6.1 Inverse Functions and Their Derivatives

1. 定義:一對一函數 (one-to-one function)

     一個函數 \(f\) 若滿足 \(x_1 \neq x_2\)\(f(x_1) \neq f(x_2)\)
     則稱 \(f\) 為一對一函數


     Math’s Fun:
     What is a Function? https://www.mathsisfun.com/sets/function.html
     Domain, Range and Codomain https://www.mathsisfun.com/sets/domain-range-codomain.html


2. 定義:反函數 (inverse function)

     \(f\) 為一對一函數,其定義域 (domain) 為 \(A\) ,值域 (range)為 \(B\)
     則反函數 \(f^{-1}\) 的定義域(domain) 為 \(B\) ,值域 (range) 為 \(A\)

\[f^{-1}(y)=x \Longleftrightarrow f(x)=y \quad \forall \; y\in B \]

3. \(x\)\(y\) 互換

\[f^{-1}(x)=y \Longleftrightarrow f(y)=x \]

4. 消去式 (cancellation equations)

\[f^{-1}(f(x))=x \quad \forall \; x\in A \] \[f(f^{-1}(x))=x \quad \forall \; x\in B \]


5. 反函數求法


     函數和反函數的圖形
     \(f(x)\)\(f^{-1}(x)\) 之圖形對稱直線於 \(y = x\)


6. 定理

     若 \(f\) 為一對一連續函數,則 \(f^{-1}\)也是連續函數


7. 定理

     若 \(f\) 為一對一的可微函數,其 \(f^{-1}\) 為反函數,且 \(f'(f^{-1}(a))\neq 0\)
     則反函數在點 \(a\) 可微和

\[(f^{-1})'(a) = \frac {1}{f'(f^{-1}(a))} \]


6.2 The Natural Logarithmic Function

1. 定義:自然對數函數 (natural logarithmic function)

\[\ln x =\int_{1}^{x} \frac {1}{t}\;dt \quad \quad x>0\]

2. 微分

\[\frac {d}{dx}\left ( \ln x\right)=\frac {1}{x} \]


3. 對數律 (Laws of Logarithms)

     假設\(x, y >0\)\(r\) 為有理數,則
     \((1)\quad\ln \left (xy\right)=\ln x + \ln y\)
     \((2)\quad\ln \left (\frac {x}{y}\right)=\ln x - \ln y\)
     \((3)\quad\ln \left (x^r\right)=r\ln x\)


4. 極限

     \((1)\quad\displaystyle\lim_{x \to \infty}\ln x =\infty\)
     \((2)\quad\displaystyle\lim_{x \to 0^+}\ln x =-\infty\)


5. 定義

\[\ln e =1\]

6. 連鎖律

     \((1)\quad\frac {d}{dx}\left ( \ln u\right)=\frac {1}{u}\frac {du}{dx}\)
     \((2)\quad\frac {d}{dx}\left [ \ln g(x)\right]=\frac {g'(x)}{g(x)}\)


7. 絕對值

\[\frac {d}{dx} \ln \mid x\mid=\frac {1}{x} \]

8.自然對數積分

     \((1)\quad\int \frac {1}{x}\;dx= \ln \mid x\mid+C\)
     \((2)\quad\int \tan x\;dx= \ln \mid\sec x\mid+C\)


6.3 The Natural Exponential Function

1. 自然指數函數 (natural exponential function)

\[\exp (x)=y \iff \ln y=x\]

2. 消去式

\[\exp (\ln x)=x \quad and \quad \ln (\exp x)=x\]

3. \(e^x=y \iff \ln y=x\)


4. \(e^{\ln x}=x \quad x>0\)


5. \(\ln (e^x)=x \quad \forall x\)


6. 自然指數函數性質

     指數函數 \(f(x)=e^x\) 為連續遞增函數,定義域為 \(\mathbb{R}\),值域為 \((0,\,\infty)\)
     因此 \(e^x>0 \quad \forall x\),而且

\[\quad\displaystyle\lim_{x \to -\infty} e^x =0 \quad \quad\displaystyle\lim_{x \to \infty}e^x =\infty\]

     所以 \(x\) 軸為 \(f(x)=e^x\) 的水平漸近線 (horizontal asymptote)


7. 指數律 (Laws of Exponents)

     \((1)\quad e^{x+y}=e^{x}e^y\)
     \((2)\quad e^{x-y}=\frac {e^x}{e^y}\)
     \((3)\quad (e^x)^r=e^{rx}\)


8. 指數微分

\[\quad\frac {d}{dx}\left ( e^x \right)=e^x\]

9. 連鎖律

\[\quad\frac {d}{dx}\left ( e^u \right)=e^u\frac {du}{dx}\]

10. 指數積分

\[\int e^x \;dx=e^x +C \]

6.4 General Logarithmic and Exponential Functions

1. \(b^x=e^{x\ln b}\)


2. \(\ln b^r=r\ln b \quad \forall \; r \in R\)


3. 連鎖律

     \(x\)\(y\) 為實數, \(a, b >0\)
     \((1)\quad b^{x+y}=b^{x}b^y\)
     \((2)\quad b^{x-y}=\frac {b^x}{b^y}\)
     \((3)\quad (b^x)^y=b^{xy}\)
     \((4)\quad (ab)^x=a^{x}b^x\)


4. 微分

\[\frac {d}{dx}\left (b^x \right)=b^{x} \ln b\]

5. 底數為 \(b\) 的對數函數

\[\log_b x =y \iff b^y=x\]

6. 換底公式

     \(b>0\) ,但 \(b\neq 1\)

\[\log_b x=\frac {\ln x}{\ln b}\]

7. \(\frac {d}{dx} \left (\log_b x \right )=\frac {1}{x \ln b}\)


8. 極限

\[e=\lim_{x \to 0}(1+x)^{\frac {1}{x}}\] \[e=\lim_{n \to \infty}(1+\frac {1}{n})^n\]

6.6 Inverse Trigonometric Functions

1. 反正弦函數 (inverse sine function, arcsine function)

\[\sin^{-1} x =y \iff \sin y =x \quad \rm and \quad -\frac {\pi}{2} \it\le y \le \rm\frac {\pi}{2}\]

2. 消去式 (cancellation equations)

     \((1)\quad \sin^{-1} \left ( \sin x \right ) =x \quad \rm for \,\quad -\frac {\pi}{2} \it\le x \le \rm\frac {\pi}{2}\)
     \((2)\quad \sin \left ( \sin^{-1} x \right ) =x \quad \rm for \quad -1 \it \le x \le \rm 1\)



3. 反正弦函數的微分

\[\frac {d}{dx} \left ( \sin^{-1} x \right) =\frac {1}{\sqrt{1-x^2}} \quad -1< x<1 \]


4. 反餘弦函數 (inverse cosine function)

\[\cos^{-1} x =y \iff \cos y =x \quad \rm and \quad 0 \it \le y \le \pi\]


5. 消去式 (cancellation equations)

     \((1)\quad \cos^{-1} \left ( \cos x \right ) =x \,\,\quad \rm for \quad 0 \le x \le \pi\)
     \((2)\quad \cos \left ( \cos^{-1} x \right ) =x \quad \rm for \quad -1 \it \le x \le \rm 1\)


6. 反餘弦函數的微分

\[\frac {d}{dx} \left ( \cos^{-1} x \right) =-\frac {1}{\sqrt{1-x^2}} \quad -1< x<1 \]

7. 反正切函數 (inverse tangent function)

\[\tan^{-1} x =y \iff \tan y =x \quad \rm and \quad -\frac {\pi}{2} < \it y < \rm\frac {\pi}{2}\]

8. 反正切函數的水平漸近線

     \((1)\quad\displaystyle\lim_{x \to -\infty}\tan^{-1} x =-\frac {\pi}{2}\)
     \((2)\quad\displaystyle\lim_{x \to \,\infty}\tan^{-1} x =\frac {\pi}{2}\)


9. 反正切函數的微分

\[\frac {d}{dx} \left ( \tan^{-1} x \right) =\frac {1}{1+x^2} \]

10. 反三角函數 (inverse trigonometric function)

     \((1)\quad y=\csc^{-1} x \, \left (|x|\ge 1 \right ) \iff \csc y =x \quad \rm and \quad \it y \in \rm (0,\frac {\pi}{2}]\,\cup\,(\pi,\frac {3\pi}{2}]\)
     \((2)\quad y=\sec^{-1} x \, \left (|x|\ge 1 \right ) \iff \sec y =x \quad \rm and \quad \it y \in \rm [0,\frac {\pi}{2})\,\cup\,[\pi,\frac {3\pi}{2})\)
     \((3)\quad y=\cot^{-1} x \, \left (x\in \mathbb{R} \right )\, \iff \cot y =x \quad \rm and \quad \it y \in \rm (0,\pi)\)


11. 反三角函數的微分

     \((1)\quad\frac {d}{dx} \left ( \sin^{-1} x \right) =\frac {1}{\sqrt{1-x^2}}\)
     \((2)\quad\frac {d}{dx} \left ( \cos^{-1} x \right) =-\frac {1}{\sqrt{1-x^2}}\)
     \((3)\quad\frac {d}{dx} \left ( \tan^{-1} x \right) =\frac {1}{1+x^2}\)
     \((4)\quad\frac {d}{dx} \left ( \cot^{-1} x \right) =-\frac {1}{1+x^2}\)
     \((5)\quad\frac {d}{dx} \left ( \sec^{-1} x \right) =\frac {1}{x\sqrt{x^2-1}}\)
     \((6)\quad\frac {d}{dx} \left ( \csc^{-1} x \right) =-\frac {1}{x\sqrt{x^2-1}}\)


11. 反三角函數的積分

     \((1)\quad\int \frac {1}{\sqrt{1-x^2}}\;dx= \sin^{-1}x + C\)
     \((2)\quad\int \frac {1}{1+x^2}\;dx =\tan^{-1}x+C\)
     \((3)\quad\int \frac {1}{x^2+a^2}\;dx =\frac{1}{a}\tan^{-1}\frac{x}{a}+C\)


6.7 Indeterminate Forms and l’Hospital’s Rule

1. 羅必達法則 (l’Hospital’s Rule)

     假設 \(f\)\(g\) 在開區間 \(I\) 可微,且 \(g'(x) \neq 0\),若

\[\displaystyle\lim_{x \to a} f(x) = 0 \quad and \quad \lim_{x \to a} g(x) = 0\]

     或者

\[\displaystyle\lim_{x \to a} f(x) = \pm\infty \quad and \quad \lim_{x \to a} g(x) = \pm\infty\]

     則

\[\lim_{x \to a} \frac {f(x)}{g(x)} = \lim_{x \to a} \frac {f'(x)}{g'(x)}\]

2. 柯西中值定理 (Cauchy’s Mean Value Theorem)

     假設 \(f\)\(g\)\([a,b]\) 連續,\(f\)\(g\)\((a,b)\) 可微,且 \(g'(x) \neq 0 \quad \forall\, x \in (a,b)\)
     則 \(\exists\,c\in(a,b)\) 使得

\[\frac {f'(c)}{g'(c)} = \frac {f(b)-f(a)}{g(b)-g()}\]



Reference :

Essential Calculus, metric edition 2e, (2022) James Stewart, Daniel K. Clegg, Saleem Watson, Cengage Learning.
Paul’s Online Notes
The LibreTexts libraries Methmatics
Math’s Fun