Question No: 7.12

Entering the dataโ€ฆ

A<-c(rep(c(rep(-1,7), rep(1, 7)), 8))

B<-c(rep(c(rep(-1,14), rep(1, 14)), 4))

C<-c(rep(c(rep(-1,28), rep(1, 28)), 2))

D<-c(rep(-1, 56), rep(1, 56))

block<-c(rep(seq(1,7), 16))

obs1<-c(10.0, 18.0, 14.0, 12.5, 19.0, 16.0, 18.5, 0.0, 16.5, 4.5, 17.5, 20.5, 17.5, 33.0, 
        4.0, 6.0, 1.0, 14.5, 12.0, 14.0, 5.0, 0.0, 10.0, 34.0, 11.0, 25.5, 21.5, 0.0, 
        0.0, 0.0, 18.5, 19.5, 16.0, 15.0, 11.0, 5.0, 20.5, 18.0, 20.0, 29.5, 19.0, 10.0, 
        6.5, 18.5, 7.5, 6.0, 0.0, 10.0, 0.0, 16.5, 4.5, 0.0, 23.5, 8.0, 8.0, 8.0,
        4.5, 18.0, 14.5, 10.0, 0.0, 17.5, 6.0, 19.5, 18.0, 16.0, 5.5, 10.0, 7.0, 36.0, 
        15.0, 16.0, 8.5, 0.0, 0.5, 9.0, 3.0, 41.5, 39.0, 6.5, 3.5, 7.0, 8.5, 36.0, 
        8.0, 4.5, 6.5, 10.0, 13.0, 41.0, 14.0, 21.5, 10.5, 6.5, 0.0, 15.5, 24.0, 16.0, 
        0.0, 0.0, 0.0, 4.5, 1.0, 4.0, 6.5, 18.0, 5.0, 7.0, 10.0, 32.5, 18.5, 8.0)


A<-as.factor(A)
B<-as.factor(B)
C<-as.factor(C)
D<-as.factor(D)
block<-as.factor(block)

ANOVA (With Blocking)

model1<- aov(obs1 ~ A*B*C*D + block)
summary(model1)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## A            1    917   917.1  10.396 0.00176 **
## B            1    388   388.1   4.400 0.03875 * 
## C            1    145   145.1   1.645 0.20290   
## D            1      1     1.4   0.016 0.90021   
## block        6    376    62.7   0.710 0.64202   
## A:B          1    219   218.7   2.479 0.11890   
## A:C          1     12    11.9   0.135 0.71433   
## B:C          1    115   115.0   1.304 0.25655   
## A:D          1     94    93.8   1.063 0.30522   
## B:D          1     56    56.4   0.640 0.42594   
## C:D          1      2     1.6   0.018 0.89227   
## A:B:C        1      7     7.3   0.082 0.77499   
## A:B:D        1    113   113.0   1.281 0.26073   
## A:C:D        1     39    39.5   0.448 0.50520   
## B:C:D        1     34    33.8   0.383 0.53767   
## A:B:C:D      1     96    95.6   1.084 0.30055   
## Residuals   90   7940    88.2                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANOVA (Without Blocking)

model2<- aov(obs1 ~ A*B*C*D)
summary(model2)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## A            1    917   917.1  10.588 0.00157 **
## B            1    388   388.1   4.481 0.03686 * 
## C            1    145   145.1   1.676 0.19862   
## D            1      1     1.4   0.016 0.89928   
## A:B          1    219   218.7   2.525 0.11538   
## A:C          1     12    11.9   0.137 0.71178   
## B:C          1    115   115.0   1.328 0.25205   
## A:D          1     94    93.8   1.083 0.30066   
## B:D          1     56    56.4   0.651 0.42159   
## C:D          1      2     1.6   0.019 0.89127   
## A:B:C        1      7     7.3   0.084 0.77294   
## A:B:D        1    113   113.0   1.305 0.25623   
## A:C:D        1     39    39.5   0.456 0.50121   
## B:C:D        1     34    33.8   0.390 0.53386   
## A:B:C:D      1     96    95.6   1.104 0.29599   
## Residuals   96   8316    86.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusion: From ANOVA summary of blocked and unblocked design, the p-values of blocked and unblocked designs are nearly same and not deviate too much.