PRÁCTICA EN CLASE
library(ggfortify)
## Loading required package: ggplot2
library(see)
library(patchwork)
library(performance)
library(tidyverse)
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## ✔ tibble 3.1.8 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ✔ purrr 0.3.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(rio)
library(cluster)
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.2.2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(dplyr)
library(readxl)
IDH_2019 <- read_excel("IDH 2019.xlsx", sheet = "dist")
##. PASO 1
q10 <- IDH_2019 %>% select(3:8)
##. PASO 2
factoextra::fviz_nbclust(q10, kmeans, method = "silhouette") #silhouette
agrup<-kmeans(q10,centers=2)
cluster.km<-agrup$cluster
clusplot(q10,
agrup$cluster,
color=TRUE,
shade=TRUE,
labels=2,
lines=0)
##. CLUSTER JERARQUICO
matriz.dist<-dist(q10)
clust_01 <- hclust(matriz.dist , method = "complete")
clust_02 <- hclust(matriz.dist , method = "average")
clust_03 <- hclust(matriz.dist , method = "single")
plot(clust_01)
plot(clust_02)
plot(clust_02)
clust_01.1<-cutree(clust_01,h=4000)
lalal<-dplyr::mutate(q10,Clusterito.jerarquico=clust_01.1)
IDH<-dplyr::mutate(lalal,Clusterito.kmean=cluster.km )