# Load packages
# Core
library(tidyverse)
library(tidyquant)
df <- tibble::tibble(
a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10)
)
df$a <- (df$a - min(df$a, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$b <- (df$b - min(df$b, na.rm = TRUE)) /
(max(df$b, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$c <- (df$c - min(df$c, na.rm = TRUE)) /
(max(df$c, na.rm = TRUE) - min(df$c, na.rm = TRUE))
df$d <- (df$d - min(df$d, na.rm = TRUE)) /
(max(df$d, na.rm = TRUE) - min(df$d, na.rm = TRUE))
rescale <- function(x) {
x <- (x - min(x, na.rm = TRUE)) /
(max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
return(x)
}
df$a <- rescale(df$a)
df$b <- rescale(df$b)
df$c <- rescale(df$c)
df$d <- rescale(df$d)
detect_sign <- function(x) {
if(x > 0) {
message("value is positive")
print(x)
} else if(x == 0) {
warning("value is not positive")
print(x)
} else {
stop("value is negative, the function must stop")
print(x)
}
}
3 %>% detect_sign
## [1] 3
0 %>% detect_sign()
## [1] 0
?mean
x <- c(1:10, 100, NA)
x
## [1] 1 2 3 4 5 6 7 8 9 10 100 NA
x %>% mean()
## [1] NA
x %>% mean(na.rm = TRUE)
## [1] 14.09091
x %>% mean(na.rm = TRUE, trim = 0.1)
## [1] 6
mean_remove_na <- function(x, na.rm = TRUE, ...) {
avg <- mean(x, na.rm = na.rm, ...)
return(avg)
}
x %>% mean_remove_na()
## [1] 14.09091
x %>% mean_remove_na(na.rm = FALSE)
## [1] NA
x %>% mean_remove_na(trim = 0.1)
## [1] 6
two types of functions
one that takes a vector as the input another that takes a data frame as the input