setwd("~/Desktop/SAIS/Academics/Fall 2022/Sustainable Finance/Final")
library("lubridate")
## Loading required package: timechange
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library("dplyr")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library("readxl")
library("openxlsx")
library("forcats")
##Manual Way## #Load excel package
library(readxl)
JPY <- read_excel("~/Desktop/SAIS/Academics/Fall 2022/Sustainable Finance/Final/JPY.xlsx",
sheet = "Bonds", na = "#N/A N/A")
#“DAIWA”, “MUMSS”, “MIZUHO”, “BNPPAR”, “ML”, “NOMURA”, “BARCLY”,“CITI”, “NIKKO”, “GS”, “BOFAS”, “MIZ”, “BofA”, “MS”, “SMBC”, “SMBNIK”, “CRAGTK”, “BOCHK”) #“Daiwa”,“MUMS”,“Mizuho”,“Paribas”,“Nomura”,“Barclays”,“Citi”,“Goldman_Sachs”,“BofA”,“SMBCNIKKO”,“Credit_Agricole”,“Bank_of_China”
#DAIWA #Choose the row number of the rows containing the selected text
Daiwa_Count <- grep("DAIWA",JPY$`Roles`)
#Get the sum
Daiwa <- sum(JPY$Amt[Daiwa_Count])
Daiwa
## [1] 19020296099
#MU
MU_Count <- grep("MUMSS",JPY$`Roles`)
MUFG <- sum(JPY$Amt[MU_Count])
MUFG
## [1] 22197745882
#MS
MS_Count <- grep("MS",JPY$`Roles`)
MS <- sum(JPY$Amt[MS_Count])
MS
## [1] 22793143343
#MUMS
MUMS <- MUFG + MS
MUMS
## [1] 44990889225
#MIZUHO
MIZUHO_Count <- grep("MIZUHO",JPY$`Roles`)
Mizuho <- sum(JPY$Amt[MIZUHO_Count])
Mizuho
## [1] 25972351099
#BNPPAR
BNPPAR_Count <- grep("BNPPAR",JPY$`Roles`)
Paribas <- sum(JPY$Amt[BNPPAR_Count])
Paribas
## [1] 535055030
#NOMURA
NOMURA_Count <- grep("NOMURA",JPY$`Roles`)
Nomura <- sum(JPY$Amt[NOMURA_Count])
Nomura
## [1] 21551722634
#BARCLY
BARCLY_Count <- grep("BARCLY",JPY$`Roles`)
Barclays <- sum(JPY$Amt[BARCLY_Count])
Barclays
## [1] 352002800
#CITI
CITI_Count <- grep("CITI",JPY$`Roles`)
Citi <- sum(JPY$Amt[CITI_Count])
Citi
## [1] 331630234
#GS
GS_Count <- grep("GS",JPY$`Roles`)
Goldman_Sachs <- sum(JPY$Amt[GS_Count])
Goldman_Sachs
## [1] 1523415371
#BofA
BofAJ_Count <- grep("BofA",JPY$`Roles`)
BofAJ <- sum(JPY$Amt[BofAJ_Count])
BofAJ
## [1] 1959744630
#BOFAS
BOFAS_Count <- grep("BOFAS",JPY$`Roles`)
BofA_Securities <- sum(JPY$Amt[BOFAS_Count])
BofA_Securities
## [1] 92139600
#ML
ML_Count <- grep("ML",JPY$`Roles`)
Merill_Lynch <- sum(JPY$Amt[ML_Count])
Merill_Lynch
## [1] 556075910
#BofA
BofA <- BofA_Securities + BofAJ + Merill_Lynch
BofA
## [1] 2607960140
#SMBC
SMBC_Count <- grep("SMBC",JPY$`Roles`)
SMBC <- sum(JPY$Amt[SMBC_Count])
SMBC
## [1] 17485387069
#SMBNIK
SMBNIK_Count <- grep("SMBNIK",JPY$`Roles`)
SMBNIK <- sum(JPY$Amt[SMBNIK_Count])
SMBNIK
## [1] 356997415
#NIKKO
NIKKO_Count <- grep("NIKKO",JPY$`Roles`)
NIKKO <- sum(JPY$Amt[NIKKO_Count])
NIKKO
## [1] 17293187992
#SMBCNIKKO
SMBCNIKKO<- SMBC + SMBNIK + NIKKO
SMBCNIKKO
## [1] 35135572476
#CRAGTK
CRAGTK_Count <- grep("CRAGTK",JPY$`Roles`)
Credit_Agricole <- sum(JPY$Amt[CRAGTK_Count])
Credit_Agricole
## [1] 182980988
#BOCHK
BOCHK_Count <- grep("BOCHK",JPY$`Roles`)
Bank_of_China <- sum(JPY$Amt[BOCHK_Count])
Bank_of_China
## [1] 264389400
library(ggplot2)
#“DAIWA”,“MUMS”,“Mizuho”,“Paribas”,“Nomura”,“Barclays”,“Citi”,“Goldman_Sachs”,“BofA”,“SMBCNIKKO”,“Credit_Agricole”,“Bank_of_China” # Create data
data <- data.frame(Banks=c("Daiwa","MUMS","Mizuho","Paribas","Nomura","Barclays","Citi","Goldman_Sachs","BofA","SMBCNIKKO","Credit_Agricole","Bank_of_China") , DealValue=c(Daiwa,MUMS,Mizuho,Paribas,Nomura,Barclays,Citi,Goldman_Sachs,BofA,SMBCNIKKO,Credit_Agricole,Bank_of_China)
)
ggplot(data, aes(x=Banks, y=DealValue)) +
geom_bar(stat = "identity")
data$Rank<-rank(-data$DealValue)
data
## Banks DealValue Rank
## 1 Daiwa 19020296099 5
## 2 MUMS 44990889225 1
## 3 Mizuho 25972351099 3
## 4 Paribas 535055030 8
## 5 Nomura 21551722634 4
## 6 Barclays 352002800 9
## 7 Citi 331630234 10
## 8 Goldman_Sachs 1523415371 7
## 9 BofA 2607960140 6
## 10 SMBCNIKKO 35135572476 2
## 11 Credit_Agricole 182980988 12
## 12 Bank_of_China 264389400 11
ggplot(data, aes(fct_reorder(Banks, -DealValue),DealValue)) +
geom_bar(stat = "identity")
data_top5 <- data %>%
filter(`Rank` < 6)
ggplot(data_top5, aes(fct_reorder(Banks, -DealValue),DealValue)) +
geom_bar(stat = "identity")