Observations

In Snider’s comparison set, it is apparent that the school with the highest percentage of tested students at the SAT Math benchmark has the lowest percentage of students relying on Free/Reduced Lunch. Attica High School has the highest SAT Math scoring rate, with 31% of students at the SAT Math benchmark and the lowest percentage of students relying on Free/Reduced Lunch, with a rate of 46%.

Correspondingly, in North Side’s comparison set, it is notable that the schools with the lowest percentage of tested students at the SAT Math benchmark have the highest rate of students relying on Free/Reduced Lunch. Fort Wayne Virtual Academy has the highest percentage of students using Free/Reduced Lunch, with a rate of 69%, and the second-lowest SAT Math scoring rate, with 5% of students at the SAT Math benchmark. Emmerich Manual High School has the second-highest percentage of students relying on Free/Reduced Lunch, with a rate of 68%, and the lowest SAT Math scoring rate, with 2.3% of students at the SAT Math benchmark.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0     ✔ purrr   0.3.4
## ✔ tibble  3.1.8     ✔ stringr 1.4.0
## ✔ tidyr   1.2.1     ✔ forcats 0.5.2
## ✔ readr   2.1.3     ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(DT)
library(readxl)
SAT_2022_Grade11_Final_School_v2_1_ <- read_excel("SAT-2022-Grade11-Final-School-v2 (1).xlsx")
SATEnglish <- SAT_2022_Grade11_Final_School_v2_1_
library(readxl)
Copy_of_SAT_2022_Grade11_Final_School_v2 <- read_excel("Copy of SAT-2022-Grade11-Final-School-v2.xlsx")
SATMath <- Copy_of_SAT_2022_Grade11_Final_School_v2
library(readxl)
Copy_of_Copy_of_SAT_2022_Grade11_Final_School_v2 <- read_excel("Copy of Copy of SAT-2022-Grade11-Final-School-v2.xlsx")
Combined <- Copy_of_Copy_of_SAT_2022_Grade11_Final_School_v2
library(readxl)
school_enrollment_ethnicity_and_free_reduced_price_meal_status_2006_22_2_ <- read_excel("school-enrollment-ethnicity-and-free-reduced-price-meal-status-2006-22 (2).xlsx")
Enrollment <- school_enrollment_ethnicity_and_free_reduced_price_meal_status_2006_22_2_ 
  #mutate(SATMath)
Combined <-
  Enrollment %>%
  mutate(Diversity = `Free/Reduced Price Meals`/`TOTAL ENROLLMENT`)%>%
  select(`School Name`, Diversity) %>%
  filter(Diversity > .43 & Diversity < .53)
SATMath%>%
  left_join(Combined)%>%
  filter(Diversity > .46 & Diversity < .50)
## Joining, by = "School Name"
## # A tibble: 25 × 10
##    `Corp ID` `Corp Name` Schoo…¹ Schoo…² Math\…³ Math …⁴ Math …⁵ Math\…⁶ Math\…⁷
##    <chr>     <chr>       <chr>   <chr>   <chr>   <chr>   <chr>     <dbl> <chr>  
##  1 0235      Fort Wayne… 0102    R Nels… 218     99      99          416 0.2379…
##  2 0775      Pioneer Re… 0645    Pionee… 39      19      18           76 0.2368…
##  3 1000      Clarksvill… 0833    Clarks… 61      18      13           92 0.1413…
##  4 1730      Greensburg… 1268    Greens… 75      34      40          149 0.2684…
##  5 2305      Elkhart Co… 1754    Elkhar… 429     135     123         687 0.1790…
##  6 2315      Goshen Com… 1821    Goshen… 222     110     111         443 0.2505…
##  7 2400      New Albany… 2408    NAFC V… 11      6       4            21 0.1904…
##  8 2435      Attica Con… 2053    Attica… 22      11      15           48 0.3125 
##  9 3445      New Castle… 2825    New Ca… 94      42      40          176 0.2272…
## 10 3500      Kokomo Sch… 3013    Kokomo… 195     72      56          323 0.1733…
## # … with 15 more rows, 1 more variable: Diversity <dbl>, and abbreviated
## #   variable names ¹​`School ID`, ²​`School Name`, ³​`Math\r\nBelow Benchmark`,
## #   ⁴​`Math \r\nApproaching Benchmark`, ⁵​`Math \r\nAt\r\nBenchmark`,
## #   ⁶​`Math\r\nTotal\r\nTested`, ⁷​`Math\r\nBenchmark \r\n%`
Combined%>%
  right_join(SATMath)%>%
  filter(Diversity > .46 & Diversity < .50)
## Joining, by = "School Name"
## # A tibble: 25 × 10
##    `School Name` Diver…¹ Corp …² Corp …³ Schoo…⁴ Math\…⁵ Math …⁶ Math …⁷ Math\…⁸
##    <chr>           <dbl> <chr>   <chr>   <chr>   <chr>   <chr>   <chr>     <dbl>
##  1 R Nelson Sni…   0.481 0235    Fort W… 0102    218     99      99          416
##  2 Pioneer Jr-S…   0.494 0775    Pionee… 0645    39      19      18           76
##  3 Clarksville …   0.478 1000    Clarks… 0833    61      18      13           92
##  4 Greensburg C…   0.475 1730    Greens… 1268    75      34      40          149
##  5 Elkhart High…   0.473 2305    Elkhar… 1754    429     135     123         687
##  6 Goshen High …   0.497 2315    Goshen… 1821    222     110     111         443
##  7 NAFC Virtual…   0.475 2400    New Al… 2408    11      6       4            21
##  8 Attica High …   0.463 2435    Attica… 2053    22      11      15           48
##  9 New Castle H…   0.479 3445    New Ca… 2825    94      42      40          176
## 10 Kokomo High …   0.491 3500    Kokomo… 3013    195     72      56          323
## # … with 15 more rows, 1 more variable: `Math\r\nBenchmark \r\n%` <chr>, and
## #   abbreviated variable names ¹​Diversity, ²​`Corp ID`, ³​`Corp Name`,
## #   ⁴​`School ID`, ⁵​`Math\r\nBelow Benchmark`,
## #   ⁶​`Math \r\nApproaching Benchmark`, ⁷​`Math \r\nAt\r\nBenchmark`,
## #   ⁸​`Math\r\nTotal\r\nTested`
Combined%>%
  right_join(SATEnglish)%>%
  filter(Diversity > .46 & Diversity < .50)
## Joining, by = "School Name"
## # A tibble: 25 × 10
##    `School Name` Diver…¹ Corp …² Corp …³ Schoo…⁴ EBRW\…⁵ EBRW …⁶ EBRW …⁷ EBRW\…⁸
##    <chr>           <dbl> <chr>   <chr>   <chr>   <chr>   <chr>   <chr>     <dbl>
##  1 R Nelson Sni…   0.481 0235    Fort W… 0102    174     62      180         416
##  2 Pioneer Jr-S…   0.494 0775    Pionee… 0645    35      9       32           76
##  3 Clarksville …   0.478 1000    Clarks… 0833    49      10      33           92
##  4 Greensburg C…   0.475 1730    Greens… 1268    55      23      71          149
##  5 Elkhart High…   0.473 2305    Elkhar… 1754    357     93      237         687
##  6 Goshen High …   0.497 2315    Goshen… 1821    211     57      175         443
##  7 NAFC Virtual…   0.475 2400    New Al… 2408    12      1       8            21
##  8 Attica High …   0.463 2435    Attica… 2053    22      4       22           48
##  9 New Castle H…   0.479 3445    New Ca… 2825    78      33      65          176
## 10 Kokomo High …   0.491 3500    Kokomo… 3013    173     33      117         323
## # … with 15 more rows, 1 more variable: `EBRW\r\nBenchmark \r\n%` <chr>, and
## #   abbreviated variable names ¹​Diversity, ²​`Corp ID`, ³​`Corp Name`,
## #   ⁴​`School ID`, ⁵​`EBRW\r\nBelow Benchmark`,
## #   ⁶​`EBRW \r\nApproaching Benchmark`, ⁷​`EBRW \r\nAt\r\nBenchmark`,
## #   ⁸​`EBRW\r\nTotal\r\nTested`
NorthSide <-
  Enrollment %>%
  mutate(Diversity = `Free/Reduced Price Meals`/`TOTAL ENROLLMENT`)%>%
  select(`School Name`, Diversity) %>%
  filter(Diversity > .65 & Diversity < .70)
NorthSide
## # A tibble: 96 × 2
##    `School Name`                     Diversity
##    <chr>                                 <dbl>
##  1 North Side High School                0.679
##  2 Wayne High School                     0.655
##  3 Mabel K Holland Elementary School     0.651
##  4 Indian Village Elementary School      0.668
##  5 John S Irwin Elementary School        0.653
##  6 Lindley Elementary School             0.671
##  7 Shawnee Middle School                 0.677
##  8 Fort Wayne Virtual Academy            0.696
##  9 Lincoln Elementary School             0.681
## 10 Clifty Creek Elementary School        0.667
## # … with 86 more rows
NSSAT <- SATMath%>%
  left_join(NorthSide)%>%
  filter(Diversity > .65 & Diversity < .70)
## Joining, by = "School Name"
NSSAT
## # A tibble: 19 × 10
##    `Corp ID` `Corp Name` Schoo…¹ Schoo…² Math\…³ Math …⁴ Math …⁵ Math\…⁶ Math\…⁷
##    <chr>     <chr>       <chr>   <chr>   <chr>   <chr>   <chr>     <dbl> <chr>  
##  1 0235      Fort Wayne… 0101    North … 245     58      45          348 0.1293…
##  2 0235      Fort Wayne… 0177    Wayne … 200     64      36          300 0.12   
##  3 0235      Fort Wayne… 0248    Fort W… 15      4       1            20 0.05   
##  4 1170      Community … 0997    Frankf… 129     50      22          201 0.1094…
##  5 4600      Merrillvil… 3809    Merril… 291     94      67          452 0.1482…
##  6 5275      Anderson C… 4945    Anders… 249     69      46          364 0.1263…
##  7 5300      MSD Decatu… 5177    Decatu… 227     111     54          392 0.1377…
##  8 5380      Beech Grov… 5449    Beech … 116     47      26          189 0.1375…
##  9 5385      Indianapol… 5462    Arsena… 308     31      8           347 2.3054…
## 10 5385      Indianapol… 5482    Emmeri… 70      12      2            84 2.3809…
## 11 6340      Cannelton … 6733    Cannel… 19      1       0            20 0      
## 12 6795      Union Scho… 7131    Indian… 255     58      24          337 7.1216…
## 13 7205      South Bend… 7534    Rise U… 24      0       1            25 0.04   
## 14 8385      Richmond C… 8993    Richmo… 160     58      33          251 0.1314…
## 15 8385      Richmond C… 9056    Commun… ***     ***     ***           3 ***    
## 16 9015      Purdue Pol… 4271    Purdue… 50      25      12           87 0.1379…
## 17 9610      Indiana Sc… C695    Indian… 17      1       0            18 0      
## 18 9885      Gary Middl… 4027    Gary M… 41      2       0            43 0      
## 19 9950      Dugger Uni… 7952    Dugger… 39      3       3            45 6.6666…
## # … with 1 more variable: Diversity <dbl>, and abbreviated variable names
## #   ¹​`School ID`, ²​`School Name`, ³​`Math\r\nBelow Benchmark`,
## #   ⁴​`Math \r\nApproaching Benchmark`, ⁵​`Math \r\nAt\r\nBenchmark`,
## #   ⁶​`Math\r\nTotal\r\nTested`, ⁷​`Math\r\nBenchmark \r\n%`
datatable(NSSAT)
NorthSide%>%
  right_join(SATMath)%>%
  filter(Diversity > .65 & Diversity < .70)
## Joining, by = "School Name"
## # A tibble: 19 × 10
##    `School Name` Diver…¹ Corp …² Corp …³ Schoo…⁴ Math\…⁵ Math …⁶ Math …⁷ Math\…⁸
##    <chr>           <dbl> <chr>   <chr>   <chr>   <chr>   <chr>   <chr>     <dbl>
##  1 North Side H…   0.679 0235    Fort W… 0101    245     58      45          348
##  2 Wayne High S…   0.655 0235    Fort W… 0177    200     64      36          300
##  3 Fort Wayne V…   0.696 0235    Fort W… 0248    15      4       1            20
##  4 Frankfort Hi…   0.677 1170    Commun… 0997    129     50      22          201
##  5 Merrillville…   0.674 4600    Merril… 3809    291     94      67          452
##  6 Anderson Hig…   0.657 5275    Anders… 4945    249     69      46          364
##  7 Decatur Cent…   0.663 5300    MSD De… 5177    227     111     54          392
##  8 Beech Grove …   0.661 5380    Beech … 5449    116     47      26          189
##  9 Arsenal Tech…   0.661 5385    Indian… 5462    308     31      8           347
## 10 Emmerich Man…   0.68  5385    Indian… 5482    70      12      2            84
## 11 Cannelton El…   0.657 6340    Cannel… 6733    19      1       0            20
## 12 Indiana Digi…   0.656 6795    Union … 7131    255     58      24          337
## 13 Rise Up Acad…   0.667 7205    South … 7534    24      0       1            25
## 14 Richmond Hig…   0.656 8385    Richmo… 8993    160     58      33          251
## 15 Community Yo…   0.670 8385    Richmo… 9056    ***     ***     ***           3
## 16 Purdue Polyt…   0.659 9015    Purdue… 4271    50      25      12           87
## 17 Indiana Scho…   0.696 9610    Indian… C695    17      1       0            18
## 18 Gary Middle …   0.697 9885    Gary M… 4027    41      2       0            43
## 19 Dugger Union…   0.651 9950    Dugger… 7952    39      3       3            45
## # … with 1 more variable: `Math\r\nBenchmark \r\n%` <chr>, and abbreviated
## #   variable names ¹​Diversity, ²​`Corp ID`, ³​`Corp Name`, ⁴​`School ID`,
## #   ⁵​`Math\r\nBelow Benchmark`, ⁶​`Math \r\nApproaching Benchmark`,
## #   ⁷​`Math \r\nAt\r\nBenchmark`, ⁸​`Math\r\nTotal\r\nTested`
NorthSide%>%
  right_join(SATEnglish)%>%
  filter(Diversity > .65 & Diversity < .70)
## Joining, by = "School Name"
## # A tibble: 19 × 10
##    `School Name` Diver…¹ Corp …² Corp …³ Schoo…⁴ EBRW\…⁵ EBRW …⁶ EBRW …⁷ EBRW\…⁸
##    <chr>           <dbl> <chr>   <chr>   <chr>   <chr>   <chr>   <chr>     <dbl>
##  1 North Side H…   0.679 0235    Fort W… 0101    196     32      120         348
##  2 Wayne High S…   0.655 0235    Fort W… 0177    170     28      102         300
##  3 Fort Wayne V…   0.696 0235    Fort W… 0248    11      4       5            20
##  4 Frankfort Hi…   0.677 1170    Commun… 0997    129     27      45          201
##  5 Merrillville…   0.674 4600    Merril… 3809    255     52      145         452
##  6 Anderson Hig…   0.657 5275    Anders… 4945    232     30      102         364
##  7 Decatur Cent…   0.663 5300    MSD De… 5177    202     47      143         392
##  8 Beech Grove …   0.661 5380    Beech … 5449    98      25      66          189
##  9 Arsenal Tech…   0.661 5385    Indian… 5462    279     31      37          347
## 10 Emmerich Man…   0.68  5385    Indian… 5482    66      9       9            84
## 11 Cannelton El…   0.657 6340    Cannel… 6733    16      1       3            20
## 12 Indiana Digi…   0.656 6795    Union … 7131    178     48      111         337
## 13 Rise Up Acad…   0.667 7205    South … 7534    18      5       2            25
## 14 Richmond Hig…   0.656 8385    Richmo… 8993    125     32      94          251
## 15 Community Yo…   0.670 8385    Richmo… 9056    ***     ***     ***           3
## 16 Purdue Polyt…   0.659 9015    Purdue… 4271    44      11      32           87
## 17 Indiana Scho…   0.696 9610    Indian… C695    17      0       1            18
## 18 Gary Middle …   0.697 9885    Gary M… 4027    39      2       2            43
## 19 Dugger Union…   0.651 9950    Dugger… 7952    26      5       14           45
## # … with 1 more variable: `EBRW\r\nBenchmark \r\n%` <chr>, and abbreviated
## #   variable names ¹​Diversity, ²​`Corp ID`, ³​`Corp Name`, ⁴​`School ID`,
## #   ⁵​`EBRW\r\nBelow Benchmark`, ⁶​`EBRW \r\nApproaching Benchmark`,
## #   ⁷​`EBRW \r\nAt\r\nBenchmark`, ⁸​`EBRW\r\nTotal\r\nTested`
Snider <-
  Enrollment %>%
  mutate(Diversity = `Free/Reduced Price Meals`/`TOTAL ENROLLMENT`)%>%
  select(`School Name`, Diversity) %>%
  filter(Diversity > .46 & Diversity < .50)
Snider
## # A tibble: 109 × 2
##    `School Name`                    Diversity
##    <chr>                                <dbl>
##  1 Bellmont Middle School               0.475
##  2 R Nelson Snider High School          0.481
##  3 Saint Joseph Central School          0.496
##  4 L F Smith Elementary                 0.497
##  5 Hope Elementary School               0.470
##  6 Lebanon Middle School                0.471
##  7 Pioneer Jr-Sr High School            0.494
##  8 Clarksville Senior High School       0.478
##  9 Jonathan Jennings Elementary Sch     0.492
## 10 North Clay Middle School             0.483
## # … with 99 more rows
SSAT <- SATMath%>%
  left_join(Snider)%>%
  filter(Diversity > .46 & Diversity < .50)
## Joining, by = "School Name"
SSAT
## # A tibble: 25 × 10
##    `Corp ID` `Corp Name` Schoo…¹ Schoo…² Math\…³ Math …⁴ Math …⁵ Math\…⁶ Math\…⁷
##    <chr>     <chr>       <chr>   <chr>   <chr>   <chr>   <chr>     <dbl> <chr>  
##  1 0235      Fort Wayne… 0102    R Nels… 218     99      99          416 0.2379…
##  2 0775      Pioneer Re… 0645    Pionee… 39      19      18           76 0.2368…
##  3 1000      Clarksvill… 0833    Clarks… 61      18      13           92 0.1413…
##  4 1730      Greensburg… 1268    Greens… 75      34      40          149 0.2684…
##  5 2305      Elkhart Co… 1754    Elkhar… 429     135     123         687 0.1790…
##  6 2315      Goshen Com… 1821    Goshen… 222     110     111         443 0.2505…
##  7 2400      New Albany… 2408    NAFC V… 11      6       4            21 0.1904…
##  8 2435      Attica Con… 2053    Attica… 22      11      15           48 0.3125 
##  9 3445      New Castle… 2825    New Ca… 94      42      40          176 0.2272…
## 10 3500      Kokomo Sch… 3013    Kokomo… 195     72      56          323 0.1733…
## # … with 15 more rows, 1 more variable: Diversity <dbl>, and abbreviated
## #   variable names ¹​`School ID`, ²​`School Name`, ³​`Math\r\nBelow Benchmark`,
## #   ⁴​`Math \r\nApproaching Benchmark`, ⁵​`Math \r\nAt\r\nBenchmark`,
## #   ⁶​`Math\r\nTotal\r\nTested`, ⁷​`Math\r\nBenchmark \r\n%`
datatable(SSAT)
Snider%>%
  right_join(SATMath)%>%
  filter(Diversity > .46 & Diversity < .50)
## Joining, by = "School Name"
## # A tibble: 25 × 10
##    `School Name` Diver…¹ Corp …² Corp …³ Schoo…⁴ Math\…⁵ Math …⁶ Math …⁷ Math\…⁸
##    <chr>           <dbl> <chr>   <chr>   <chr>   <chr>   <chr>   <chr>     <dbl>
##  1 R Nelson Sni…   0.481 0235    Fort W… 0102    218     99      99          416
##  2 Pioneer Jr-S…   0.494 0775    Pionee… 0645    39      19      18           76
##  3 Clarksville …   0.478 1000    Clarks… 0833    61      18      13           92
##  4 Greensburg C…   0.475 1730    Greens… 1268    75      34      40          149
##  5 Elkhart High…   0.473 2305    Elkhar… 1754    429     135     123         687
##  6 Goshen High …   0.497 2315    Goshen… 1821    222     110     111         443
##  7 NAFC Virtual…   0.475 2400    New Al… 2408    11      6       4            21
##  8 Attica High …   0.463 2435    Attica… 2053    22      11      15           48
##  9 New Castle H…   0.479 3445    New Ca… 2825    94      42      40          176
## 10 Kokomo High …   0.491 3500    Kokomo… 3013    195     72      56          323
## # … with 15 more rows, 1 more variable: `Math\r\nBenchmark \r\n%` <chr>, and
## #   abbreviated variable names ¹​Diversity, ²​`Corp ID`, ³​`Corp Name`,
## #   ⁴​`School ID`, ⁵​`Math\r\nBelow Benchmark`,
## #   ⁶​`Math \r\nApproaching Benchmark`, ⁷​`Math \r\nAt\r\nBenchmark`,
## #   ⁸​`Math\r\nTotal\r\nTested`
Snider%>%
  right_join(SATEnglish)%>%
  filter(Diversity > .46 & Diversity < .50)
## Joining, by = "School Name"
## # A tibble: 25 × 10
##    `School Name` Diver…¹ Corp …² Corp …³ Schoo…⁴ EBRW\…⁵ EBRW …⁶ EBRW …⁷ EBRW\…⁸
##    <chr>           <dbl> <chr>   <chr>   <chr>   <chr>   <chr>   <chr>     <dbl>
##  1 R Nelson Sni…   0.481 0235    Fort W… 0102    174     62      180         416
##  2 Pioneer Jr-S…   0.494 0775    Pionee… 0645    35      9       32           76
##  3 Clarksville …   0.478 1000    Clarks… 0833    49      10      33           92
##  4 Greensburg C…   0.475 1730    Greens… 1268    55      23      71          149
##  5 Elkhart High…   0.473 2305    Elkhar… 1754    357     93      237         687
##  6 Goshen High …   0.497 2315    Goshen… 1821    211     57      175         443
##  7 NAFC Virtual…   0.475 2400    New Al… 2408    12      1       8            21
##  8 Attica High …   0.463 2435    Attica… 2053    22      4       22           48
##  9 New Castle H…   0.479 3445    New Ca… 2825    78      33      65          176
## 10 Kokomo High …   0.491 3500    Kokomo… 3013    173     33      117         323
## # … with 15 more rows, 1 more variable: `EBRW\r\nBenchmark \r\n%` <chr>, and
## #   abbreviated variable names ¹​Diversity, ²​`Corp ID`, ³​`Corp Name`,
## #   ⁴​`School ID`, ⁵​`EBRW\r\nBelow Benchmark`,
## #   ⁶​`EBRW \r\nApproaching Benchmark`, ⁷​`EBRW \r\nAt\r\nBenchmark`,
## #   ⁸​`EBRW\r\nTotal\r\nTested`
 ggplot(data = NSSAT, mapping = aes(x = `School Name`, y = 'Math Total Tested')) +
  geom_col() +
  theme(axis.text.x = element_text(angle=45, vjust=1, hjust=1))

 ggplot(data = NSSAT, mapping = aes(x = `School Name`, y = 'Math Total Tested')) +
  geom_col() +
  theme(axis.text.x = element_text(angle=45, vjust=1, hjust=1))