6.1 Inverse Functions and Their Derivatives
1. 定義:一對一函數 (one-to-one function)
一個函數 \(f\) 若滿足 \(x_1
\neq x_2\) 則 \(f(x_1) \neq
f(x_2)\),
則稱 \(f\) 為一對一函數
2. 定義:反函數 (inverse function)
\(f\)
為一對一函數,其定義域 (domain) 為 \(A\) ,值域 (range)為 \(B\)
則反函數 \(f^{-1}\)
的定義域(domain) 為 \(B\) ,值域
(range) 為 \(A\)
\[f^{-1}(y)=x \Longleftrightarrow f(x)=y
\quad \forall \; y\in B \]
3. \(x\) 和 \(y\) 互換
\[f^{-1}(x)=y \Longleftrightarrow
f(y)=x \]
4. 消去式 (cancellation equations)
\[f^{-1}(f(x))=x \quad \forall \; x\in
A \] \[f(f^{-1}(x))=x \quad \forall
\; x\in B \]
5. 反函數求法
函數和反函數的圖形
\(f(x)\) 與 \(f^{-1}(x)\) 之圖形對稱直線於 \(y = x\)
6. 定理
若 \(f\)
為一對一連續函數,則 \(f^{-1}\)也是連續函數
7. 定理
若 \(f\)
為一對一的可微函數,其 \(f^{-1}\)
為反函數,且 \(f'(f^{-1}(a))\neq
0\),
則反函數在點 \(a\) 可微和
\[(f^{-1})'(a) = \frac
{1}{f'(f^{-1}(a))} \]
6.2 The Natural Logarithmic Function
1. 定義:自然對數函數 (natural logarithmic function)
\[\ln x =\int_{1}^{x} \frac {1}{t}\;dt
\quad \quad x>0\]
2. 微分
\[\frac {d}{dx}\left ( \ln x\right)=\frac
{1}{x} \]
3. 對數律 (Laws of Logarithms)
假設\(x, y
>0\) 和 \(r\)
為有理數,則
\((1)\quad\ln \left (xy\right)=\ln x +
\ln y\)
\((2)\quad\ln \left (\frac
{x}{y}\right)=\ln x - \ln y\)
\((3)\quad\ln \left (x^r\right)=r\ln
x\)
4. 極限
\((1)\quad\displaystyle\lim_{x \to \infty}\ln x
=\infty\)
\((2)\quad\displaystyle\lim_{x \to
0^+}\ln x =-\infty\)
6. 連鎖律
\((1)\quad\frac
{d}{dx}\left ( \ln u\right)=\frac {1}{u}\frac {du}{dx}\)
\((2)\quad\frac {d}{dx}\left [ \ln
g(x)\right]=\frac {g'(x)}{g(x)}\)
7. 絕對值
\[\frac {d}{dx} \ln \mid x\mid=\frac
{1}{x} \]
8.自然對數積分
\((1)\quad\int
\frac {1}{x}\;dx= \ln \mid x\mid+C\)
\((2)\quad\int \tan x\;dx= \ln \mid\sec
x\mid+C\)
6.3 The Natural Exponential Function
1. 自然指數函數 (natural exponential function)
\[\exp (x)=y \iff \ln y=x\]
2. 消去式
\[\exp (\ln x)=x \quad and \quad \ln (\exp
x)=x\]
3. \(e^x=y \iff \ln y=x\)
4. \(e^{\ln x}=x \quad
x>0\)
5. \(\ln (e^x)=x \quad \forall
x\)
6. 自然指數函數性質
指數函數 \(f(x)=e^x\) 為連續遞增函數,定義域為 \(\mathbb{R}\),值域為 \((0,\,\infty)\)
因此 \(e^x>0 \quad \forall
x\),而且
\[\quad\displaystyle\lim_{x \to -\infty}
e^x =0 \quad \quad\displaystyle\lim_{x \to \infty}e^x
=\infty\]
所以 \(x\)
軸為 \(f(x)=e^x\) 的水平漸近線
(horizontal asymptote)
7. 指數律 (Laws of Exponents)
\((1)\quad
e^{x+y}=e^{x}e^y\)
\((2)\quad e^{x-y}=\frac
{e^x}{e^y}\)
\((3)\quad (e^x)^r=e^{rx}\)
8. 指數微分
\[\quad\frac {d}{dx}\left ( e^x
\right)=e^x\]
9. 連鎖律
\[\quad\frac {d}{dx}\left ( e^u
\right)=e^u\frac {du}{dx}\]
10. 指數積分
\[\int e^x \;dx=e^x +C \]
6.4 General Logarithmic and Exponential Functions
2. \(\ln b^r=r\ln b \quad \forall \; r \in
R\)
3. 連鎖律
\(x\) 和
\(y\) 為實數, \(a, b >0\)
\((1)\quad
b^{x+y}=b^{x}b^y\)
\((2)\quad b^{x-y}=\frac
{b^x}{b^y}\)
\((3)\quad (b^x)^y=b^{xy}\)
\((4)\quad (ab)^x=a^{x}b^x\)
4. 微分
\[\frac {d}{dx}\left (b^x \right)=b^{x}
\ln b\]
5. 底數為 \(b\) 的對數函數
\[\log_b x =y \iff b^y=x\]
6. 換底公式
\(b>0\)
,但 \(b\neq 1\)
\[\log_b x=\frac {\ln x}{\ln b}\]
7. \(\frac {d}{dx} \left (\log_b x \right
)=\frac {1}{x \ln b}\)
8. 極限
\[e=\lim_{x \to 0}(1+x)^{\frac
{1}{x}}\] \[e=\lim_{n \to
\infty}(1+\frac {1}{n})^n\]
6.6 Inverse Trigonometric Functions
1. 反正弦函數 (inverse sine function, arcsine function)
\[\sin^{-1} x =y \iff \sin y =x \quad \rm
and \quad -\frac {\pi}{2} \it\le y \le \rm\frac {\pi}{2}\]
2. 消去式 (cancellation equations)
\((1)\quad
\sin^{-1} \left ( \sin x \right ) =x \quad \rm for \,\quad -\frac
{\pi}{2} \it\le x \le \rm\frac {\pi}{2}\)
\((2)\quad \sin \left ( \sin^{-1} x
\right ) =x \quad \rm for \quad -1 \it \le x \le \rm 1\)
3. 反正弦函數的微分
\[\frac {d}{dx} \left ( \sin^{-1} x
\right) =\frac {1}{\sqrt{1-x^2}} \quad -1< x<1 \]
4. 反餘弦函數 (inverse cosine function)
\[\cos^{-1} x =y \iff \cos y =x \quad \rm
and \quad 0 \it \le y \le \pi\]
5. 消去式 (cancellation equations)
\((1)\quad
\cos^{-1} \left ( \cos x \right ) =x \,\,\quad \rm for \quad 0 \le x \le
\pi\)
\((2)\quad \cos \left ( \cos^{-1} x
\right ) =x \quad \rm for \quad -1 \it \le x \le \rm 1\)
6. 反餘弦函數的微分
\[\frac {d}{dx} \left ( \cos^{-1} x
\right) =-\frac {1}{\sqrt{1-x^2}} \quad -1< x<1 \]
7. 反正切函數 (inverse tangent function)
\[\tan^{-1} x =y \iff \tan y =x \quad \rm
and \quad -\frac {\pi}{2} < \it y < \rm\frac {\pi}{2}\]
8. 反正切函數的水平漸近線
\((1)\quad\displaystyle\lim_{x \to -\infty}\tan^{-1}
x =-\frac {\pi}{2}\)
\((2)\quad\displaystyle\lim_{x \to
\,\infty}\tan^{-1} x =\frac {\pi}{2}\)
9. 反正切函數的微分
\[\frac {d}{dx} \left ( \tan^{-1} x
\right) =\frac {1}{1+x^2} \]
10. 反三角函數 (inverse trigonometric function)
\((1)\quad
y=\csc^{-1} x \, \left (|x|\ge 1 \right ) \iff \csc y =x \quad \rm and
\quad \it y \in \rm (0,\frac {\pi}{2}]\,\cup\,(\pi,\frac
{3\pi}{2}]\)
\((2)\quad y=\sec^{-1} x \, \left (|x|\ge
1 \right ) \iff \sec y =x \quad \rm and \quad \it y \in \rm [0,\frac
{\pi}{2})\,\cup\,[\pi,\frac {3\pi}{2})\)
\((3)\quad y=\cot^{-1} x \, \left (x\in
\mathbb{R} \right )\, \iff \cot y =x \quad \rm and \quad \it y \in \rm
(0,\pi)\)
11. 反三角函數的微分
\((1)\quad\frac
{d}{dx} \left ( \sin^{-1} x \right) =\frac
{1}{\sqrt{1-x^2}}\)
\((2)\quad\frac {d}{dx} \left ( \cos^{-1}
x \right) =-\frac {1}{\sqrt{1-x^2}}\)
\((3)\quad\frac {d}{dx} \left ( \tan^{-1}
x \right) =\frac {1}{1+x^2}\)
\((4)\quad\frac {d}{dx} \left ( \cot^{-1}
x \right) =-\frac {1}{1+x^2}\)
\((5)\quad\frac {d}{dx} \left ( \sec^{-1}
x \right) =\frac {1}{x\sqrt{x^2-1}}\)
\((6)\quad\frac {d}{dx} \left ( \csc^{-1}
x \right) =-\frac {1}{x\sqrt{x^2-1}}\)
11. 反三角函數的積分
\((1)\quad\int
\frac {1}{\sqrt{1-x^2}}\;dx= \sin^{-1}x + C\)
\((2)\quad\int \frac {1}{1+x^2}\;dx
=\tan^{-1}x+C\)
\((3)\quad\int \frac {1}{x^2+a^2}\;dx
=\frac{1}{a}\tan^{-1}\frac{x}{a}+C\)