqpoly(mapping=aes(color=cut), bindwidth=500)
## Warning: Ignoring unknown parameters: bindwidth
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
it appears that fiar diamonds have the highest average price. but maybe thats because frequency polygons are hard to interpret. another alternative is the boxplot (this is a type of visual short hand for a distribution of value)
ggplot(data=diamonds, mapping=aes(x=cut, y = price))+
geom_boxplot()
we see much less info about the distribution, but the boxplots are much more compact. making them easier to compare. it supports the counterintuitive finding thatbetter quality diamonds are much cheaper on average
lets take a look at some car data
ggplot(data=mpg, mapping=aes(x=class, y = hwy))+
geom_boxplot()
ggplot(data=mpg) +
geom_boxplot(mapping=aes(x=reorder(class, hwy, FUN=median), y = hwy))
if you have long var names, you can switch the axis and flop in 90 deg
ggplot(data=mpg)+
geom_boxplot(mapping=aes(x=reorder(class, hwy, FUN = median), y= hwy)) +
coord_flip()
to visualize the correlation between two continuous var, we can use a scatter plot.
ggplot(data=diamonds) +
geom_point(mapping=aes(x=carat, y=price))
scatter plots become less useful as the size of your dataset grows, bc of this we get overplot. we can fix this by using the alpha aesthetic
ggplot(data=diamonds)+
geom_point(mapping=aes(x=carat, y=price), alpha = 1/100)
# Exploratory {.tabset} ## Exploratory Data Analysis Section 2A -
Exploratory Stats #1-6 (Combined)
loading libraries
library(RCurl)
library(dplyr)
now lets get our data
site <- "https://raw.githubusercontent.com/nytimes/covid-19-data/master/colleges/colleges.csv"
college_Data <-read.csv(site)
lets use the str function, to show the structure of the object
str(college_Data)
## 'data.frame': 1948 obs. of 9 variables:
## $ date : chr "2021-05-26" "2021-05-26" "2021-05-26" "2021-05-26" ...
## $ state : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
## $ county : chr "Madison" "Montgomery" "Limestone" "Lee" ...
## $ city : chr "Huntsville" "Montgomery" "Athens" "Auburn" ...
## $ ipeds_id : chr "100654" "100724" "100812" "100858" ...
## $ college : chr "Alabama A&M University" "Alabama State University" "Athens State University" "Auburn University" ...
## $ cases : int 41 2 45 2742 220 4 263 137 49 76 ...
## $ cases_2021: int NA NA 10 567 80 NA 49 53 10 35 ...
## $ notes : chr "" "" "" "" ...
what if we want to arrange our dataset alphabetically by college
alphabetical <-college_Data%>%
arrange(college_Data$college)
the glipmse package is another way to preview this data
glimpse(college_Data)
## Rows: 1,948
## Columns: 9
## $ date <chr> "2021-05-26", "2021-05-26", "2021-05-26", "2021-05-26", "20…
## $ state <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Ala…
## $ county <chr> "Madison", "Montgomery", "Limestone", "Lee", "Montgomery", …
## $ city <chr> "Huntsville", "Montgomery", "Athens", "Auburn", "Montgomery…
## $ ipeds_id <chr> "100654", "100724", "100812", "100858", "100830", "102429",…
## $ college <chr> "Alabama A&M University", "Alabama State University", "Athe…
## $ cases <int> 41, 2, 45, 2742, 220, 4, 263, 137, 49, 76, 67, 0, 229, 19, …
## $ cases_2021 <int> NA, NA, 10, 567, 80, NA, 49, 53, 10, 35, 5, NA, 10, NA, 19,…
## $ notes <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "",…
we can also subset with select()
college_cases <- select(college_Data, college, cases)
we can filter or subset with the filter function
Louisiana_cases <-filter(college_Data, state=="Louisiana")
lets filter out a smaller amount of states
Southern_cases <- filter(college_Data, state =="Louisiana"|state =="Texas"|state =="Arkansas" | state =="Mississippi")
loading more libraries:
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(dplyr)
library(ggplot2)
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:plotrix':
##
## rescale
now lets load some data
state_Site <- "https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv"
state_data <-read.csv(state_Site)
lets create a group-by obj using the state column
state_cases <- group_by(state_data, state)
class(state_cases)
## [1] "grouped_df" "tbl_df" "tbl" "data.frame"
how many meausrements were made by the state this gives us an idea of when states started reporting
days_since_first_reported <- tally(state_cases)
Lets visualize some of our data: - Data: the stuff we want to visualize - Layer: made of geometric elements and requisite statistical info (includes geometric objs) - Scales: used to map values in the data space that is used for creation of values (ex: color, size, shape, etc.) - Coordinate system: describes how the data coorinates are mapped together in relation to the plan on the graphic - Faceting - how to break up data in to tsubsets to display with multiple types of data groups - Theme: controls the finer points of the display (ex: fontsize, background color)
options(repr.plot.width=6, rep.plot.height=6)
class(college_Data)
## [1] "data.frame"
head(college_Data)
## date state county city ipeds_id
## 1 2021-05-26 Alabama Madison Huntsville 100654
## 2 2021-05-26 Alabama Montgomery Montgomery 100724
## 3 2021-05-26 Alabama Limestone Athens 100812
## 4 2021-05-26 Alabama Lee Auburn 100858
## 5 2021-05-26 Alabama Montgomery Montgomery 100830
## 6 2021-05-26 Alabama Walker Jasper 102429
## college cases cases_2021 notes
## 1 Alabama A&M University 41 NA
## 2 Alabama State University 2 NA
## 3 Athens State University 45 10
## 4 Auburn University 2742 567
## 5 Auburn University at Montgomery 220 80
## 6 Bevill State Community College 4 NA
summary(college_Data)
## date state county city
## Length:1948 Length:1948 Length:1948 Length:1948
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## ipeds_id college cases cases_2021
## Length:1948 Length:1948 Min. : 0.0 Min. : 0.0
## Class :character Class :character 1st Qu.: 32.0 1st Qu.: 23.0
## Mode :character Mode :character Median : 114.5 Median : 65.0
## Mean : 363.5 Mean : 168.1
## 3rd Qu.: 303.0 3rd Qu.: 159.0
## Max. :9914.0 Max. :3158.0
## NA's :337
## notes
## Length:1948
## Class :character
## Mode :character
##
##
##
##
now lets take a look at a diff dataset
iris<-as.data.frame(iris)
class(iris)
## [1] "data.frame"
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
lets start by creating a scatterplot of the college data
ggplot(data = college_Data, aes(x=cases, y=cases_2021, color = state))+
geom_point()+
theme_minimal()
## Warning: Removed 337 rows containing missing values (geom_point).
lets color coordiante the iris data
ggplot(data=iris, aes(x= Sepal.Width, y= Sepal.Length, color=Species))+
geom_point()+
theme_minimal()
lets run a simple histogram of our la case data
hist(Louisiana_cases$cases, freq=NULL, density=NULL, breaks=10, xlab="Total Cases", ylab="Frequency", main="Total College Cov-19 Infections (LA)")
lets run a simple histogram for our iris data
hist(iris$Sepal.Width, freq=NULL, density=NULL, breaks=10, xlab="Sepal Width", ylab="Frequency", main="Iris Sepal Width")
back to college cov-19 data
histogram_college <- ggplot(data=Louisiana_cases, aes(x=cases))
histogram_college + geom_histogram(bindwidth=100, colot="black", aes(fill=county))+
xlab("cases")+ylab("Frequency") +ggtitle("Histogram of Cov-19 cases in LA")
## Warning: Ignoring unknown parameters: bindwidth, colot
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
back to iris data
histogram_iris <- ggplot(data=iris, aes(x=Sepal.Width))
histogram_iris + geom_histogram(bindwith=0.2, color="black", aes(fill=Species))+
xlab("Sepal width")+ylab("Frequency")+ggtitle("Historgram of Iris Sepal Width by Species")
## Warning: Ignoring unknown parameters: bindwith
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
maybe we can make a density plot out of our college data make more sense
ggplot(Southern_cases) +
geom_density(aes(x=cases, fill=state), alpha=0.50)
now lets do this with the iris data
ggplot(iris) +
geom_density(aes(x=Sepal.Width, fill=Species), alpha=0.50)
lets look at violin plots for iris
ggplot(data=iris, aes(x=Species, y = Sepal.Length, color=Species))+
geom_violin()+
theme_classic()+
theme(legend.position = "none")
now lets try this with the sounthern data
ggplot(data=Southern_cases, aes(x=state, y=cases, color=state))+
geom_violin()+
theme_grey()+
theme(legend.position = "none")
now lets look at residual plots: this is a graph that displays the residuals on the veritcal acis, and the independent variables on the horizontal axis. in the event that the points in a residual plot are disperesed in a random manner around the horizontal acis, it is appropriate to use a linear regression. If they are not randomly disperesed, a non linear model is more appropriate.
lets start with iris data
ggplot(lm(Sepal.Length ~ Sepal.Width, data = iris))+
geom_point(aes(x=.fitted, y=.resid))
now lets look at the southern cases
ggplot(lm(cases~cases_2021, data=Southern_cases)) +
geom_point(aes(x=.fitted, y=.resid))
turns out that a linear model is not a good call for the southern cases data
now lets do some correlation:
library(readr)
##
## Attaching package: 'readr'
## The following object is masked from 'package:scales':
##
## col_factor
obesity <- read_csv("Data products/Obesity_insurance.csv")
## Rows: 1338 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): sex, smoker, region
## dbl (4): age, bmi, children, charges
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
loading libraries:
library(tidyr)
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:RCurl':
##
## complete
library(dplyr)
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following object is masked from 'package:ggpubr':
##
## mutate
## The following objects are masked from 'package:plotly':
##
## arrange, mutate, rename, summarise
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
Lets look at the column classes:
class(obesity)
## [1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"
and get a summary of the dist of the vars
summary(obesity)
## age sex bmi children
## Min. :18.00 Length:1338 Min. :15.96 Min. :0.000
## 1st Qu.:27.00 Class :character 1st Qu.:26.30 1st Qu.:0.000
## Median :39.00 Mode :character Median :30.40 Median :1.000
## Mean :39.21 Mean :30.66 Mean :1.095
## 3rd Qu.:51.00 3rd Qu.:34.69 3rd Qu.:2.000
## Max. :64.00 Max. :53.13 Max. :5.000
## smoker region charges
## Length:1338 Length:1338 Min. : 1122
## Class :character Class :character 1st Qu.: 4740
## Mode :character Mode :character Median : 9382
## Mean :13270
## 3rd Qu.:16640
## Max. :63770
Now lets look at the dist for the insurance sharges
hist(obesity$charges)
We can also get an idea of the dist using a boxplot
boxplot(obesity$charges)
boxplot(obesity$bmi)
Now lets look at the correlations. the cor() command is used to determine correlations betweentwo vectors; all the vcolumns of a dataframe or two data frames. the cov() command, on the otherhand, examines the covariance. the cor.test() command carries out a test as to the significance of the correlation
cor(obesity$charges, obesity$bmi)
## [1] 0.198341
this test uses a spearman Rho correlation, or you can use kendall’s tau by specifying it
cor(obesity$charges, obesity$bmi, method = 'kendall')
## [1] 0.08252397
This correlation measures strength of a correlation between -1 and 1.
now lets look at the tiejen-moore test. this is used for univariate dataset.
TietjenMoore <- function(dataSeries, k)
{
n=length(dataSeries)
# Compute the absolute residuals
r = abs(dataSeries - mean(dataSeries))
# sort data acc to size of residual
df = data.frame(dataSeries, r)
dfs = df[order(df$r),]
# create a subset of the data w/o the largest values
klarge = c((n-k+1):n)
subdataSeries = dfs$dataSeries[-klarge]
# compute the sums of squares
ksub = (subdataSeries = mean(subdataSeries)) *2
all = (df$dataSeries - mean(df$dataSeries))*2
# compute the test stat
sum(ksub)/sum(all)
}
This function helps to comte the abs residuals and sort data acc to the size or residuals Later we will focus on the computation of sum of squares
FindoutliersTietjenMooreTest <- function(dataSeries, k, alpha = 0.5){
ek <- TietjenMoore(dataSeries, k)
# compute critical vals based on simulation
test = c(1:10000)
for (i in 1:10000){
dataSeriesdataSeries = rnorm(length(dataSeries))
test[i] = TietjenMoore(dataSeriesdataSeries, k)}
Talpha = quantile(test, alpha)
list(T = ek, Talpha = Talpha)
}
TJM = tietjenmoore
This function helps us to compute the critical values based on simulation data. now lets demonstrate these functons with sample data and the obesity dataset for exaluating this algoritm.
The critical region for the TJM test is determined by simulation. the simulatino is performed by generating a standard normal random sample size of (n) and computing the TJM test stat. Typically, 10,000 random samples are used. The vals of the TJM stat are obtained from the data is compared to this reference dist. The vals of the test stat are bewteen 0 and 1. If there are no outliers, the test stat is close to 1;if there are outliers, the test stat will be closer to zero. Thus the test is always a lower, 1 tailed test (regardless of the test stat used - Lk ir EK)
first we will look at charges
boxplot(obesity$charges)
FindoutliersTietjenMooreTest(obesity$charges, 100)
## $T
## [1] -9.025633e+12
##
## $Talpha
## 50%
## -48214322454
lets check out bmi
boxplot(obesity$bmi)
FindoutliersTietjenMooreTest(obesity$bmi, 7)
## $T
## [1] -1.784784e+13
##
## $Talpha
## 50%
## -26865741921
Probability plots:
library(ggplot2)
library(tigerstats)
## Loading required package: abd
## Loading required package: nlme
##
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
##
## collapse
## Loading required package: lattice
## Loading required package: grid
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:plyr':
##
## count
## The following object is masked from 'package:scales':
##
## rescale
## The following object is masked from 'package:plotrix':
##
## rescale
## The following object is masked from 'package:plotly':
##
## do
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
## Welcome to tigerstats!
## To learn more about this package, consult its website:
## http://homerhanumat.github.io/tigerstats
We will use the prob plot function and their output dnorm: density function of the normal dist. using the densitym it is posible to determine the prob of events. For example, you may wonder “what is the liklihood of a person having a BMI of exactly ____? In this case you would need to retrieve the density of the BMI dist at values 140. The Bmi dist can be modeled with a mean of 100 and an SD of 15, The corresponding density is:
bmi.mean <- mean(obesity$bmi)
bmi.sd <- sd(obesity$bmi)
now lets plot our normal dist
bmi.dist <- dnorm(obesity$bmi, mean = bmi.mean, sd = bmi.sd)
bmi.df <- data.frame("bmi" = obesity$bmi, "Density" = bmi.dist)
ggplot(bmi.df, aes(x = bmi, y = Density))+
geom_point()
This gives the prob of every single point occuring
now lets use the pnorm function for more info
bmi.dist <- pnorm(obesity$bmi, mean = bmi.mean, sd = bmi.sd)
bmi.df <- data.frame("bmi" = obesity$bmi, "Density" = bmi.dist)
ggplot(bmi.df, aes(x=bmi, y=Density))+
geom_point()
What if we want to find the prob of the bmi bein >40 in our dist?
pp_greater <- function(x) {
paste(round(100 *pnorm(x, mean = 30.66339, sd = 6.09818,lower.tail = FALSE), 2), "%")
}
pp_greater(40)
## [1] "6.29 %"
What about hte prob that a bmi is <40 in our population
pp_less <- function(x) {
paste(round(100*(1-pnorm(x, mean = 30, sd = 6, lower.tail = FALSE)), 2), "%")
}
pp_less(40)
## [1] "95.22 %"
pnormGC(40, region = "above", mean = 30.66339, sd = 6.09818, graph = TRUE)
## [1] 0.06287869
What if we want to know the quantiles? lets use the qnorm function. We need to assume a normal dist for this:
qnorm(0.01, mean = 30,66339, sd = 6.09818, lower.tail = TRUE)
## Warning in qnorm(0.01, mean = 30, 66339, sd = 6.09818, lower.tail = TRUE): NaNs
## produced
## [1] NaN
What if you want a random sample of values w/in your dist?
subset <- rnorm(50, mean = 30.66339, sd = 6.09818)
hist(subset)
subset2 <- rnorm(50000, mean = 30.66339, sd = 6.09818)
hist(subset2)
Shapiro-wilk Test (SWT) so now we know how to generate a normal dist, how do we tell if our samples came from a noraml dist?
shapiro.test(obesity$charges[1:5])
##
## Shapiro-Wilk normality test
##
## data: obesity$charges[1:5]
## W = 0.84164, p-value = 0.1695
You can see here with a small sample size we would rejet the null hypothesis that the samples came from a normal dist. We can increase the power of the test by increasing the sample size
shapiro.test(obesity$charges[1:10000])
##
## Shapiro-Wilk normality test
##
## data: obesity$charges[1:10000]
## W = 0.81469, p-value < 2.2e-16
now lets check out our ages and bmi:
shapiro.test(obesity$age[1:1000])
##
## Shapiro-Wilk normality test
##
## data: obesity$age[1:1000]
## W = 0.94406, p-value < 2.2e-16
shapiro.test(obesity$bmi[1:1000])
##
## Shapiro-Wilk normality test
##
## data: obesity$bmi[1:1000]
## W = 0.99471, p-value = 0.001426
Time series data
loading packages:
library(readr)
library(readxl)
Air_data <- read_excel("Data products/AirQualityUCI.xlsx")
Date - date of measurement time - time of measurement CO(GT) - avg hourly CO2 PT08, s1(CO) - tin oxide hourly avg sensor response NMHC - avg hourly non-metallic hydrocarbon conc C6CH - avg benzene conc PT08.s3(NMHC) - titania avg hourly sensor response NOX - avg hourly NOx conc NO2 - avg hourly NO2 conc T - Temper RH - relative humidity AH - absolute humidity
str(Air_data)
## tibble [9,357 × 15] (S3: tbl_df/tbl/data.frame)
## $ Date : POSIXct[1:9357], format: "2004-03-10" "2004-03-10" ...
## $ Time : POSIXct[1:9357], format: "1899-12-31 18:00:00" "1899-12-31 19:00:00" ...
## $ CO(GT) : num [1:9357] 2.6 2 2.2 2.2 1.6 1.2 1.2 1 0.9 0.6 ...
## $ PT08.S1(CO) : num [1:9357] 1360 1292 1402 1376 1272 ...
## $ NMHC(GT) : num [1:9357] 150 112 88 80 51 38 31 31 24 19 ...
## $ C6H6(GT) : num [1:9357] 11.88 9.4 9 9.23 6.52 ...
## $ PT08.S2(NMHC): num [1:9357] 1046 955 939 948 836 ...
## $ NOx(GT) : num [1:9357] 166 103 131 172 131 89 62 62 45 -200 ...
## $ PT08.S3(NOx) : num [1:9357] 1056 1174 1140 1092 1205 ...
## $ NO2(GT) : num [1:9357] 113 92 114 122 116 96 77 76 60 -200 ...
## $ PT08.S4(NO2) : num [1:9357] 1692 1559 1554 1584 1490 ...
## $ PT08.S5(O3) : num [1:9357] 1268 972 1074 1203 1110 ...
## $ T : num [1:9357] 13.6 13.3 11.9 11 11.2 ...
## $ RH : num [1:9357] 48.9 47.7 54 60 59.6 ...
## $ AH : num [1:9357] 0.758 0.725 0.75 0.787 0.789 ...
library(tidyr)
library(dplyr)
library(lubridate)
library(hms)
##
## Attaching package: 'hms'
## The following object is masked from 'package:lubridate':
##
## hms
library(ggplot2)
Lets git rid of the date in the time col
Air_data$Time <- as_hms(Air_data$Time)
glimpse(Air_data)
## Rows: 9,357
## Columns: 15
## $ Date <dttm> 2004-03-10, 2004-03-10, 2004-03-10, 2004-03-10, 2004-…
## $ Time <time> 18:00:00, 19:00:00, 20:00:00, 21:00:00, 22:00:00, 23:…
## $ `CO(GT)` <dbl> 2.6, 2.0, 2.2, 2.2, 1.6, 1.2, 1.2, 1.0, 0.9, 0.6, -200…
## $ `PT08.S1(CO)` <dbl> 1360.00, 1292.25, 1402.00, 1375.50, 1272.25, 1197.00, …
## $ `NMHC(GT)` <dbl> 150, 112, 88, 80, 51, 38, 31, 31, 24, 19, 14, 8, 16, 2…
## $ `C6H6(GT)` <dbl> 11.881723, 9.397165, 8.997817, 9.228796, 6.518224, 4.7…
## $ `PT08.S2(NMHC)` <dbl> 1045.50, 954.75, 939.25, 948.25, 835.50, 750.25, 689.5…
## $ `NOx(GT)` <dbl> 166, 103, 131, 172, 131, 89, 62, 62, 45, -200, 21, 16,…
## $ `PT08.S3(NOx)` <dbl> 1056.25, 1173.75, 1140.00, 1092.00, 1205.00, 1336.50, …
## $ `NO2(GT)` <dbl> 113, 92, 114, 122, 116, 96, 77, 76, 60, -200, 34, 28, …
## $ `PT08.S4(NO2)` <dbl> 1692.00, 1558.75, 1554.50, 1583.75, 1490.00, 1393.00, …
## $ `PT08.S5(O3)` <dbl> 1267.50, 972.25, 1074.00, 1203.25, 1110.00, 949.25, 73…
## $ T <dbl> 13.600, 13.300, 11.900, 11.000, 11.150, 11.175, 11.325…
## $ RH <dbl> 48.875, 47.700, 53.975, 60.000, 59.575, 59.175, 56.775…
## $ AH <dbl> 0.7577538, 0.7254874, 0.7502391, 0.7867125, 0.7887942,…
plot(Air_data$AH, Air_data$RH, main = "Humidity Analysis", xlab = "Absolute Humidity", ylab = "Relative Humidity")
notice we have an outlier in our data
t.test(Air_data$RH, Air_data$AH)
##
## Welch Two Sample t-test
##
## data: Air_data$RH and Air_data$AH
## t = 69.62, df = 17471, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 45.01707 47.62536
## sample estimates:
## mean of x mean of y
## 39.483611 -6.837604
Section 1 - Text Mining #1-2
1st we will look at the unnest_token function lets start by looking at an emily dickenson passage
text <- c(" Because I could not stop from Death = ",
" He kindly stopped for me -",
"The Carriage held but just ourselves-",
"and Immortality")
This is a typical character vector that we might want to analyze. In order to turn in into a tinytext dataset, we first need to put it into a dataframe
library(dplyr)
text_df <- tibble(line = 1:4, text = text)
text_df
## # A tibble: 4 × 2
## line text
## <int> <chr>
## 1 1 " Because I could not stop from Death = "
## 2 2 " He kindly stopped for me -"
## 3 3 "The Carriage held but just ourselves-"
## 4 4 "and Immortality"
reminder a tibble is a modern class of dataframe within R. It is availble in the dplyr and tibble packages, that has a convientt print method, will not converge strongs to factors, and does not use row names. Tibbles are great for use with tidy tools…
next we will use the ’unest_tokens” function.
First we have the output colmn name that will be vreated as the text is unnested into it
library(tidytext)
text_df%>%
unnest_tokens(word, text)
## # A tibble: 20 × 2
## line word
## <int> <chr>
## 1 1 because
## 2 1 i
## 3 1 could
## 4 1 not
## 5 1 stop
## 6 1 from
## 7 1 death
## 8 2 he
## 9 2 kindly
## 10 2 stopped
## 11 2 for
## 12 2 me
## 13 3 the
## 14 3 carriage
## 15 3 held
## 16 3 but
## 17 3 just
## 18 3 ourselves
## 19 4 and
## 20 4 immortality
lets use the janeaustenr package to analyze some Jane Austen texts. There are 6 books in this package
library(janeaustenr)
library(dplyr)
library(stringr)
original_books <- austen_books() %>%
group_by(book)%>%
dplyr::mutate(linenumber = row_number(),
chapter = cumsum(str_detect(text, regex("^chapter [\\divx1c]",
ignore_case = TRUE)))) %>%
ungroup()
original_books
## # A tibble: 73,422 × 4
## text book linenumber chapter
## <chr> <fct> <int> <int>
## 1 "SENSE AND SENSIBILITY" Sense & Sensibility 1 0
## 2 "" Sense & Sensibility 2 0
## 3 "by Jane Austen" Sense & Sensibility 3 0
## 4 "" Sense & Sensibility 4 0
## 5 "(1811)" Sense & Sensibility 5 0
## 6 "" Sense & Sensibility 6 0
## 7 "" Sense & Sensibility 7 0
## 8 "" Sense & Sensibility 8 0
## 9 "" Sense & Sensibility 9 0
## 10 "CHAPTER 1" Sense & Sensibility 10 1
## # … with 73,412 more rows
To work with this as a tidy dataset, we need to restrucure it in the one-token-per-row format, which as we saw earlier, is done with the unnest_tokens() function.
library(tidytext)
tidy_books <- original_books %>%
unnest_tokens(word, text)
tidy_books
## # A tibble: 725,055 × 4
## book linenumber chapter word
## <fct> <int> <int> <chr>
## 1 Sense & Sensibility 1 0 sense
## 2 Sense & Sensibility 1 0 and
## 3 Sense & Sensibility 1 0 sensibility
## 4 Sense & Sensibility 3 0 by
## 5 Sense & Sensibility 3 0 jane
## 6 Sense & Sensibility 3 0 austen
## 7 Sense & Sensibility 5 0 1811
## 8 Sense & Sensibility 10 1 chapter
## 9 Sense & Sensibility 10 1 1
## 10 Sense & Sensibility 13 1 the
## # … with 725,045 more rows
This function uses the tokenizers package to seperate each line of text in the original dataframe into tokes.
The default tokenizing is for words, but other opetions including characters, R-grams, sentences, lines, or paragraphs can be used.
now that the data is in a one-word-per-row format, we anmanipulate it with tools like dplyr/
often in text analysis we will want to remove stop words. Stop words are words that are NOT USEFUL for analysis; these include: the, of, to, and, etc.
we can remove stop words (kept in the tidytext dataset ‘stop_words’) with an anti_join().
data(stop_words)
tidy_books <- tidy_books%>%
anti_join(stop_words)
## Joining, by = "word"
The stop words dataset in the tidytext package contains stop words from 3 lexicons, we can use them all together, as we have here, or filter() to only use one set of stop words if thats more appropriate for your analysis.
tidy_books%>%
count(word, sort=TRUE)
## # A tibble: 13,914 × 2
## word n
## <chr> <int>
## 1 miss 1855
## 2 time 1337
## 3 fanny 862
## 4 dear 822
## 5 lady 817
## 6 sir 806
## 7 day 797
## 8 emma 787
## 9 sister 727
## 10 house 699
## # … with 13,904 more rows
Bc we’ve been using tidy tools, our word counts are stored in a tidy dataframe. this allows us to pip this directly into our ggplot2. For example, we can create a visualization of the most common words:
library(ggplot2)
tidy_books%>%
count(word, sotr=TRUE)%>%
filter(n>600)%>%
dplyr::mutate(word = reorder(word,n))%>%
ggplot(aes(n,word))+
geom_col() +
labs(y=NULL, x = "words count")
The gutenberger package
This package provides access to the public domain works from the gutenberg project. This package includes tools for both downloading books and a complete dataset of project gutenberg metadata that can be used to find works of interest. We will mostly use the function gutenberg_download().
word frequencies: Lets look at some biology texts, starting with Darwin.
The voyage of the beagle - 944 On the origin of species by the means of natural selection - 1228 the expression of emotions in man and animals - 1227 the descent of man, and selection in relation to sex -2300
We can access these works using the gutenberg_download() and the project gutenberg IDnumbers
library(gutenbergr)
darwin <- gutenberg_download(c(944, 1227, 1228, 2300), mirror = "https://mirror2.sandyriver.net/pub/gutenberg")
lets break these into tokens
tidy_darwin <- darwin%>%
unnest_tokens(word, text)%>%
anti_join(stop_words)
## Joining, by = "word"
lets check out what the most common darwin words are.
tidy_darwin %>%
count(word, sort = TRUE)
## # A tibble: 23,630 × 2
## word n
## <chr> <int>
## 1 species 2998
## 2 male 1672
## 3 males 1337
## 4 animals 1310
## 5 birds 1292
## 6 female 1197
## 7 sexes 1095
## 8 females 1038
## 9 selection 1038
## 10 sexual 801
## # … with 23,620 more rows
Now lets get some work from Thomas Hunt Morgan, who is credited with discovering chromosomes.
Regeneration - 57198 The genetic and operative evidence relating to secondary sexual characteristics - 57460 Evolution and adaptation - 63540
morgan <- gutenberg_download(c(57198, 57460, 63540), mirror = "https://mirror2.sandyriver.net/pub/gutenberg")
Lets tokenize THM
tidy_morgan <- morgan %>%
unnest_tokens(word, text) %>%
anti_join(stop_words)
## Joining, by = "word"
what are THM’s most common words?
tidy_morgan%>%
count(word, sort=TRUE)
## # A tibble: 13,855 × 2
## word n
## <chr> <int>
## 1 species 869
## 2 regeneration 814
## 3 piece 702
## 4 cut 669
## 5 male 668
## 6 forms 631
## 7 selection 604
## 8 cells 576
## 9 found 552
## 10 development 546
## # … with 13,845 more rows
Lastly lets look at thomas henery huzley
evidence as to mans place in nature - 2931 on the reception of the origin of species - 2089 evolution and ethis, and other esays - 2940 science and culture, and other essays - 52344
huxley <- gutenberg_download(c(2931, 2089, 2940, 52344), mirror ="https://mirror2.sandyriver.net/pub/gutenberg")
tidy_huxley <- huxley %>%
unnest_tokens(word, text) %>%
anti_join(stop_words)
## Joining, by = "word"
tidy_huxley %>%
count(word, sort = TRUE)
## # A tibble: 16,090 × 2
## word n
## <chr> <int>
## 1 species 339
## 2 nature 331
## 3 time 287
## 4 life 286
## 5 existence 255
## 6 knowledge 238
## 7 animals 227
## 8 natural 223
## 9 animal 216
## 10 science 207
## # … with 16,080 more rows
Now, lets calculate the frequency for each word for the works of Darwin, morgan, and huxley by binding the frames together.
library(tidyr)
frequency <- bind_rows(dplyr::mutate(tidy_morgan, author = "Thomas Hunt Morgan"),
dplyr::mutate(tidy_darwin, author = "Charles Darwin"),
dplyr::mutate(tidy_huxley, author = "Thomas Henery Huxley")) %>%
dplyr::mutate(word=str_extract(word, "[a-z']+"))%>%
count(author, word)%>%
group_by(author)%>%
dplyr::mutate(proportion=n/sum(n))%>%
select(-n)%>%
pivot_wider(names_from=author, values_from=proportion)%>%
pivot_longer('Thomas Hunt Morgan' : 'Charles Darwin', names_to = "author", values_to = "proportion")
frequency
## # A tibble: 95,895 × 3
## word author proportion
## <chr> <chr> <dbl>
## 1 a Thomas Hunt Morgan 0.00206
## 2 a Thomas Henery Huxley 0.0000856
## 3 a Charles Darwin 0.000141
## 4 ab Thomas Hunt Morgan 0.000165
## 5 ab Thomas Henery Huxley 0.0000978
## 6 ab Charles Darwin 0.00000642
## 7 abaiss Thomas Hunt Morgan NA
## 8 abaiss Thomas Henery Huxley NA
## 9 abaiss Charles Darwin 0.00000642
## 10 abandon Thomas Hunt Morgan 0.00000752
## # … with 95,885 more rows
now we need to change the table so tha teach author has its own row
frequency2 <- pivot_wider(frequency, names_from = author, values_from=proportion)
frequency2
## # A tibble: 31,965 × 4
## word `Thomas Hunt Morgan` `Thomas Henery Huxley` `Charles Darwin`
## <chr> <dbl> <dbl> <dbl>
## 1 a 0.00206 0.0000856 0.000141
## 2 ab 0.000165 0.0000978 0.00000642
## 3 abaiss NA NA 0.00000642
## 4 abandon 0.00000752 0.0000122 0.00000321
## 5 abandoned 0.0000150 0.0000245 0.00000321
## 6 abashed NA NA 0.00000321
## 7 abatement NA 0.0000245 0.00000321
## 8 abbot NA 0.0000245 0.00000321
## 9 abbott NA NA 0.00000642
## 10 abbreviated NA NA 0.0000128
## # … with 31,955 more rows
now lets plot
library(scales)
ggplot(frequency2, aes(x = 'Thomas Hunt Morgan', y = 'Thomas Henrey Huxley'), color = abs('-Thomas Hunt Morgan' - ' Thomas Henrey Huxley'))+
geom_abline(color = "gray40", lty = 2)+
geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +
geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +
###scale_x_log10(labels = percent_format())+
###scale_y_log10(labels = percent_format())+
scale_color_gradient(limits = c(0, 0.001),
low = "darkslategray4", high = "gray75")+
theme(legend.position="none")+
labs(y= "Thomas Henrey Huxley", x = "Thomas Hunt Morgan")
## Warning: Removed 1 rows containing missing values (geom_text).
## Sentimental Analysis, pts 1-3
There are a variety of methods and dictionaries that exist for evaluating the opinion or emotion of the test.
AFFIN bing nrc
The function get_sentiments() allows us to get they1 specific lexicon with the measures for each one.
library(tidytext)
BiocManager::install("textdata", update=FALSE)
## 'getOption("repos")' replaces Bioconductor standard repositories, see
## '?repositories' for details
##
## replacement repositories:
## CRAN: https://cloud.r-project.org
## Bioconductor version 3.15 (BiocManager 1.30.18), R 4.2.1 (2022-06-23)
## Warning: package(s) not installed when version(s) same as current; use `force = TRUE` to
## re-install: 'textdata'
library(readxl)
setwd("~/Desktop/classroom/myfiles")
afinn<-read.csv("affin.csv")
head(afinn)
## X word value
## 1 1 abandon -2
## 2 2 abandoned -2
## 3 3 abandons -2
## 4 4 abducted -2
## 5 5 abduction -2
## 6 6 abductions -2
now lets look at bing
bing <- get_sentiments("bing")
head(bing)
## # A tibble: 6 × 2
## word sentiment
## <chr> <chr>
## 1 2-faces negative
## 2 abnormal negative
## 3 abolish negative
## 4 abominable negative
## 5 abominably negative
## 6 abominate negative
and now nrc
library(readr)
setwd("~/Desktop/classroom/myfiles")
nrc <- read.csv("nrc.csv")
head(nrc)
## X word sentiment
## 1 1 abacus trust
## 2 2 abandon fear
## 3 3 abandon negative
## 4 4 abandon sadness
## 5 5 abandoned anger
## 6 6 abandoned fear
These libraries were created either using crowd sourcing or cloud computing/ai like the amazon mechanical turk, or by labor of one of the authors, and then validated with crowd sourcing.
Lets look at the words with a joy score from NRC:
library(gutenbergr)
library(dplyr)
library(stringr)
darwin<-gutenberg_download(c(944,1227, 1228, 2300), mirror="https://mirror2.sandyriver.net/pub/gutenberg")
tidy_books<-darwin%>%
group_by(gutenberg_id)%>%
dplyr::mutate(linenumber=row_number(), chapter=cumsum(str_detect(text, regex("^chapter[\\divxlc]", ignore_case=TRUE))))%>%
ungroup()%>%
unnest_tokens(word, text)
head(tidy_books)
## # A tibble: 6 × 4
## gutenberg_id linenumber chapter word
## <int> <int> <int> <chr>
## 1 944 1 0 the
## 2 944 1 0 voyage
## 3 944 1 0 of
## 4 944 1 0 the
## 5 944 1 0 beagle
## 6 944 1 0 by
Lets add the book name instead of GID
colnames(tidy_books)[1]<-"book"
tidy_books$book[tidy_books$book==944]<-"The Voyage of the Beagle"
tidy_books$book[tidy_books$book==1227]<-"The Expression of the Emotions in Man and Animals"
tidy_books$book[tidy_books$book==1228]<- "On the Origin of Species By Means of Natural Selection"
tidy_books$book[tidy_books$book==2300]<- "The Descent of Man, and Selection in Relatino to Sex"
head(tidy_books)
## # A tibble: 6 × 4
## book linenumber chapter word
## <chr> <int> <int> <chr>
## 1 The Voyage of the Beagle 1 0 the
## 2 The Voyage of the Beagle 1 0 voyage
## 3 The Voyage of the Beagle 1 0 of
## 4 The Voyage of the Beagle 1 0 the
## 5 The Voyage of the Beagle 1 0 beagle
## 6 The Voyage of the Beagle 1 0 by
now that we have a tidy format with 1 word per row, we are ready for sentiment analysis. First, lets use NRC:
nrc_joy <- nrc%>%
filter(sentiment == "joy")
tidy_books %>%
filter(book == "The Voyage of the Beagle")%>%
dplyr::inner_join(nrc_joy)%>%
count(word, sort = TRUE)
## Joining, by = "word"
## # A tibble: 277 × 2
## word n
## <chr> <int>
## 1 found 301
## 2 good 161
## 3 remarkable 114
## 4 green 95
## 5 kind 92
## 6 tree 86
## 7 present 85
## 8 food 78
## 9 beautiful 61
## 10 elevation 60
## # … with 267 more rows
We can also examine how sentiment changes throught a work.
library(tidyr)
Charles_Darwin_sentiment <- tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(book, index = linenumber %/% 80, sentiment) %>%
pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>%
dplyr::mutate(sentiment = positive - negative)
## Joining, by = "word"
now lets plot it:
library(ggplot2)
ggplot(Charles_Darwin_sentiment, aes(index, sentiment, fill = book)) +
geom_col(show.legend = FALSE)+
facet_wrap(~book, ncol = 2, scales = "free_x")
Here we will use all three of our dictionaries and examine how the sentiment changes across the arc of TVOTB
library(tidyr)
voyage<-tidy_books %>%
filter(book=="The Voyage of the Beagle")
head(voyage)
## # A tibble: 6 × 4
## book linenumber chapter word
## <chr> <int> <int> <chr>
## 1 The Voyage of the Beagle 1 0 the
## 2 The Voyage of the Beagle 1 0 voyage
## 3 The Voyage of the Beagle 1 0 of
## 4 The Voyage of the Beagle 1 0 the
## 5 The Voyage of the Beagle 1 0 beagle
## 6 The Voyage of the Beagle 1 0 by
Lets again use the integer dicition “%/%” to define larger sections of the text that span mult lines, and we can use the same pattern with ‘count()’, ‘pivot_wrap()’ and ‘dplyr::mutate()’ to find the net sentiment in each section of the text:
library(dplyr)
affin<-voyage%>%
inner_join(afinn)%>%
group_by(index=linenumber %/% 80)%>%
summarise(sentimen=sum(value))%>%
dplyr::mutate(method="AFINN")
## Joining, by = "word"
bing_and_nrc<-bind_rows(
voyage%>%
inner_join(get_sentiments("bing"))%>%
dplyr::mutate(method="Bing et al."),
voyage%>%
inner_join(nrc)%>%
filter(sentiment %in% c("positive", "negative"))
)%>%
dplyr::mutate(method="NRC")%>%
count(method, index=linenumber%/% 80, sentiment)%>%
pivot_wider(names_from = sentiment,
values_from = n,
values_fill = 0)%>%
dplyr::mutate(sentiment=positive-negative)
## Joining, by = "word"
## Joining, by = "word"
Section 3 - N-grams #1-3
So far we’ve only looked at single words, but many interesting (more accurate) analyses are based on the relationship between words.
Lets look at some methods of tidytext for calculating and visualizing word relationshipss.
library(dplyr)
library(tidytext)
library(gutenbergr)
darwin_books <- gutenberg_download(c(944, 1227, 1228, 2300), mirror = "https://mirror2.sandyriver.net/pub/gutenberg")
colnames(darwin_books)[1] <- "book"
darwin_books$book[darwin_books$book == 944] <- "The Voyage of the Beagle"
darwin_books$book[darwin_books$book == 1227] <- "The Expression of the Emotions in Man and Animals"
darwin_books$book[darwin_books$book == 1228] <- "On the Origin of Species By Means of Natural Selection"
darwin_books$book[darwin_books$book == 2300] <- "The Descent of Man, and Selection in Relation to Sex"
darwin_bigrams <- darwin_books %>%
unnest_tokens(bigram, text, token = "ngrams", n = 2)
head(darwin_bigrams)
## # A tibble: 6 × 2
## book bigram
## <chr> <chr>
## 1 The Voyage of the Beagle the voyage
## 2 The Voyage of the Beagle voyage of
## 3 The Voyage of the Beagle of the
## 4 The Voyage of the Beagle the beagle
## 5 The Voyage of the Beagle beagle by
## 6 The Voyage of the Beagle charles darwin
This data is still in tidytext format, and its structured as one-token-per-row. Each tokem is a bigram.
Counting and filtereing n-grams
darwin_bigrams%>%
count(bigram, sort = TRUE)
## # A tibble: 238,516 × 2
## bigram n
## <chr> <int>
## 1 of the 11297
## 2 <NA> 8947
## 3 in the 5257
## 4 on the 4093
## 5 to the 2849
## 6 the same 2048
## 7 that the 1947
## 8 it is 1830
## 9 of a 1610
## 10 and the 1590
## # … with 238,506 more rows
Most of the common bigrams are stop-words. This can be a good time to use tidyr’s seperate command which splits a colum into multiple based on a delimiter. This will let us make a column for word one and word two.
library(tidyr)
bigrams_separated <- darwin_bigrams %>%
separate(bigram, c("word1", "word2"), sep = " ")
bigram_filtered <- bigrams_separated %>%
filter(!word1 %in% stop_words$word) %>%
filter(!word2 %in% stop_words$word)
bigram_counts <- bigram_filtered %>%
unite(bigram, word1, word2, sep = " ")
head(bigram_counts)
## # A tibble: 6 × 2
## book bigram
## <chr> <chr>
## 1 The Voyage of the Beagle charles darwin
## 2 The Voyage of the Beagle NA NA
## 3 The Voyage of the Beagle NA NA
## 4 The Voyage of the Beagle NA NA
## 5 The Voyage of the Beagle NA NA
## 6 The Voyage of the Beagle NA NA
We may also be interested in trigrams, which are three word combos
trigrams <- darwin_books %>%
unnest_tokens(trigram, text, token = "ngrams", n = 3) %>%
separate(trigram, c("word1", "word2", "word3"), sep = " ") %>%
filter(!word1 %in% stop_words$word,
!word2 %in% stop_words$word,
!word3 %in% stop_words$word) %>%
count(word1, word2, word3, sort = TRUE)
head(trigrams)
## # A tibble: 6 × 4
## word1 word2 word3 n
## <chr> <chr> <chr> <int>
## 1 <NA> <NA> <NA> 9884
## 2 tierra del fuego 92
## 3 secondary sexual characters 91
## 4 captain fitz roy 45
## 5 closely allied species 30
## 6 de la physionomie 30
Lets analyze some bigrams
bigram_filtered %>%
filter(word2 == "selection") %>%
count(book, word1, sort = TRUE)
## # A tibble: 39 × 3
## book word1 n
## <chr> <chr> <int>
## 1 The Descent of Man, and Selection in Relation to Sex sexual 254
## 2 On the Origin of Species By Means of Natural Selection natural 250
## 3 The Descent of Man, and Selection in Relation to Sex natural 156
## 4 On the Origin of Species By Means of Natural Selection sexual 18
## 5 On the Origin of Species By Means of Natural Selection continued 6
## 6 The Descent of Man, and Selection in Relation to Sex unconscious 6
## 7 On the Origin of Species By Means of Natural Selection methodical 5
## 8 The Descent of Man, and Selection in Relation to Sex continued 5
## 9 On the Origin of Species By Means of Natural Selection unconscious 4
## 10 The Expression of the Emotions in Man and Animals natural 4
## # … with 29 more rows
lets again look at tf-idf across bigrams across Darwins works.
bigram_tf_idf <- bigram_counts %>%
count(book, bigram) %>%
bind_tf_idf(bigram, book, n) %>%
arrange(desc(tf_idf))
head(bigram_tf_idf)
## # A tibble: 6 × 6
## book bigram n tf idf tf_idf
## <chr> <chr> <int> <dbl> <dbl> <dbl>
## 1 The Expression of the Emotions in Man and … nerve… 47 0.00350 1.39 0.00485
## 2 On the Origin of Species By Means of Natur… natur… 250 0.0160 0.288 0.00460
## 3 The Expression of the Emotions in Man and … la ph… 35 0.00260 1.39 0.00361
## 4 The Voyage of the Beagle bueno… 54 0.00245 1.39 0.00339
## 5 The Voyage of the Beagle capta… 53 0.00240 1.39 0.00333
## 6 On the Origin of Species By Means of Natur… glaci… 36 0.00230 1.39 0.00319
library(ggplot2)
bigram_tf_idf %>%
arrange(desc(tf_idf)) %>%
group_by(book) %>%
slice_max(tf_idf, n = 10) %>%
ungroup() %>%
dplyr::mutate(bigram = reorder(bigram, tf_idf)) %>%
ggplot(aes(tf_idf, bigram, fill = book)) +
geom_col(show.legend = FALSE) +
facet_wrap(~book, ncol = 2, scales = "free") +
labs(x= "tf-idf of bigrams", y = NULL)
Using bigrams to procude contezt in sentiment analysis
bigrams_separated %>%
filter(word1 == "not") %>%
count(word1, word2, sort = TRUE)
## # A tibble: 867 × 3
## word1 word2 n
## <chr> <chr> <int>
## 1 not be 128
## 2 not have 104
## 3 not only 103
## 4 not a 100
## 5 not to 98
## 6 not been 89
## 7 not the 82
## 8 not at 70
## 9 not know 60
## 10 not so 58
## # … with 857 more rows
By doing sentiment analysis on bigrams, we can examine how often sentiment-associated words are preceeded by a modifier like “not” or other negating words.
library(tidytext)
library(textdata)
library(readr)
setwd("~/Desktop/classroom/myfiles")
AFINN <- read.csv("affin.csv")
head(AFINN)
## X word value
## 1 1 abandon -2
## 2 2 abandoned -2
## 3 3 abandons -2
## 4 4 abducted -2
## 5 5 abduction -2
## 6 6 abductions -2
We can examine the most frequent words that were preceeded by “not”, and associate with sentiment
not_words <- bigrams_separated %>%
filter(word1 == "not") %>%
inner_join(AFINN, by = c(word2 = "word")) %>%
count(word2, value, sort = TRUE)
head(not_words)
## # A tibble: 6 × 3
## word2 value n
## <chr> <int> <int>
## 1 doubt -1 25
## 2 like 2 11
## 3 pretend -1 9
## 4 wish 1 8
## 5 admit -1 7
## 6 difficult -1 5
library(ggplot2)
not_words %>%
dplyr::mutate(contribution = n * value) %>%
arrange(desc(abs(contribution))) %>%
head(20) %>%
dplyr::mutate(word2 = reorder(word2, contribution)) %>%
ggplot(aes(n * value, word2, fill = n * value > 0 )) +
geom_col(show.legend = FALSE) +
labs(x = "Sentimen value * number or occurences", y = "words preceeded by \"not\"")
negation_words <- c("not", "no", "never", "non", "without")
negated_words <- bigrams_separated %>%
filter(word1%in% negation_words)%>%
inner_join(AFINN, by = c(word2 = "word")) %>%
count(word1, word2, value, sort = TRUE)
head(negated_words)
## # A tibble: 6 × 4
## word1 word2 value n
## <chr> <chr> <int> <int>
## 1 no doubt -1 210
## 2 not doubt -1 25
## 3 no great 3 19
## 4 not like 2 11
## 5 not pretend -1 9
## 6 not wish 1 8
lets visualize the negation words
negated_words %>%
dplyr::mutate(contribution = n *value,
word2=reorder(paste(word2, word1, sep = "_"), contribution)) %>%
group_by(word1)%>%
slice_max(abs(contribution), n = 12, with_ties = FALSE) %>%
ggplot(aes(word2, contribution, fill = n * value > 0)) +
geom_col(show.legend = FALSE) +
facet_wrap(~ word1, scales = "free") +
scale_x_discrete(labels = function(x) gsub("_.+4", "", x)) +
xlab("words preceded by negation term") +
ylab("sentiment value * # of occurences") +
coord_flip()
visualize a netword of bigtams with ggraph
library(igraph)
##
## Attaching package: 'igraph'
## The following object is masked from 'package:mosaic':
##
## compare
## The following object is masked from 'package:tidyr':
##
## crossing
## The following objects are masked from 'package:lubridate':
##
## %--%, union
## The following object is masked from 'package:plotly':
##
## groups
## The following objects are masked from 'package:dplyr':
##
## as_data_frame, groups, union
## The following objects are masked from 'package:stats':
##
## decompose, spectrum
## The following object is masked from 'package:base':
##
## union
bigram_counts <- bigram_filtered %>%
count(word1, word2, sort = TRUE)
bigram_graph <- bigram_counts %>%
filter(n > 20) %>%
graph_from_data_frame()
## Warning in graph_from_data_frame(.): In `d' `NA' elements were replaced with
## string "NA"
head(bigram_graph)
## 6 x 203 sparse Matrix of class "dgCMatrix"
## [[ suppressing 203 column names 'NA', 'natural', 'sexual' ... ]]
##
## NA 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## sexual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## vol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## lower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## south . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
##
## NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## sexual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## vol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## lower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## south . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
##
## NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## sexual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## vol . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . .
## lower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## south . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
##
## NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## natural 1 . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
## sexual 1 . 1 . . 1 . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . .
## vol . . . . . . . 1 . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .
## lower . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## south . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
##
## NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## natural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . .
## sexual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## vol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## lower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . .
## south . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
##
## NA . . . . . . . . . . . . . . . . . . . . . . .
## natural . . . . . . . . . . . . . . . . . . . . . . .
## sexual . . . . . . . . . . . . . . . . . . . . . . .
## vol . . . . . . . . . . . . . . . . . . . . . . .
## lower . . . . . . . . . . . . . . . . . . . . . . .
## south . 1 . . . . . . . . . . . . . . . . . . . . .
library(ggraph)
set.seed(1234)
ggraph(bigram_graph, layout = "fr") +
geom_edge_link() +
geom_node_point() +
geom_node_text(aes(label = name), vjust = 1, hjust = 1)
we can also add directionality to this network
set.seed(1234)
a <- grid::arrow(type="closed", length=unit(0.15, "inches"))
ggraph(bigram_graph, layout ="fr")+
geom_edge_link(aes(edge_alpha = n), show.legend = FALSE, arrow = a, end_cap = circle(0.7, "inches")) +
geom_node_point(color="lightblue", size = 5)+
geom_node_text(aes(label=name), vjust = 1, hjust = 1)+
theme_void()
## Word Frequency Section 4 - Word Frequency A central question in text
mining is how to quantify what a doccument is about. We can do this by
looking at words that make up the doccument and measuring the
frequency.
There are a lot of ords that may not be important, these are stop words.
One way to remedy this is to look at inverse doument frequency words, which decreases the weight for commonly used words and increases the weight for words that are not used very much.
Term frequency in Darwin’s works:
library(dplyr)
library(tidytext)
library(tidyr)
book_words <- gutenberg_download(c(944, 1227, 1228, 2300), mirror = "https://mirror2.sandyriver.net/pub/gutenberg")
colnames(book_words)[1] <- "book"
book_words$book[book_words$book == 944] <- "The Voyage of the Beagle"
book_words$book[book_words$book == 1227] <- "The Expression of the Emotions in Man and Animals"
book_words$book[book_words$book == 1228] <- "On the Origin of Species By Means of Natural Selection"
book_words$book[book_words$book == 2300] <- "The Decesnt of Man, and Seletion in Relation to Sex"
now lets disect
book_words <- book_words %>%
unnest_tokens(word, text) %>%
count(book, word, sort = TRUE)
head(book_words)
## # A tibble: 6 × 3
## book word n
## <chr> <chr> <int>
## 1 The Decesnt of Man, and Seletion in Relation to Sex the 25490
## 2 The Voyage of the Beagle the 16930
## 3 The Decesnt of Man, and Seletion in Relation to Sex of 16762
## 4 On the Origin of Species By Means of Natural Selection the 10301
## 5 The Voyage of the Beagle of 9438
## 6 The Decesnt of Man, and Seletion in Relation to Sex in 8882
book_words$n <- as.numeric(book_words$n)
total_words <- book_words %>%
group_by(book) %>%
dplyr::summarize(total = sum(n))
head(book_words)
## # A tibble: 6 × 3
## book word n
## <chr> <chr> <dbl>
## 1 The Decesnt of Man, and Seletion in Relation to Sex the 25490
## 2 The Voyage of the Beagle the 16930
## 3 The Decesnt of Man, and Seletion in Relation to Sex of 16762
## 4 On the Origin of Species By Means of Natural Selection the 10301
## 5 The Voyage of the Beagle of 9438
## 6 The Decesnt of Man, and Seletion in Relation to Sex in 8882
book_words <- left_join(book_words, total_words)
## Joining, by = "book"
head(book_words)
## # A tibble: 6 × 4
## book word n total
## <chr> <chr> <dbl> <dbl>
## 1 The Decesnt of Man, and Seletion in Relation to Sex the 25490 311041
## 2 The Voyage of the Beagle the 16930 208118
## 3 The Decesnt of Man, and Seletion in Relation to Sex of 16762 311041
## 4 On the Origin of Species By Means of Natural Selection the 10301 157002
## 5 The Voyage of the Beagle of 9438 208118
## 6 The Decesnt of Man, and Seletion in Relation to Sex in 8882 311041
We can see that the usual suspects are the most common words, but that doesnt tell us anything about what the book topic is.
library(ggplot2)
ggplot(book_words, aes(n/total, fill = book)) +
geom_histogram(show.legend = FALSE) +
xlim(NA, 0.0009)+
facet_wrap(~book, ncol = 2, scales = "free_y")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 515 rows containing non-finite values (stat_bin).
## Warning: Removed 4 rows containing missing values (geom_bar).
Zipf’s Law (furter refered to as Z’s Law) - the frequency that a word appears is inversley proportional to its rank when predicting a topic
lets apply Z’s Law to Darwin’s word
freq_by_rank <- book_words %>%
group_by(book)%>%
dplyr::mutate(rank = row_number(),
`term frequency` = n/total) %>%
ungroup()
head(freq_by_rank)
## # A tibble: 6 × 6
## book word n total rank term …¹
## <chr> <chr> <dbl> <dbl> <int> <dbl>
## 1 The Decesnt of Man, and Seletion in Relation… the 25490 311041 1 0.0820
## 2 The Voyage of the Beagle the 16930 208118 1 0.0813
## 3 The Decesnt of Man, and Seletion in Relation… of 16762 311041 2 0.0539
## 4 On the Origin of Species By Means of Natural… the 10301 157002 1 0.0656
## 5 The Voyage of the Beagle of 9438 208118 2 0.0453
## 6 The Decesnt of Man, and Seletion in Relation… in 8882 311041 3 0.0286
## # … with abbreviated variable name ¹`term frequency`
freq_by_rank %>%
ggplot(aes(rank, `term frequency`, color = book)) +
geom_line(size = 1.1, alpha = 0.8, show.legend = FALSE) +
scale_x_log10() +
scale_y_log10()
lets use TF - IDF to find words for each document by decreasing the weight for commonly used words and increasing the weight for words that are not used very much in a collection of documents
book_tf_idf <- book_words %>%
bind_tf_idf(word, book, n)
head(book_tf_idf)
## # A tibble: 6 × 7
## book word n total tf idf tf_idf
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 The Decesnt of Man, and Seletion in Re… the 25490 311041 0.0820 0 0
## 2 The Voyage of the Beagle the 16930 208118 0.0813 0 0
## 3 The Decesnt of Man, and Seletion in Re… of 16762 311041 0.0539 0 0
## 4 On the Origin of Species By Means of N… the 10301 157002 0.0656 0 0
## 5 The Voyage of the Beagle of 9438 208118 0.0453 0 0
## 6 The Decesnt of Man, and Seletion in Re… in 8882 311041 0.0286 0 0
lets look at terms with high tf-idf in Darwin’s works
book_tf_idf %>%
select(-total) %>%
arrange(desc(tf_idf))
## # A tibble: 43,024 × 6
## book word n tf idf tf_idf
## <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 The Expression of the Emotions in Man and … tears 126 1.14e-3 1.39 1.58e-3
## 2 The Expression of the Emotions in Man and … blush 114 1.03e-3 1.39 1.43e-3
## 3 The Expression of the Emotions in Man and … eyeb… 149 1.35e-3 0.693 9.35e-4
## 4 The Voyage of the Beagle degs 117 5.62e-4 1.39 7.79e-4
## 5 On the Origin of Species By Means of Natur… sele… 412 2.62e-3 0.288 7.55e-4
## 6 The Decesnt of Man, and Seletion in Relati… sexu… 745 2.40e-3 0.288 6.89e-4
## 7 The Decesnt of Man, and Seletion in Relati… shewn 143 4.60e-4 1.39 6.37e-4
## 8 On the Origin of Species By Means of Natur… hybr… 133 8.47e-4 0.693 5.87e-4
## 9 The Expression of the Emotions in Man and … frown 46 4.17e-4 1.39 5.78e-4
## 10 The Decesnt of Man, and Seletion in Relati… sele… 621 2.00e-3 0.288 5.74e-4
## # … with 43,014 more rows
lets look at a visualization for these high tf-idf words
library(forcats)
book_tf_idf %>%
group_by(book)%>%
slice_max(tf_idf, n = 15) %>%
ungroup() %>%
ggplot(aes(tf_idf, fct_reorder(word, tf_idf), fill = book)) +
geom_col(show.legend = FALSE) +
facet_wrap(~book, ncol = 2, scales = "free")+
labs(x="tf-idf", y = NULL)
#lets load the twitter API package
install.packages("academictwitteR")
library(academictwitteR)
setwd("~/Desktop/classroom/myfiles/starter_tweets")
bearer_token <- "AAAAAAAAAAAAAAAAAAAAAByFhgEAAAAAl4Ql0CyArwygcl0FEWUO5ARSaAQ%3DVJpyDIOBKBVdtgnEv7wrpdwoeI5WbQLbxfSYElUGZuwix0kbQm"
tweets20US <-
get_all_tweets(
"covid-19 has:geo",
"2020-06-01T01:00:00z",
"2020-06-08T01:00:00Z",
bearer_token,
n = 5000,
country = "US"
)
tweets21US <-
get_all_tweets(
"covid-19 has:geo",
"2021-01-01T01:00:00z",
"2021-01-08T01:00:00Z",
bearer_token,
n = 5000,
country = "US"
)
tweets20US <-
get_all_tweets(
"covid-19 has:geo",
"2022-01-01T01:00:00z",
"2022-01-08T01:00:00Z",
bearer_token,
n = 5000,
country = "US"
)
first lets load our data
library(readr)
BiocManager::install("tidytweets", update=FALSE)
## 'getOption("repos")' replaces Bioconductor standard repositories, see
## '?repositories' for details
##
## replacement repositories:
## CRAN: https://cloud.r-project.org
## Bioconductor version 3.15 (BiocManager 1.30.18), R 4.2.1 (2022-06-23)
## Installing package(s) 'tidytweets'
## Warning: package 'tidytweets' is not available for Bioconductor version '3.15'
##
## A version of this package for your version of R might be available elsewhere,
## see the ideas at
## https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Installing-packages
setwd("~/Desktop/classroom/myfiles/starter_tweets")
tweets20US<-read.csv("tweets20us.csv", row.names=1)
tweets21US<-read.csv("tweets21us.csv", row.names=1)
tweets22US<-read.csv("tweets22us.csv", row.names=1)
library(readr)
BiocManager::install("tidytweets", update=FALSE)
## 'getOption("repos")' replaces Bioconductor standard repositories, see
## '?repositories' for details
##
## replacement repositories:
## CRAN: https://cloud.r-project.org
## Bioconductor version 3.15 (BiocManager 1.30.18), R 4.2.1 (2022-06-23)
## Installing package(s) 'tidytweets'
## Warning: package 'tidytweets' is not available for Bioconductor version '3.15'
##
## A version of this package for your version of R might be available elsewhere,
## see the ideas at
## https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Installing-packages
setwd("~/Desktop/classroom/myfiles/starter_tweets")
tweets20CA<-read.csv("tweets20CA.csv", row.names=1)
tweets21CA<-read.csv("tweets21CA.csv", row.names=1)
tweets22CA<-read.csv("tweets22CA.csv", row.names=1)
library(readr)
BiocManager::install("tidytweets", update=FALSE)
## 'getOption("repos")' replaces Bioconductor standard repositories, see
## '?repositories' for details
##
## replacement repositories:
## CRAN: https://cloud.r-project.org
## Bioconductor version 3.15 (BiocManager 1.30.18), R 4.2.1 (2022-06-23)
## Installing package(s) 'tidytweets'
## Warning: package 'tidytweets' is not available for Bioconductor version '3.15'
##
## A version of this package for your version of R might be available elsewhere,
## see the ideas at
## https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Installing-packages
setwd("~/Desktop/classroom/myfiles/starter_tweets")
tweets20GB<-read.csv("tweets20GB.csv", row.names=1)
tweets21GB<-read.csv("tweets21GB.csv", row.names=1)
tweets22GB<-read.csv("tweets22GB.csv", row.names=1)
now lets load libraries
library(lubridate)
library(ggplot2)
library(dplyr)
library(readr)
lets combine our US tweets
tweetsUS <- bind_rows(tweets21US %>%
dplyr::mutate(year = "y2021"),
tweets22US %>%
dplyr::mutate(year = "y2022"),
tweets20US %>%
dplyr::mutate(year = "year2022")) %>%
dplyr::mutate(timestamp = ymd_hms(created_at))
lets combine our GB tweets:
tweetsGB <- bind_rows(tweets21GB %>%
dplyr::mutate(year = "y2021"),
tweets22GB %>%
dplyr::mutate(year = "y2022"),
tweets20GB %>%
dplyr::mutate(year = "year2022")) %>%
dplyr::mutate(timestamp = ymd_hms(created_at))
lets combine our Canada tweets:
tweetsCA <- bind_rows(tweets21CA %>%
dplyr::mutate(year = "y2021"),
tweets22CA %>%
dplyr::mutate(year = "y2022"),
tweets20CA %>%
dplyr::mutate(year = "year2022")) %>%
dplyr::mutate(timestamp = ymd_hms(created_at))
nows lets clean our US tweets:
library(tidytext)
library(stringr)
remove_reg <- "&|<|>"
tidy_tweetsUS <- tweetsUS %>%
filter(!str_detect(text, "^RT")) %>%
dplyr::mutate(text = str_remove_all(text, remove_reg)) %>%
unnest_tokens(word, text, token = "tweets") %>%
filter(!word %in% stop_words$word,
!word %in% str_remove_all(stop_words$words, "'"),
str_detect(word, "[a-z]"))
## Using `to_lower = TRUE` with `token = 'tweets'` may not preserve URLs.
## Warning: Unknown or uninitialised column: `words`.
lets clean our GB tweets:
remove_reg <- "&|<|>"
tidy_tweetsGB <- tweetsGB %>%
filter(!str_detect(text, "^RT")) %>%
dplyr::mutate(text = str_remove_all(text, remove_reg)) %>%
unnest_tokens(word, text, token = "tweets") %>%
filter(!word %in% stop_words$word,
!word %in% str_remove_all(stop_words$words, "'"),
str_detect(word, "[a-z]"))
## Using `to_lower = TRUE` with `token = 'tweets'` may not preserve URLs.
## Warning: Unknown or uninitialised column: `words`.
lets clean our CA tweets:
remove_reg <- "&|<|>"
tidy_tweetsCA <- tweetsCA %>%
filter(!str_detect(text, "^RT")) %>%
dplyr::mutate(text = str_remove_all(text, remove_reg)) %>%
unnest_tokens(word, text, token = "tweets") %>%
filter(!word %in% stop_words$word,
!word %in% str_remove_all(stop_words$words, "'"),
str_detect(word, "[a-z]"))
## Using `to_lower = TRUE` with `token = 'tweets'` may not preserve URLs.
## Warning: Unknown or uninitialised column: `words`.
lets take a look at our US data
ggplot(tweetsUS, aes(x=timestamp, fill = year)) +
geom_histogram(position = "identity", bins =20, show.legend = FALSE) +
facet_wrap(~year, ncol = 1)
now the GB data
ggplot(tweetsGB, aes(x=timestamp, fill = year)) +
geom_histogram(position = "identity", bins =20, show.legend = FALSE) +
facet_wrap(~year, ncol = 1)
now the CA data
ggplot(tweetsCA, aes(x=timestamp, fill = year)) +
geom_histogram(position = "identity", bins =20, show.legend = FALSE) +
facet_wrap(~year, ncol = 1)
frequencyUS <- tidy_tweetsUS %>%
count(year, word, sort = TRUE) %>%
left_join(tidy_tweetsUS %>%
count(year, name = "total")) %>%
dplyr::mutate(freq = n/total)
## Joining, by = "year"
head(frequencyUS)
## year word n total freq
## 1 y2021 covid19 3832 66382 0.057726492
## 2 year2022 covid19 3626 67279 0.053894975
## 3 y2022 covid19 2568 56060 0.045808063
## 4 y2022 #covid19 894 56060 0.015947199
## 5 y2021 vaccine 643 66382 0.009686361
## 6 year2022 covid 602 67279 0.008947814
frequencyGB <- tidy_tweetsUS %>%
count(year, word, sort = TRUE) %>%
left_join(tidy_tweetsUS %>%
count(year, name = "total")) %>%
dplyr::mutate(freq = n/total)
## Joining, by = "year"
head(frequencyGB)
## year word n total freq
## 1 y2021 covid19 3832 66382 0.057726492
## 2 year2022 covid19 3626 67279 0.053894975
## 3 y2022 covid19 2568 56060 0.045808063
## 4 y2022 #covid19 894 56060 0.015947199
## 5 y2021 vaccine 643 66382 0.009686361
## 6 year2022 covid 602 67279 0.008947814
frequencyCA <- tidy_tweetsUS %>%
count(year, word, sort = TRUE) %>%
left_join(tidy_tweetsUS %>%
count(year, name = "total")) %>%
dplyr::mutate(freq = n/total)
## Joining, by = "year"
head(frequencyCA)
## year word n total freq
## 1 y2021 covid19 3832 66382 0.057726492
## 2 year2022 covid19 3626 67279 0.053894975
## 3 y2022 covid19 2568 56060 0.045808063
## 4 y2022 #covid19 894 56060 0.015947199
## 5 y2021 vaccine 643 66382 0.009686361
## 6 year2022 covid 602 67279 0.008947814
library(tidyr)
setwd("~/Desktop/classroom/myfiles/starter_tweets")
frequencyUS2<-frequencyUS%>%
select(year, word, freq)%>%
pivot_wider(names_from=year, values_from=freq)%>%
arrange('y2020', 'y2021', 'y2022')
head(frequencyUS2)
library(tidyr)
setwd("~/Desktop/classroom/myfiles/starter_tweets")
frequencyGB2 <- frequencyGB %>%
select(year, word, freq) %>%
pivot_wider(names_from = year, values_from = freq) %>%
arrange('y2020', 'y2021', 'y2022')
head(frequencyGB2)
library(tidyr)
setwd("~/Desktop/classroom/myfiles/starter_tweets")
frequencyCA2 <- frequencyCA %>%
select(year, word, freq) %>%
pivot_wider(names_from = year, values_from = freq) %>%
arrange('y2020', 'y2021', 'y2022')
head(frequencyCA2)
library(scales)
ggplot(frequencyUS2, aes(2020, 2022)) +
geom_jitter(alpha = 0.05, size = 2.5, width = 0.25, height = 0.25) +
geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +
scale_x_log10(labels = percent_format()) +
scale_y_log10(labels = percent_format()) +
geom_abline(color = "red")
finding joy
library(dplyr)
library(stringr)
nrc_joy <- (nrc) %>%
filter(sentiment == "joy")
tidy_tweetsUS %>%
filter(year == "y2020") %>%
inner_join(nrc_joy) %>%
count(word, sort = TRUE)
## Joining, by = "word"
## [1] word n
## <0 rows> (or 0-length row.names)
finding anger
nrc_anger <- nrc %>%
filter(sentiment == "anger")
tidy_tweetsGB %>%
filter(year == "y2020") %>%
inner_join(nrc_anger) %>%
count(word, sort = TRUE)
## Joining, by = "word"
## [1] word n
## <0 rows> (or 0-length row.names)
finding fear
nrc_fear <- nrc %>%
filter(sentiment == "fear")
tidy_tweetsCA %>%
filter(year == "y2020") %>%
inner_join(nrc_fear) %>%
count(word, sort = TRUE)
## Joining, by = "word"
## [1] word n
## <0 rows> (or 0-length row.names)
GB_Covid_sentiment <- tidy_tweetsGB %>%
inner_join(get_sentiments("bing")) %>%
count(year, index = id %/% 80, sentiment) %>%
pivot_wider(names_fro = sentiment, values_from = n, values_fill = 0) %>%
dplyr::mutate(sentiment = positive - negative)
## Joining, by = "word"
library(ggplot2)
ggplot(GB_Covid_sentiment, aes(sentiment, fill = year)) +
geom_histogram(show.legend = FALSE) +
facet_wrap(~year, ncol = 2, scales = "free_x")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
GB_Covid_sentiment_means <- aggregate(x = GB_Covid_sentiment$sentiment, by = list(GB_Covid_sentiment$year), FUN = mean)
GB_Covid_sentiment_means
## Group.1 x
## 1 y2021 -0.3708450
## 2 y2022 -0.4546649
## 3 year2022 -0.5469217
US_Covid_sentiment <- tidy_tweetsUS %>%
inner_join(get_sentiments("bing")) %>%
count(year, index = id %/% 80, sentiment) %>%
pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>%
dplyr::mutate(sentiment = positive - negative)
## Joining, by = "word"
library(ggplot2)
ggplot(US_Covid_sentiment, aes(sentiment, fill = year)) +
geom_histogram(show.legend = FALSE) +
facet_wrap(~year, ncol = 2, scales = "free_x")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
US_Covid_sentiment_means <- aggregate(x = US_Covid_sentiment$sentiment, by = list(US_Covid_sentiment$year), FUN = mean)
US_Covid_sentiment_means
## Group.1 x
## 1 y2021 -0.6293752
## 2 y2022 -0.5157497
## 3 year2022 -0.6560050
CA_Covid_sentiment <- tidy_tweetsCA %>%
inner_join(get_sentiments("bing")) %>%
count(year, index = id %/% 80, sentiment) %>%
pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>%
dplyr::mutate(sentiment = positive - negative)
## Joining, by = "word"
library(ggplot2)
ggplot(CA_Covid_sentiment, aes(sentiment, fill = year)) +
geom_histogram(show.legend = FALSE) +
facet_wrap(~year, ncol = 2, scales = "free_x")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
CA_Covid_sentiment_means <- aggregate(x = CA_Covid_sentiment$sentiment, by = list(CA_Covid_sentiment$year), FUN = mean)
US_Covid_sentiment_means
## Group.1 x
## 1 y2021 -0.6293752
## 2 y2022 -0.5157497
## 3 year2022 -0.6560050
bing_word_counts_US <- tidy_tweetsUS %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
ungroup()
## Joining, by = "word"
head(bing_word_counts_US)
## word sentiment n
## 1 positive positive 609
## 2 trump positive 433
## 3 virus negative 411
## 4 died negative 297
## 5 death negative 292
## 6 safe positive 237
bing_word_counts_US %>%
group_by(sentiment) %>%
slice_max(n, n = 10) %>%
ungroup() %>%
dplyr::mutate(word = reorder(word, n)) +
ggplot(aes(n, word, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scales = "free_y") +
labs(x = "Contribution to Sentiment", y = NULL)
customizing
custom_stop_words <- bind_rows(tibble(word = c("trump", "positive"),
lexicon = c("custom")),
stop_words)
custom_stop_words
## # A tibble: 1,151 × 2
## word lexicon
## <chr> <chr>
## 1 trump custom
## 2 positive custom
## 3 a SMART
## 4 a's SMART
## 5 able SMART
## 6 about SMART
## 7 above SMART
## 8 according SMART
## 9 accordingly SMART
## 10 across SMART
## # … with 1,141 more rows
“acast” function was not found and I also could not find the functioning library for it but these are the code chuncks for Word clouds.
library(wordcloud)
library(tidytext)
tidy_tweetsUS %>%
anti_join(custom_stop_words) %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
acast(word ~ sentiment, value.var = "n", fill = 0) %>%
comparison.cloud(colors = c("gray20", "gray80"),
max.words = 100)
tidy_tweetsUS %>%
anti_join(custom_stop_words) %>%
count(word) %>%
with(wordcloud(word, n, max.words = 100))
bingnegative <- get_sentiments("bing") %>%
filter(sentiment == "negative")
wordcounts <- tidy_tweetsCA %>%
group_by(year) %>%
dplyr::summarize(words = n())
tidy_tweetsCA %>%
semi_join(bingnegative) %>%
group_by(year) %>%
dplyr::summarize(negativewords = n()) %>%
left_join(wordcounts, by = "year") %>%
dplyr::mutate(ratio = negativewords/words) %>%
slice_max(ratio, n = 3) %>%
ungroup()
## Joining, by = "word"
## # A tibble: 3 × 4
## year negativewords words ratio
## <chr> <int> <int> <dbl>
## 1 year2022 2603 48248 0.0540
## 2 y2021 1647 31542 0.0522
## 3 y2022 723 16889 0.0428