Asesinatos en ecuador
getwd()
## [1] "C:/Users/juan luis/Documents/MMEA/MMEA"
Analisis_Delincuencia_Base_datos <- read_csv("C:/Users/juan luis/Documents/MMEA/MMEA/Analisis_Delincuencia_Base_datos.csv")
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
## dat <- vroom(...)
## problems(dat)
## Rows: 21004 Columns: 31
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (25): cod_delito, zona_senplades, canton, cod_subcircuito, distrito, ci...
## dbl (5): sector, semana, año_infraccion, dia_mes, vd_edad
## time (1): hora_registro
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
# elinimamos fatos que no son necesarios
Analisis_Delincuencia_Base_datos$cod_delito<- NULL
Analisis_Delincuencia_Base_datos$cod_subcircuito<-NULL
Analisis_Delincuencia_Base_datos$zona_senplades<-NULL
Analisis_Delincuencia_Base_datos$vd_profesion_ocupacion<-NULL
Analisis_Delincuencia_Base_datos$vd_actividad<-NULL
Analisis_Delincuencia_Base_datos$vd_instrucion<-NULL
Analisis_Delincuencia_Base_datos$vd_etnia<-NULL
Analisis_Delincuencia_Base_datos$vd_estado_civil<-NULL
Analisis_Delincuencia_Base_datos$vd_apellidos_nombres<-NULL
Analisis_Delincuencia_Base_datos$delito_pj<-NULL
Analisis_Delincuencia_Base_datos$semana<-NULL
Analisis_Delincuencia_Base_datos$semana2<-NULL
View(Analisis_Delincuencia_Base_datos)
glimpse(Analisis_Delincuencia_Base_datos) # mostramos la mayor cantidad de datos posible. ( datos subyacentes)
## Rows: 21,004
## Columns: 20
## $ canton <chr> "GUAYAQUIL", "GUAYAQUIL", "GUAYAQUIL", "GUAYAQUIL", "G~
## $ distrito <chr> "PASCUALES", "CEIBOS", "ESTEROS", "PASCUALES", "SUR", ~
## $ circuito <chr> "SAN FRANCISCO", "PUERTO HONDO", "ISLA TRINITARIA NORT~
## $ subcircuito <chr> "SAN FRANCISCO 2", "PUERTO HONDO 2", "TRINITARIA NORTE~
## $ sector <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ zona <chr> "ZONA URBANA", "ZONA URBANA", "ZONA URBANA", "ZONA RUR~
## $ f_registro <chr> "02/01/2013", "06/01/2013", "06/01/2013", "12/01/2013"~
## $ hora_registro <time> 01:20:00, 09:45:00, 23:30:00, 16:50:00, 18:50:00, 00:~
## $ f_infraccion <chr> "01/01/2013", "06/01/2013", "06/01/2013", "12/01/2013"~
## $ `semanas 2` <chr> "01 ene 06 ene", "01 ene 06 ene", "01 ene 06 ene", "07~
## $ año_infraccion <dbl> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, ~
## $ mes_infraccion <chr> "enero", "enero", "enero", "enero", "enero", "enero", ~
## $ hora_infraccion <chr> NA, NA, "22:00:00", NA, "07:00:00", "14:00:00", NA, "0~
## $ dia_infraccion <chr> "martes", "domingo", "domingo", "sAbado", "domingo", "~
## $ dia_mes <dbl> 1, 6, 6, 12, 13, 12, 16, 17, 17, 18, 18, 18, 18, 19, 1~
## $ cmi <chr> "HOMICIDIOS/ASESINATOS", "HOMICIDIOS/ASESINATOS", "HOM~
## $ arma_utilizada <chr> "arma blanca", "arma blanca", "arma de fuego", "arma d~
## $ vd_sexo <chr> "masculino", "masculino", "masculino", "masculino", "m~
## $ vd_edad <dbl> 36, 24, 20, 72, 23, 36, 41, 38, 28, 46, 20, 26, 21, 17~
## $ vd_nacionalidad <chr> "ECUATORIANA", "ECUATORIANA", "ECUATORIANA", "ECUATORI~
summary(Analisis_Delincuencia_Base_datos)
## canton distrito circuito subcircuito
## Length:21004 Length:21004 Length:21004 Length:21004
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## sector zona f_registro hora_registro
## Min. :1 Length:21004 Length:21004 Length:21004
## 1st Qu.:1 Class :character Class :character Class1:hms
## Median :1 Mode :character Mode :character Class2:difftime
## Mean :1 Mode :numeric
## 3rd Qu.:1
## Max. :1
## NA's :20628
## f_infraccion semanas 2 año_infraccion mes_infraccion
## Length:21004 Length:21004 Min. :2013 Length:21004
## Class :character Class :character 1st Qu.:2013 Class :character
## Mode :character Mode :character Median :2013 Mode :character
## Mean :2013
## 3rd Qu.:2013
## Max. :2013
##
## hora_infraccion dia_infraccion dia_mes cmi
## Length:21004 Length:21004 Min. : 1.00 Length:21004
## Class :character Class :character 1st Qu.: 8.00 Class :character
## Mode :character Mode :character Median :16.00 Mode :character
## Mean :15.73
## 3rd Qu.:23.00
## Max. :31.00
##
## arma_utilizada vd_sexo vd_edad vd_nacionalidad
## Length:21004 Length:21004 Min. : 3.00 Length:21004
## Class :character Class :character 1st Qu.: 28.00 Class :character
## Mode :character Mode :character Median : 35.00 Mode :character
## Mean : 36.99
## 3rd Qu.: 45.00
## Max. :103.00
## NA's :2
fecharegistro<- as.Date(Analisis_Delincuencia_Base_datos$f_registro, format("%d/%M/%Y"))
fechainfraccion<-as.Date(Analisis_Delincuencia_Base_datos$f_infraccion, format("%d/%M/%Y"))
mes<-as.factor(Analisis_Delincuencia_Base_datos$mes_infraccion)
tabladistrito <- table(Analisis_Delincuencia_Base_datos$distrito)
tabladistrito
##
## 09 DE OCTUBRE CEIBOS DURAN ESTEROS
## 3981 327 1524 1405
## FLORIDA MODELO NUEVA PROSPERINA PASCUALES
## 2009 4707 1055 1717
## PORTETE PROGRESO SAMBORONDON SUR
## 1664 135 321 2159
Distrito guayaquil
CrossTable(Analisis_Delincuencia_Base_datos$distrito,Analisis_Delincuencia_Base_datos$zona)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 21004
##
##
## | Analisis_Delincuencia_Base_datos$zona
## Analisis_Delincuencia_Base_datos$distrito | ZONA RURAL | ZONA URBANA | Row Total |
## ------------------------------------------|-------------|-------------|-------------|
## 09 DE OCTUBRE | 234 | 3747 | 3981 |
## | 0.083 | 0.005 | |
## | 0.059 | 0.941 | 0.190 |
## | 0.186 | 0.190 | |
## | 0.011 | 0.178 | |
## ------------------------------------------|-------------|-------------|-------------|
## CEIBOS | 25 | 302 | 327 |
## | 1.497 | 0.095 | |
## | 0.076 | 0.924 | 0.016 |
## | 0.020 | 0.015 | |
## | 0.001 | 0.014 | |
## ------------------------------------------|-------------|-------------|-------------|
## DURAN | 73 | 1451 | 1524 |
## | 3.660 | 0.233 | |
## | 0.048 | 0.952 | 0.073 |
## | 0.058 | 0.073 | |
## | 0.003 | 0.069 | |
## ------------------------------------------|-------------|-------------|-------------|
## ESTEROS | 89 | 1316 | 1405 |
## | 0.280 | 0.018 | |
## | 0.063 | 0.937 | 0.067 |
## | 0.071 | 0.067 | |
## | 0.004 | 0.063 | |
## ------------------------------------------|-------------|-------------|-------------|
## FLORIDA | 116 | 1893 | 2009 |
## | 0.156 | 0.010 | |
## | 0.058 | 0.942 | 0.096 |
## | 0.092 | 0.096 | |
## | 0.006 | 0.090 | |
## ------------------------------------------|-------------|-------------|-------------|
## MODELO | 288 | 4419 | 4707 |
## | 0.131 | 0.008 | |
## | 0.061 | 0.939 | 0.224 |
## | 0.229 | 0.224 | |
## | 0.014 | 0.210 | |
## ------------------------------------------|-------------|-------------|-------------|
## NUEVA PROSPERINA | 71 | 984 | 1055 |
## | 0.966 | 0.062 | |
## | 0.067 | 0.933 | 0.050 |
## | 0.056 | 0.050 | |
## | 0.003 | 0.047 | |
## ------------------------------------------|-------------|-------------|-------------|
## PASCUALES | 111 | 1606 | 1717 |
## | 0.648 | 0.041 | |
## | 0.065 | 0.935 | 0.082 |
## | 0.088 | 0.081 | |
## | 0.005 | 0.076 | |
## ------------------------------------------|-------------|-------------|-------------|
## PORTETE | 101 | 1563 | 1664 |
## | 0.018 | 0.001 | |
## | 0.061 | 0.939 | 0.079 |
## | 0.080 | 0.079 | |
## | 0.005 | 0.074 | |
## ------------------------------------------|-------------|-------------|-------------|
## PROGRESO | 8 | 127 | 135 |
## | 0.001 | 0.000 | |
## | 0.059 | 0.941 | 0.006 |
## | 0.006 | 0.006 | |
## | 0.000 | 0.006 | |
## ------------------------------------------|-------------|-------------|-------------|
## SAMBORONDON | 19 | 302 | 321 |
## | 0.003 | 0.000 | |
## | 0.059 | 0.941 | 0.015 |
## | 0.015 | 0.015 | |
## | 0.001 | 0.014 | |
## ------------------------------------------|-------------|-------------|-------------|
## SUR | 123 | 2036 | 2159 |
## | 0.308 | 0.020 | |
## | 0.057 | 0.943 | 0.103 |
## | 0.098 | 0.103 | |
## | 0.006 | 0.097 | |
## ------------------------------------------|-------------|-------------|-------------|
## Column Total | 1258 | 19746 | 21004 |
## | 0.060 | 0.940 | |
## ------------------------------------------|-------------|-------------|-------------|
##
##
g1<-ggplot(Analisis_Delincuencia_Base_datos, aes(x = distrito, fill="distrito"))
g1+geom_bar(color="blue") + theme(axis.text.x = element_text(angle=90))
CrossTable(Analisis_Delincuencia_Base_datos$vd_edad)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 21002
##
##
## | 3 | 6 | 10 | 11 | 12 |
## |-----------|-----------|-----------|-----------|-----------|
## | 4 | 1 | 2 | 1 | 3 |
## | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 13 | 14 | 15 | 16 | 17 |
## |-----------|-----------|-----------|-----------|-----------|
## | 1405 | 5 | 6 | 6 | 10 |
## | 0.067 | 0.000 | 0.000 | 0.000 | 0.000 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 18 | 19 | 20 | 21 | 22 |
## |-----------|-----------|-----------|-----------|-----------|
## | 17 | 81 | 209 | 298 | 356 |
## | 0.001 | 0.004 | 0.010 | 0.014 | 0.017 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 23 | 24 | 25 | 26 | 27 |
## |-----------|-----------|-----------|-----------|-----------|
## | 428 | 511 | 565 | 594 | 654 |
## | 0.020 | 0.024 | 0.027 | 0.028 | 0.031 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 28 | 29 | 30 | 31 | 32 |
## |-----------|-----------|-----------|-----------|-----------|
## | 670 | 654 | 700 | 724 | 751 |
## | 0.032 | 0.031 | 0.033 | 0.034 | 0.036 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 33 | 34 | 35 | 36 | 37 |
## |-----------|-----------|-----------|-----------|-----------|
## | 804 | 710 | 644 | 686 | 566 |
## | 0.038 | 0.034 | 0.031 | 0.033 | 0.027 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 38 | 39 | 40 | 41 | 42 |
## |-----------|-----------|-----------|-----------|-----------|
## | 523 | 534 | 473 | 464 | 464 |
## | 0.025 | 0.025 | 0.023 | 0.022 | 0.022 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 43 | 44 | 45 | 46 | 47 |
## |-----------|-----------|-----------|-----------|-----------|
## | 432 | 420 | 411 | 401 | 351 |
## | 0.021 | 0.020 | 0.020 | 0.019 | 0.017 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 48 | 49 | 50 | 51 | 52 |
## |-----------|-----------|-----------|-----------|-----------|
## | 354 | 377 | 358 | 313 | 292 |
## | 0.017 | 0.018 | 0.017 | 0.015 | 0.014 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 53 | 54 | 55 | 56 | 57 |
## |-----------|-----------|-----------|-----------|-----------|
## | 296 | 248 | 221 | 199 | 186 |
## | 0.014 | 0.012 | 0.011 | 0.009 | 0.009 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 58 | 59 | 60 | 61 | 62 |
## |-----------|-----------|-----------|-----------|-----------|
## | 209 | 148 | 146 | 118 | 97 |
## | 0.010 | 0.007 | 0.007 | 0.006 | 0.005 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 63 | 64 | 65 | 66 | 67 |
## |-----------|-----------|-----------|-----------|-----------|
## | 113 | 90 | 67 | 62 | 65 |
## | 0.005 | 0.004 | 0.003 | 0.003 | 0.003 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 68 | 69 | 70 | 71 | 72 |
## |-----------|-----------|-----------|-----------|-----------|
## | 63 | 45 | 35 | 40 | 34 |
## | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 73 | 74 | 75 | 76 | 77 |
## |-----------|-----------|-----------|-----------|-----------|
## | 25 | 20 | 15 | 20 | 19 |
## | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 78 | 79 | 80 | 81 | 82 |
## |-----------|-----------|-----------|-----------|-----------|
## | 22 | 14 | 14 | 7 | 11 |
## | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 83 | 84 | 85 | 86 | 87 |
## |-----------|-----------|-----------|-----------|-----------|
## | 5 | 3 | 2 | 1 | 1 |
## | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 88 | 89 | 90 | 91 | 93 |
## |-----------|-----------|-----------|-----------|-----------|
## | 1 | 2 | 1 | 1 | 4 |
## | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | 100 | 101 | 102 | 103 |
## |-----------|-----------|-----------|-----------|
## | 2 | 91 | 6 | 1 |
## | 0.000 | 0.004 | 0.000 | 0.000 |
## |-----------|-----------|-----------|-----------|
##
##
##
##
hist_O3 <- hist(Analisis_Delincuencia_Base_datos$vd_edad, main ="EDADES DONDE SE PRESENTA UN MAYOR NUMERO HOMICIDIOS",
xlab = " edad",
ylab = "Frecuencia",
col= "red")
CrossTable(Analisis_Delincuencia_Base_datos$vd_sexo)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 21004
##
##
## | femenino | masculino |
## |-----------|-----------|
## | 5530 | 15474 |
## | 0.263 | 0.737 |
## |-----------|-----------|
##
##
##
##
sexo<-as.factor(Analisis_Delincuencia_Base_datos$vd_sexo)
g1<-ggplot(Analisis_Delincuencia_Base_datos, aes(x = sexo, fill=sexo))
g1+geom_bar(color='yellow') + theme(axis.text.x = element_text(angle=90) )
CrossTable(Analisis_Delincuencia_Base_datos$vd_sexo,Analisis_Delincuencia_Base_datos$arma_utilizada)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 21004
##
##
## | Analisis_Delincuencia_Base_datos$arma_utilizada
## Analisis_Delincuencia_Base_datos$vd_sexo | arma blanca | arma de fuego | Row Total |
## -----------------------------------------|---------------|---------------|---------------|
## femenino | 1474 | 4056 | 5530 |
## | 0.418 | 0.149 | |
## | 0.267 | 0.733 | 0.263 |
## | 0.268 | 0.262 | |
## | 0.070 | 0.193 | |
## -----------------------------------------|---------------|---------------|---------------|
## masculino | 4031 | 11443 | 15474 |
## | 0.150 | 0.053 | |
## | 0.261 | 0.739 | 0.737 |
## | 0.732 | 0.738 | |
## | 0.192 | 0.545 | |
## -----------------------------------------|---------------|---------------|---------------|
## Column Total | 5505 | 15499 | 21004 |
## | 0.262 | 0.738 | |
## -----------------------------------------|---------------|---------------|---------------|
##
##
arma<-as.factor(Analisis_Delincuencia_Base_datos$arma_utilizada)
g1<-ggplot(Analisis_Delincuencia_Base_datos, aes(x = arma,fill=arma))
g1+geom_bar(col="blue") + theme(axis.text.x = element_text(angle=90))
ggplot(Analisis_Delincuencia_Base_datos, aes(sexo,distrito , colour = vd_edad)) +
geom_point(size = 10, alpha = 1/2) +
theme_minimal() +
scale_colour_continuous(low = "yellow", high = "blue")
CrossTable(Analisis_Delincuencia_Base_datos$dia_infraccion)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 21004
##
##
## | domingo | jueves | lunes | martes | miErcoles |
## |-----------|-----------|-----------|-----------|-----------|
## | 2438 | 3015 | 3072 | 2854 | 3118 |
## | 0.116 | 0.144 | 0.146 | 0.136 | 0.148 |
## |-----------|-----------|-----------|-----------|-----------|
##
##
## | sAbado | viernes |
## |-----------|-----------|
## | 3156 | 3351 |
## | 0.150 | 0.160 |
## |-----------|-----------|
##
##
##
##
Dias con mayor numero de delitos
dias<-as.factor(Analisis_Delincuencia_Base_datos$dia_infraccion)
ggplot(Analisis_Delincuencia_Base_datos,aes(x=dias,y="", fill=dias))+
geom_bar(stat = "identity")+
coord_polar(theta="y")
g1<-ggplot(Analisis_Delincuencia_Base_datos, aes(x = cmi, fill= arma))
g1+geom_bar(color="blue") + theme(axis.text.x = element_text(angle=90))
g1<-ggplot(Analisis_Delincuencia_Base_datos, aes(x = vd_edad, fill=cmi))
g1+geom_bar(color="blue") + theme(axis.text.x = element_text(angle=90))
## Warning: Removed 2 rows containing non-finite values (`stat_count()`).
## Los delitos que mas se cometieron en las diferentes edades y aqui nos
damos cuenta de los delitos que se cometen a la edad de 13 años ya que
en esa edad es muy alto a comparacion de las otras edades menores de
edad.
Gracias a nuestro analisis podemos ver como combatir estos delitos, el saber como realizar los operativos en conjunto con la policia de el distro metropolitano de guayaquil, tambien ahora sabemos que lugares son los que sufren mayor numero de delitos y asi mismo distribuir nuestro personal de seguridad.
concluimos que nuestro personal necesita estar preparado para toparse con delincuentes con arma de fuego y asi mismo no bajar la guardia y no exitan lesionados y mucho menos muertes, poder ver una disminucion en los delitos que suceden dia con dia y poder atrapar a las personas responsables de los mismos gracias a los operativos.