1 Intro

A listing of all R datasets

package_data_raw <- 
  data()$results %>%  
  as_tibble() %>%
  filter(Package != ".") %>% 
  mutate(Item = gsub("\\s*\\([^\\)]+\\)", "", Item), 
         Item = trimws(Item))

types = c()

for (i in 1:nrow(package_data_raw)){
  obj_type <- class(get(package_data_raw$Item[i])) %>% last()
  types <- c(types, obj_type) 
}
package_data_raw$Type = types


package_data <- 
  package_data_raw %>% 
  filter(Type %in% c("data.frame"))
  
packages <- package_data %>% pull(Package) %>% unique()
for (i in 1:length(packages)) {

  cat(paste("#", packages[i]), "\n", "\n")


  datasets <- 
    package_data %>% 
    filter(Package == packages[i]) %>% 
    pull(Item)
  
  titles <- 
    package_data %>% 
    filter(Package == packages[i]) %>% 
    pull(Title)
  
  for (j in 1:length(datasets)){
  
    cat(paste("##", datasets[j]), "\n", "\n")
    cat(paste0("**", titles[j], "**"))
    
    print(gt::gt(head(get(datasets[j]), 
                      20
                      )))
  
  }
  
}

2 forcats

2.1 gss_cat

A sample of categorical variables from the General Social survey
year marital age race rincome partyid relig denom tvhours
2000 Never married 26 White $8000 to 9999 Ind,near rep Protestant Southern baptist 12
2000 Divorced 48 White $8000 to 9999 Not str republican Protestant Baptist-dk which NA
2000 Widowed 67 White Not applicable Independent Protestant No denomination 2
2000 Never married 39 White Not applicable Ind,near rep Orthodox-christian Not applicable 4
2000 Divorced 25 White Not applicable Not str democrat None Not applicable 1
2000 Married 25 White $20000 - 24999 Strong democrat Protestant Southern baptist NA
2000 Never married 36 White $25000 or more Not str republican Christian Not applicable 3
2000 Divorced 44 White $7000 to 7999 Ind,near dem Protestant Lutheran-mo synod NA
2000 Married 44 White $25000 or more Not str democrat Protestant Other 0
2000 Married 47 White $25000 or more Strong republican Protestant Southern baptist 3
2000 Married 53 White $25000 or more Not str democrat Protestant Other 2
2000 Married 52 White $25000 or more Ind,near rep None Not applicable NA
2000 Married 52 White $25000 or more Strong democrat Protestant Southern baptist 1
2000 Married 51 White $25000 or more Strong republican Protestant United methodist NA
2000 Divorced 52 White $25000 or more Ind,near dem None Not applicable 1
2000 Married 40 Black $25000 or more Strong democrat Protestant Baptist-dk which 7
2000 Widowed 77 White Not applicable Strong republican Jewish Not applicable NA
2000 Never married 44 White $25000 or more Independent None Not applicable 3
2000 Married 40 White $10000 - 14999 Not str democrat Catholic Not applicable 3
2000 Married 45 Black Not applicable Independent Protestant United methodist NA

3 dplyr

3.1 band_instruments

Band membership
name plays
John guitar
Paul bass
Keith guitar

3.2 band_instruments2

Band membership
artist plays
John guitar
Paul bass
Keith guitar

3.3 band_members

Band membership
name band
Mick Stones
John Beatles
Paul Beatles

3.4 starwars

Starwars characters
name height mass hair_color skin_color eye_color birth_year sex gender homeworld species films vehicles starships
Luke Skywalker 172 77 blond fair blue 19.0 male masculine Tatooine Human The Empire Strikes Back, Revenge of the Sith, Return of the Jedi, A New Hope, The Force Awakens Snowspeeder, Imperial Speeder Bike X-wing, Imperial shuttle
C-3PO 167 75 NA gold yellow 112.0 none masculine Tatooine Droid The Empire Strikes Back, Attack of the Clones, The Phantom Menace, Revenge of the Sith, Return of the Jedi, A New Hope
R2-D2 96 32 NA white, blue red 33.0 none masculine Naboo Droid The Empire Strikes Back, Attack of the Clones, The Phantom Menace, Revenge of the Sith, Return of the Jedi, A New Hope, The Force Awakens
Darth Vader 202 136 none white yellow 41.9 male masculine Tatooine Human The Empire Strikes Back, Revenge of the Sith, Return of the Jedi, A New Hope TIE Advanced x1
Leia Organa 150 49 brown light brown 19.0 female feminine Alderaan Human The Empire Strikes Back, Revenge of the Sith, Return of the Jedi, A New Hope, The Force Awakens Imperial Speeder Bike
Owen Lars 178 120 brown, grey light blue 52.0 male masculine Tatooine Human Attack of the Clones, Revenge of the Sith, A New Hope
Beru Whitesun lars 165 75 brown light blue 47.0 female feminine Tatooine Human Attack of the Clones, Revenge of the Sith, A New Hope
R5-D4 97 32 NA white, red red NA none masculine Tatooine Droid A New Hope
Biggs Darklighter 183 84 black light brown 24.0 male masculine Tatooine Human A New Hope X-wing
Obi-Wan Kenobi 182 77 auburn, white fair blue-gray 57.0 male masculine Stewjon Human The Empire Strikes Back, Attack of the Clones, The Phantom Menace, Revenge of the Sith, Return of the Jedi, A New Hope Tribubble bongo Jedi starfighter, Trade Federation cruiser, Naboo star skiff, Jedi Interceptor, Belbullab-22 starfighter
Anakin Skywalker 188 84 blond fair blue 41.9 male masculine Tatooine Human Attack of the Clones, The Phantom Menace, Revenge of the Sith Zephyr-G swoop bike, XJ-6 airspeeder Trade Federation cruiser, Jedi Interceptor, Naboo fighter
Wilhuff Tarkin 180 NA auburn, grey fair blue 64.0 male masculine Eriadu Human Revenge of the Sith, A New Hope
Chewbacca 228 112 brown unknown blue 200.0 male masculine Kashyyyk Wookiee The Empire Strikes Back, Revenge of the Sith, Return of the Jedi, A New Hope, The Force Awakens AT-ST Millennium Falcon, Imperial shuttle
Han Solo 180 80 brown fair brown 29.0 male masculine Corellia Human The Empire Strikes Back, Return of the Jedi, A New Hope, The Force Awakens Millennium Falcon, Imperial shuttle
Greedo 173 74 NA green black 44.0 male masculine Rodia Rodian A New Hope
Jabba Desilijic Tiure 175 1358 NA green-tan, brown orange 600.0 hermaphroditic masculine Nal Hutta Hutt The Phantom Menace, Return of the Jedi, A New Hope
Wedge Antilles 170 77 brown fair hazel 21.0 male masculine Corellia Human The Empire Strikes Back, Return of the Jedi, A New Hope Snowspeeder X-wing
Jek Tono Porkins 180 110 brown fair blue NA male masculine Bestine IV Human A New Hope X-wing
Yoda 66 17 white green brown 896.0 male masculine NA Yoda’s species The Empire Strikes Back, Attack of the Clones, The Phantom Menace, Revenge of the Sith, Return of the Jedi
Palpatine 170 75 grey pale yellow 82.0 male masculine Naboo Human The Empire Strikes Back, Attack of the Clones, The Phantom Menace, Revenge of the Sith, Return of the Jedi

3.5 storms

Storm tracks data
name year month day hour lat long status category wind pressure tropicalstorm_force_diameter hurricane_force_diameter
Amy 1975 6 27 0 27.5 -79.0 tropical depression -1 25 1013 NA NA
Amy 1975 6 27 6 28.5 -79.0 tropical depression -1 25 1013 NA NA
Amy 1975 6 27 12 29.5 -79.0 tropical depression -1 25 1013 NA NA
Amy 1975 6 27 18 30.5 -79.0 tropical depression -1 25 1013 NA NA
Amy 1975 6 28 0 31.5 -78.8 tropical depression -1 25 1012 NA NA
Amy 1975 6 28 6 32.4 -78.7 tropical depression -1 25 1012 NA NA
Amy 1975 6 28 12 33.3 -78.0 tropical depression -1 25 1011 NA NA
Amy 1975 6 28 18 34.0 -77.0 tropical depression -1 30 1006 NA NA
Amy 1975 6 29 0 34.4 -75.8 tropical storm 0 35 1004 NA NA
Amy 1975 6 29 6 34.0 -74.8 tropical storm 0 40 1002 NA NA
Amy 1975 6 29 12 33.8 -73.8 tropical storm 0 45 1000 NA NA
Amy 1975 6 29 18 33.8 -72.8 tropical storm 0 50 998 NA NA
Amy 1975 6 30 0 34.3 -71.6 tropical storm 0 50 998 NA NA
Amy 1975 6 30 6 35.6 -70.8 tropical storm 0 55 998 NA NA
Amy 1975 6 30 12 35.9 -70.5 tropical storm 0 60 987 NA NA
Amy 1975 6 30 18 36.2 -70.2 tropical storm 0 60 987 NA NA
Amy 1975 7 1 0 36.2 -69.8 tropical storm 0 60 984 NA NA
Amy 1975 7 1 6 36.2 -69.4 tropical storm 0 60 984 NA NA
Amy 1975 7 1 12 36.2 -68.3 tropical storm 0 60 984 NA NA
Amy 1975 7 1 18 36.7 -67.2 tropical storm 0 60 984 NA NA

4 tidyr

4.1 billboard

Song rankings for Billboard top 100 in the year 2000
artist track date.entered wk1 wk2 wk3 wk4 wk5 wk6 wk7 wk8 wk9 wk10 wk11 wk12 wk13 wk14 wk15 wk16 wk17 wk18 wk19 wk20 wk21 wk22 wk23 wk24 wk25 wk26 wk27 wk28 wk29 wk30 wk31 wk32 wk33 wk34 wk35 wk36 wk37 wk38 wk39 wk40 wk41 wk42 wk43 wk44 wk45 wk46 wk47 wk48 wk49 wk50 wk51 wk52 wk53 wk54 wk55 wk56 wk57 wk58 wk59 wk60 wk61 wk62 wk63 wk64 wk65 wk66 wk67 wk68 wk69 wk70 wk71 wk72 wk73 wk74 wk75 wk76
2 Pac Baby Don’t Cry (Keep… 2000-02-26 87 82 72 77 87 94 99 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2Ge+her The Hardest Part Of … 2000-09-02 91 87 92 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
3 Doors Down Kryptonite 2000-04-08 81 70 68 67 66 57 54 53 51 51 51 51 47 44 38 28 22 18 18 14 12 7 6 6 6 5 5 4 4 4 4 3 3 3 4 5 5 9 9 15 14 13 14 16 17 21 22 24 28 33 42 42 49 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
3 Doors Down Loser 2000-10-21 76 76 72 69 67 65 55 59 62 61 61 59 61 66 72 76 75 67 73 70 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
504 Boyz Wobble Wobble 2000-04-15 57 34 25 17 17 31 36 49 53 57 64 70 75 76 78 85 92 96 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
98^0 Give Me Just One Nig… 2000-08-19 51 39 34 26 26 19 2 2 3 6 7 22 29 36 47 67 66 84 93 94 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
A*Teens Dancing Queen 2000-07-08 97 97 96 95 100 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Aaliyah I Don’t Wanna 2000-01-29 84 62 51 41 38 35 35 38 38 36 37 37 38 49 61 63 62 67 83 86 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Aaliyah Try Again 2000-03-18 59 53 38 28 21 18 16 14 12 10 9 8 6 1 2 2 2 2 3 4 5 5 6 9 13 14 16 23 22 33 36 43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Adams, Yolanda Open My Heart 2000-08-26 76 76 74 69 68 67 61 58 57 59 66 68 61 67 59 63 67 71 79 89 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Adkins, Trace More 2000-04-29 84 84 75 73 73 69 68 65 73 83 92 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Aguilera, Christina Come On Over Baby (A… 2000-08-05 57 47 45 29 23 18 11 9 9 11 1 1 1 1 4 8 12 22 23 43 44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Aguilera, Christina I Turn To You 2000-04-15 50 39 30 28 21 19 20 17 17 17 17 3 3 7 10 17 25 29 29 40 43 50 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Aguilera, Christina What A Girl Wants 1999-11-27 71 51 28 18 13 13 11 1 1 2 2 3 3 4 12 11 13 15 18 20 30 40 39 44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Alice Deejay Better Off Alone 2000-04-08 79 65 53 48 45 36 34 29 27 30 36 37 39 49 57 63 65 68 79 86 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Allan, Gary Smoke Rings In The D… 2000-01-22 80 78 76 77 92 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Amber Sexual 1999-07-17 99 99 96 96 100 93 93 96 NA NA 99 NA 96 96 99 98 98 NA 95 88 88 79 76 69 69 59 58 58 49 44 42 46 50 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Anastacia I’m Outta Love 2000-04-01 92 NA NA 95 NA NA NA NA NA NA NA 97 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Anthony, Marc My Baby You 2000-09-16 82 76 76 70 82 81 74 80 76 76 73 74 87 83 89 93 94 94 91 90 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Anthony, Marc You Sang To Me 2000-02-26 77 54 50 43 30 27 21 18 15 13 13 13 13 5 2 2 5 7 9 12 12 16 20 20 22 25 26 29 35 33 40 44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

4.2 construction

Completed construction in the US in 2018
Year Month 1 unit 2 to 4 units 5 units or more Northeast Midwest South West
2018 January 859 NA 348 114 169 596 339
2018 February 882 NA 400 138 160 655 336
2018 March 862 NA 356 150 154 595 330
2018 April 797 NA 447 144 196 613 304
2018 May 875 NA 364 90 169 673 319
2018 June 867 NA 342 76 170 610 360
2018 July 829 NA 360 108 183 594 310
2018 August 939 NA 286 90 205 649 286
2018 September 835 NA 304 117 175 560 296

4.3 fish_encounters

Fish encounters
fish station seen
4842 Release 1
4842 I80_1 1
4842 Lisbon 1
4842 Rstr 1
4842 Base_TD 1
4842 BCE 1
4842 BCW 1
4842 BCE2 1
4842 BCW2 1
4842 MAE 1
4842 MAW 1
4843 Release 1
4843 I80_1 1
4843 Lisbon 1
4843 Rstr 1
4843 Base_TD 1
4843 BCE 1
4843 BCW 1
4843 BCE2 1
4843 BCW2 1

4.4 population

World Health Organization TB data
country year population
Afghanistan 1995 17586073
Afghanistan 1996 18415307
Afghanistan 1997 19021226
Afghanistan 1998 19496836
Afghanistan 1999 19987071
Afghanistan 2000 20595360
Afghanistan 2001 21347782
Afghanistan 2002 22202806
Afghanistan 2003 23116142
Afghanistan 2004 24018682
Afghanistan 2005 24860855
Afghanistan 2006 25631282
Afghanistan 2007 26349243
Afghanistan 2008 27032197
Afghanistan 2009 27708187
Afghanistan 2010 28397812
Afghanistan 2011 29105480
Afghanistan 2012 29824536
Afghanistan 2013 30551674
Albania 1995 3357858

4.5 relig_income

Pew religion and income survey
religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k $75-100k $100-150k >150k Don’t know/refused
Agnostic 27 34 60 81 76 137 122 109 84 96
Atheist 12 27 37 52 35 70 73 59 74 76
Buddhist 27 21 30 34 33 58 62 39 53 54
Catholic 418 617 732 670 638 1116 949 792 633 1489
Don’t know/refused 15 14 15 11 10 35 21 17 18 116
Evangelical Prot 575 869 1064 982 881 1486 949 723 414 1529
Hindu 1 9 7 9 11 34 47 48 54 37
Historically Black Prot 228 244 236 238 197 223 131 81 78 339
Jehovah’s Witness 20 27 24 24 21 30 15 11 6 37
Jewish 19 19 25 25 30 95 69 87 151 162
Mainline Prot 289 495 619 655 651 1107 939 753 634 1328
Mormon 29 40 48 51 56 112 85 49 42 69
Muslim 6 7 9 10 9 23 16 8 6 22
Orthodox 13 17 23 32 32 47 38 42 46 73
Other Christian 9 7 11 13 13 14 18 14 12 18
Other Faiths 20 33 40 46 49 63 46 40 41 71
Other World Religions 5 2 3 4 2 7 3 4 4 8
Unaffiliated 217 299 374 365 341 528 407 321 258 597

4.6 smiths

Some data about the Smith family
subject time age weight height
John Smith 1 33 90 1.87
Mary Smith 1 NA NA 1.54

4.7 table1

Example tabular representations
country year cases population
Afghanistan 1999 745 19987071
Afghanistan 2000 2666 20595360
Brazil 1999 37737 172006362
Brazil 2000 80488 174504898
China 1999 212258 1272915272
China 2000 213766 1280428583

4.8 table2

Example tabular representations
country year type count
Afghanistan 1999 cases 745
Afghanistan 1999 population 19987071
Afghanistan 2000 cases 2666
Afghanistan 2000 population 20595360
Brazil 1999 cases 37737
Brazil 1999 population 172006362
Brazil 2000 cases 80488
Brazil 2000 population 174504898
China 1999 cases 212258
China 1999 population 1272915272
China 2000 cases 213766
China 2000 population 1280428583

4.9 table3

Example tabular representations
country year rate
Afghanistan 1999 745/19987071
Afghanistan 2000 2666/20595360
Brazil 1999 37737/172006362
Brazil 2000 80488/174504898
China 1999 212258/1272915272
China 2000 213766/1280428583

4.10 table4a

Example tabular representations
country 1999 2000
Afghanistan 745 2666
Brazil 37737 80488
China 212258 213766

4.11 table4b

Example tabular representations
country 1999 2000
Afghanistan 19987071 20595360
Brazil 172006362 174504898
China 1272915272 1280428583

4.12 table5

Example tabular representations
country century year rate
Afghanistan 19 99 745/19987071
Afghanistan 20 00 2666/20595360
Brazil 19 99 37737/172006362
Brazil 20 00 80488/174504898
China 19 99 212258/1272915272
China 20 00 213766/1280428583

4.13 us_rent_income

US rent and income data
GEOID NAME variable estimate moe
01 Alabama income 24476 136
01 Alabama rent 747 3
02 Alaska income 32940 508
02 Alaska rent 1200 13
04 Arizona income 27517 148
04 Arizona rent 972 4
05 Arkansas income 23789 165
05 Arkansas rent 709 5
06 California income 29454 109
06 California rent 1358 3
08 Colorado income 32401 109
08 Colorado rent 1125 5
09 Connecticut income 35326 195
09 Connecticut rent 1123 5
10 Delaware income 31560 247
10 Delaware rent 1076 10
11 District of Columbia income 43198 681
11 District of Columbia rent 1424 17
12 Florida income 25952 70
12 Florida rent 1077 3

4.14 who

World Health Organization TB data
country iso2 iso3 year new_sp_m014 new_sp_m1524 new_sp_m2534 new_sp_m3544 new_sp_m4554 new_sp_m5564 new_sp_m65 new_sp_f014 new_sp_f1524 new_sp_f2534 new_sp_f3544 new_sp_f4554 new_sp_f5564 new_sp_f65 new_sn_m014 new_sn_m1524 new_sn_m2534 new_sn_m3544 new_sn_m4554 new_sn_m5564 new_sn_m65 new_sn_f014 new_sn_f1524 new_sn_f2534 new_sn_f3544 new_sn_f4554 new_sn_f5564 new_sn_f65 new_ep_m014 new_ep_m1524 new_ep_m2534 new_ep_m3544 new_ep_m4554 new_ep_m5564 new_ep_m65 new_ep_f014 new_ep_f1524 new_ep_f2534 new_ep_f3544 new_ep_f4554 new_ep_f5564 new_ep_f65 newrel_m014 newrel_m1524 newrel_m2534 newrel_m3544 newrel_m4554 newrel_m5564 newrel_m65 newrel_f014 newrel_f1524 newrel_f2534 newrel_f3544 newrel_f4554 newrel_f5564 newrel_f65
Afghanistan AF AFG 1980 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1981 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1982 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1983 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1984 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1985 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1986 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1987 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1988 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1989 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1990 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1991 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1992 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1993 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1994 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1995 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1996 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1997 0 10 6 3 5 2 0 5 38 36 14 8 0 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1998 30 129 128 90 89 64 41 45 350 419 194 118 61 20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Afghanistan AF AFG 1999 8 55 55 47 34 21 8 25 139 160 110 50 25 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

4.15 world_bank_pop

Population data from the world bank
country indicator 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
ABW SP.URB.TOTL 4.244400e+04 4.304800e+04 4.367000e+04 4.424600e+04 4.466900e+04 4.488900e+04 4.488100e+04 4.468600e+04 4.437500e+04 4.405200e+04 4.377800e+04 4.382200e+04 4.406400e+04 4.436000e+04 4.467400e+04 4.497900e+04 4.527500e+04 4.557200e+04
ABW SP.URB.GROW 1.182632e+00 1.413021e+00 1.434560e+00 1.310360e+00 9.514777e-01 4.913027e-01 -1.782333e-02 -4.354289e-01 -6.984006e-01 -7.305493e-01 -6.239346e-01 1.004566e-01 5.507148e-01 6.695040e-01 7.053514e-01 6.804037e-01 6.559290e-01 6.538489e-01
ABW SP.POP.TOTL 9.085300e+04 9.289800e+04 9.499200e+04 9.701700e+04 9.873700e+04 1.000310e+05 1.008320e+05 1.012200e+05 1.013530e+05 1.014530e+05 1.016690e+05 1.020530e+05 1.025770e+05 1.031870e+05 1.037950e+05 1.043410e+05 1.048220e+05 1.052640e+05
ABW SP.POP.GROW 2.055027e+00 2.225930e+00 2.229056e+00 2.109354e+00 1.757353e+00 1.302039e+00 7.975628e-01 3.840600e-01 1.313107e-01 9.861642e-02 2.126801e-01 3.769848e-01 5.121450e-01 5.929140e-01 5.874924e-01 5.246582e-01 4.599292e-01 4.207807e-01
AFG SP.URB.TOTL 4.436299e+06 4.648055e+06 4.892951e+06 5.155686e+06 5.426770e+06 5.691823e+06 5.931413e+06 6.151939e+06 6.364968e+06 6.588859e+06 6.837008e+06 7.114615e+06 7.416385e+06 7.733964e+06 8.054214e+06 8.367663e+06 8.670939e+06 8.971345e+06
AFG SP.URB.GROW 3.912228e+00 4.662838e+00 5.134675e+00 5.230459e+00 5.124393e+00 4.768647e+00 4.123188e+00 3.650485e+00 3.404189e+00 3.457099e+00 3.697002e+00 3.980091e+00 4.154062e+00 4.192980e+00 4.057389e+00 3.817920e+00 3.560246e+00 3.405852e+00
AFG SP.POP.TOTL 2.009376e+07 2.096646e+07 2.197992e+07 2.306485e+07 2.411898e+07 2.507080e+07 2.589345e+07 2.661679e+07 2.729403e+07 2.800433e+07 2.880317e+07 2.970860e+07 3.069696e+07 3.173169e+07 3.275802e+07 3.373649e+07 3.465603e+07 3.553008e+07
AFG SP.POP.GROW 3.494659e+00 4.251504e+00 4.720528e+00 4.818041e+00 4.468918e+00 3.870470e+00 3.228630e+00 2.755225e+00 2.512574e+00 2.569114e+00 2.812617e+00 3.095119e+00 3.272703e+00 3.315224e+00 3.183201e+00 2.943234e+00 2.689163e+00 2.490790e+00
AGO SP.URB.TOTL 8.234766e+06 8.708000e+06 9.218787e+06 9.765197e+06 1.034351e+07 1.094942e+07 1.150175e+07 1.207871e+07 1.268182e+07 1.331190e+07 1.397077e+07 1.465901e+07 1.537591e+07 1.611949e+07 1.688748e+07 1.767562e+07 1.848355e+07 1.931177e+07
AGO SP.URB.GROW 5.437494e+00 5.587720e+00 5.700132e+00 5.758127e+00 5.753414e+00 5.692797e+00 4.921217e+00 4.894529e+00 4.872555e+00 4.848851e+00 4.830877e+00 4.808822e+00 4.774657e+00 4.722723e+00 4.654324e+00 4.561361e+00 4.469503e+00 4.383387e+00
AGO SP.POP.TOTL 1.644092e+07 1.698327e+07 1.757265e+07 1.820337e+07 1.886572e+07 1.955254e+07 2.026240e+07 2.099769e+07 2.175942e+07 2.254955e+07 2.336913e+07 2.421856e+07 2.509615e+07 2.599834e+07 2.692047e+07 2.785930e+07 2.881346e+07 2.978419e+07
AGO SP.POP.GROW 3.032943e+00 3.245491e+00 3.411515e+00 3.526303e+00 3.573962e+00 3.575900e+00 3.566160e+00 3.564539e+00 3.563448e+00 3.566821e+00 3.570099e+00 3.570352e+00 3.559496e+00 3.531824e+00 3.485413e+00 3.428021e+00 3.367572e+00 3.313507e+00
ALB SP.URB.TOTL 1.289391e+06 1.298584e+06 1.327220e+06 1.354848e+06 1.381828e+06 1.407298e+06 1.430886e+06 1.452398e+06 1.473392e+06 1.495260e+06 1.519519e+06 1.546929e+06 1.575788e+06 1.603505e+06 1.630119e+06 1.654503e+06 1.680247e+06 1.706345e+06
ALB SP.URB.GROW 7.424786e-01 7.104426e-01 2.181209e+00 2.060274e+00 1.971799e+00 1.826429e+00 1.662228e+00 1.492215e+00 1.435124e+00 1.473288e+00 1.609373e+00 1.787784e+00 1.848379e+00 1.743639e+00 1.646116e+00 1.484764e+00 1.544014e+00 1.541285e+00
ALB SP.POP.TOTL 3.089027e+06 3.060173e+06 3.051010e+06 3.039616e+06 3.026939e+06 3.011487e+06 2.992547e+06 2.970017e+06 2.947314e+06 2.927519e+06 2.913021e+06 2.905195e+06 2.900401e+06 2.895092e+06 2.889104e+06 2.880703e+06 2.876101e+06 2.873457e+06
ALB SP.POP.GROW -6.373568e-01 -9.384704e-01 -2.998767e-01 -3.741492e-01 -4.179314e-01 -5.117901e-01 -6.309112e-01 -7.557188e-01 -7.673430e-01 -6.738940e-01 -4.964620e-01 -2.690173e-01 -1.651510e-01 -1.832114e-01 -2.070470e-01 -2.912058e-01 -1.598804e-01 -9.197229e-02
AND SP.URB.TOTL 6.041700e+04 6.199100e+04 6.419400e+04 6.674700e+04 6.919200e+04 7.120500e+04 7.273600e+04 7.384300e+04 7.464000e+04 7.509700e+04 7.500700e+04 7.430900e+04 7.305900e+04 7.152700e+04 7.006600e+04 6.892100e+04 6.819900e+04 6.784500e+04
AND SP.URB.GROW 1.279314e+00 2.571869e+00 3.492054e+00 3.899960e+00 3.597590e+00 2.867779e+00 2.127341e+00 1.510477e+00 1.073534e+00 6.104055e-01 -1.199169e-01 -9.349368e-01 -1.696474e+00 -2.119233e+00 -2.063735e+00 -1.647673e+00 -1.053102e+00 -5.204210e-01
AND SP.POP.TOTL 6.539000e+04 6.734100e+04 7.004900e+04 7.318200e+04 7.624400e+04 7.886700e+04 8.099100e+04 8.268300e+04 8.386100e+04 8.446200e+04 8.444900e+04 8.375100e+04 8.243100e+04 8.078800e+04 7.922300e+04 7.801400e+04 7.728100e+04 7.696500e+04
AND SP.POP.GROW 1.572166e+00 2.939992e+00 3.942573e+00 4.375449e+00 4.098923e+00 3.382417e+00 2.657515e+00 2.067598e+00 1.414665e+00 7.141063e-01 -1.539272e-02 -8.299691e-01 -1.588653e+00 -2.013314e+00 -1.956178e+00 -1.537836e+00 -9.440168e-01 -4.097357e-01

5 ggplot2

5.1 diamonds

Prices of over 50,000 round cut diamonds
carat cut color clarity depth table price x y z
0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
0.23 Very Good H VS1 59.4 61 338 4.00 4.05 2.39
0.30 Good J SI1 64.0 55 339 4.25 4.28 2.73
0.23 Ideal J VS1 62.8 56 340 3.93 3.90 2.46
0.22 Premium F SI1 60.4 61 342 3.88 3.84 2.33
0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71
0.20 Premium E SI2 60.2 62 345 3.79 3.75 2.27
0.32 Premium E I1 60.9 58 345 4.38 4.42 2.68
0.30 Ideal I SI2 62.0 54 348 4.31 4.34 2.68
0.30 Good J SI1 63.4 54 351 4.23 4.29 2.70
0.30 Good J SI1 63.8 56 351 4.23 4.26 2.71
0.30 Very Good J SI1 62.7 59 351 4.21 4.27 2.66

5.2 economics

US economic time series
date pce pop psavert uempmed unemploy
1967-07-01 506.7 198712 12.6 4.5 2944
1967-08-01 509.8 198911 12.6 4.7 2945
1967-09-01 515.6 199113 11.9 4.6 2958
1967-10-01 512.2 199311 12.9 4.9 3143
1967-11-01 517.4 199498 12.8 4.7 3066
1967-12-01 525.1 199657 11.8 4.8 3018
1968-01-01 530.9 199808 11.7 5.1 2878
1968-02-01 533.6 199920 12.3 4.5 3001
1968-03-01 544.3 200056 11.7 4.1 2877
1968-04-01 544.0 200208 12.3 4.6 2709
1968-05-01 549.8 200361 12.0 4.4 2740
1968-06-01 556.3 200536 11.7 4.4 2938
1968-07-01 563.2 200706 10.7 4.5 2883
1968-08-01 567.0 200898 10.5 4.2 2768
1968-09-01 568.2 201095 10.6 4.6 2686
1968-10-01 571.6 201290 10.8 4.8 2689
1968-11-01 576.7 201466 10.6 4.4 2715
1968-12-01 576.5 201621 11.1 4.4 2685
1969-01-01 583.5 201760 10.3 4.4 2718
1969-02-01 588.7 201881 9.7 4.9 2692

5.3 economics_long

US economic time series
date variable value value01
1967-07-01 pce 506.7 0.0000000000
1967-08-01 pce 509.8 0.0002652497
1967-09-01 pce 515.6 0.0007615234
1967-10-01 pce 512.2 0.0004706043
1967-11-01 pce 517.4 0.0009155394
1967-12-01 pce 525.1 0.0015743854
1968-01-01 pce 530.9 0.0020706591
1968-02-01 pce 533.6 0.0023016831
1968-03-01 pce 544.3 0.0032172224
1968-04-01 pce 544.0 0.0031915531
1968-05-01 pce 549.8 0.0036878267
1968-06-01 pce 556.3 0.0042439955
1968-07-01 pce 563.2 0.0048343901
1968-08-01 pce 567.0 0.0051595349
1968-09-01 pce 568.2 0.0052622122
1968-10-01 pce 571.6 0.0055531312
1968-11-01 pce 576.7 0.0059895098
1968-12-01 pce 576.5 0.0059723969
1969-01-01 pce 583.5 0.0065713479
1969-02-01 pce 588.7 0.0070162829

5.4 faithfuld

2d density estimate of Old Faithful data
eruptions waiting density
1.600000 43 0.003216159
1.647297 43 0.003835375
1.694595 43 0.004435548
1.741892 43 0.004977614
1.789189 43 0.005424238
1.836486 43 0.005744544
1.883784 43 0.005918012
1.931081 43 0.005936762
1.978378 43 0.005805861
2.025676 43 0.005541706
2.072973 43 0.005168979
2.120270 43 0.004716903
2.167568 43 0.004215592
2.214865 43 0.003693071
2.262162 43 0.003173317
2.309459 43 0.002675315
2.356757 43 0.002212951
2.404054 43 0.001795434
2.451351 43 0.001427956
2.498649 43 0.001112406

5.5 luv_colours

‘colors()’ in Luv space
L u v col
9341.570 -3.370649e-12 0.0000 white
9100.962 -4.749170e+02 -635.3502 aliceblue
8809.518 1.008865e+03 1668.0042 antiquewhite
8935.225 1.065698e+03 1674.5948 antiquewhite1
8452.499 1.014911e+03 1609.5923 antiquewhite2
7498.378 9.029892e+02 1401.7026 antiquewhite3
5512.045 6.054413e+02 1027.3461 antiquewhite4
8669.674 -5.536858e+03 2237.0224 aquamarine
8669.674 -5.536858e+03 2237.0224 aquamarine1
8202.140 -5.253706e+03 2104.2950 aquamarine2
7277.339 -4.653237e+03 1911.1716 aquamarine3
5330.488 -3.408627e+03 1336.8782 aquamarine4
9249.918 -8.118799e+02 -175.0022 azure
9249.918 -8.118799e+02 -175.0022 azure1
8752.459 -7.682056e+02 -165.5881 azure2
7766.124 -6.783397e+02 -146.2173 azure3
5688.546 -4.886049e+02 -105.3196 azure4
8997.169 1.376358e+02 1854.8768 beige
8664.919 1.864555e+03 2650.6931 bisque
8664.919 1.864555e+03 2650.6931 bisque1

5.6 midwest

Midwest demographics
PID county state area poptotal popdensity popwhite popblack popamerindian popasian popother percwhite percblack percamerindan percasian percother popadults perchsd percollege percprof poppovertyknown percpovertyknown percbelowpoverty percchildbelowpovert percadultpoverty percelderlypoverty inmetro category
561 ADAMS IL 0.052 66090 1270.9615 63917 1702 98 249 124 96.71206 2.57527614 0.14828264 0.37675897 0.18762294 43298 75.10740 19.63139 4.355859 63628 96.27478 13.151443 18.011717 11.009776 12.443812 0 AAR
562 ALEXANDER IL 0.014 10626 759.0000 7054 3496 19 48 9 66.38434 32.90043290 0.17880670 0.45172219 0.08469791 6724 59.72635 11.24331 2.870315 10529 99.08714 32.244278 45.826514 27.385647 25.228976 0 LHR
563 BOND IL 0.022 14991 681.4091 14477 429 35 16 34 96.57128 2.86171703 0.23347342 0.10673071 0.22680275 9669 69.33499 17.03382 4.488572 14235 94.95697 12.068844 14.036061 10.852090 12.697410 0 AAR
564 BOONE IL 0.017 30806 1812.1176 29344 127 46 150 1139 95.25417 0.41225735 0.14932156 0.48691813 3.69733169 19272 75.47219 17.27895 4.197800 30337 98.47757 7.209019 11.179536 5.536013 6.217047 1 ALU
565 BROWN IL 0.018 5836 324.2222 5264 547 14 5 6 90.19877 9.37285812 0.23989034 0.08567512 0.10281014 3979 68.86152 14.47600 3.367680 4815 82.50514 13.520249 13.022889 11.143211 19.200000 0 AAR
566 BUREAU IL 0.050 35688 713.7600 35157 50 65 195 221 98.51210 0.14010312 0.18213405 0.54640215 0.61925577 23444 76.62941 18.90462 3.275891 35107 98.37200 10.399635 14.158819 8.179287 11.008586 0 AAR
567 CALHOUN IL 0.017 5322 313.0588 5298 1 8 15 0 99.54904 0.01878993 0.15031943 0.28184893 0.00000000 3583 62.82445 11.91739 3.209601 5241 98.47802 15.149781 13.787761 12.932331 21.085271 0 LAR
568 CARROLL IL 0.027 16805 622.4074 16519 111 30 61 84 98.29813 0.66051770 0.17851830 0.36298721 0.49985123 11323 75.95160 16.19712 3.055727 16455 97.91729 11.710726 17.225462 10.027037 9.525052 0 AAR
569 CASS IL 0.024 13437 559.8750 13384 16 8 23 6 99.60557 0.11907420 0.05953710 0.17116916 0.04465282 8825 72.27195 14.10765 3.206799 13081 97.35060 13.875086 17.994784 11.914343 13.660180 0 AAR
570 CHAMPAIGN IL 0.058 173025 2983.1897 146506 16559 331 8033 1596 84.67331 9.57029331 0.19130183 4.64268169 0.92241006 95971 87.49935 41.29581 17.757448 154934 89.54429 15.572437 14.132234 17.562728 8.105017 1 HAU
571 CHRISTIAN IL 0.042 34418 819.4762 34176 82 51 89 20 99.29688 0.23824743 0.14817828 0.25858562 0.05810913 22945 73.07474 13.56723 3.089998 33788 98.16956 11.708299 16.320612 9.569700 11.490641 0 AAR
572 CLARK IL 0.030 15921 530.7000 15842 10 26 36 7 99.50380 0.06281012 0.16330632 0.22611645 0.04396709 10734 71.33408 15.11086 2.776225 15615 98.07801 12.007685 15.321547 10.131775 12.595420 0 AAR
573 CLAY IL 0.028 14460 516.4286 14403 4 17 29 7 99.60581 0.02766252 0.11756570 0.20055325 0.04840941 9647 65.56442 13.68301 2.788432 14248 98.53389 16.774284 20.582578 14.464114 17.670078 0 LAR
574 CLINTON IL 0.029 33944 1170.4828 32688 1021 48 104 83 96.29979 3.00789536 0.14140938 0.30638699 0.24452039 21563 67.16598 15.38747 2.875296 32190 94.83267 10.223672 13.299402 9.253834 8.323176 1 LAU
575 COLES IL 0.030 51644 1721.4667 50177 925 92 341 109 97.15940 1.79110836 0.17814267 0.66028968 0.21106034 29136 76.10516 25.17504 8.144563 45693 88.47688 16.748736 16.341941 18.792914 10.993608 0 AAR
576 COOK IL 0.058 5105067 88018.3966 3204947 1317147 10289 188565 384119 62.77972 25.80077790 0.20154486 3.69368316 7.52426951 3291995 73.40582 28.01812 8.329964 5023523 98.40269 14.198303 22.293497 11.665542 10.825269 1 AAU
577 CRAWFORD IL 0.026 19464 748.6154 19300 63 34 48 19 99.15742 0.32367448 0.17468146 0.24660912 0.09761611 13317 76.03064 16.98581 3.334084 19123 98.24805 10.537050 13.809825 8.870243 10.803387 0 AAR
578 CUMBERLAND IL 0.020 10670 533.5000 10627 5 6 26 6 99.59700 0.04686036 0.05623243 0.24367385 0.05623243 6727 72.24617 14.59789 2.690650 10590 99.25023 12.049103 13.603185 9.822264 15.284626 0 AAR
579 DE KALB IL 0.038 77932 2050.8421 72968 2069 123 1751 1021 93.63034 2.65487861 0.15782990 2.24683057 1.31011651 41817 83.87976 32.83593 11.150967 69127 88.70169 13.544635 8.678238 17.047419 6.453908 1 HAU
580 DE WITT IL 0.023 16516 718.0870 16387 25 37 43 24 99.21894 0.15136837 0.22402519 0.26035360 0.14531364 10941 74.64583 16.19596 3.308656 16238 98.31678 10.315310 13.568426 7.955993 12.255345 0 AAR

5.7 mpg

Fuel economy data from 1999 to 2008 for 38 popular models of cars
manufacturer model displ year cyl trans drv cty hwy fl class
audi a4 1.8 1999 4 auto(l5) f 18 29 p compact
audi a4 1.8 1999 4 manual(m5) f 21 29 p compact
audi a4 2.0 2008 4 manual(m6) f 20 31 p compact
audi a4 2.0 2008 4 auto(av) f 21 30 p compact
audi a4 2.8 1999 6 auto(l5) f 16 26 p compact
audi a4 2.8 1999 6 manual(m5) f 18 26 p compact
audi a4 3.1 2008 6 auto(av) f 18 27 p compact
audi a4 quattro 1.8 1999 4 manual(m5) 4 18 26 p compact
audi a4 quattro 1.8 1999 4 auto(l5) 4 16 25 p compact
audi a4 quattro 2.0 2008 4 manual(m6) 4 20 28 p compact
audi a4 quattro 2.0 2008 4 auto(s6) 4 19 27 p compact
audi a4 quattro 2.8 1999 6 auto(l5) 4 15 25 p compact
audi a4 quattro 2.8 1999 6 manual(m5) 4 17 25 p compact
audi a4 quattro 3.1 2008 6 auto(s6) 4 17 25 p compact
audi a4 quattro 3.1 2008 6 manual(m6) 4 15 25 p compact
audi a6 quattro 2.8 1999 6 auto(l5) 4 15 24 p midsize
audi a6 quattro 3.1 2008 6 auto(s6) 4 17 25 p midsize
audi a6 quattro 4.2 2008 8 auto(s6) 4 16 23 p midsize
chevrolet c1500 suburban 2wd 5.3 2008 8 auto(l4) r 14 20 r suv
chevrolet c1500 suburban 2wd 5.3 2008 8 auto(l4) r 11 15 e suv

5.8 msleep

An updated and expanded version of the mammals sleep dataset
name genus vore order conservation sleep_total sleep_rem sleep_cycle awake brainwt bodywt
Cheetah Acinonyx carni Carnivora lc 12.1 NA NA 11.9 NA 50.000
Owl monkey Aotus omni Primates NA 17.0 1.8 NA 7.0 0.01550 0.480
Mountain beaver Aplodontia herbi Rodentia nt 14.4 2.4 NA 9.6 NA 1.350
Greater short-tailed shrew Blarina omni Soricomorpha lc 14.9 2.3 0.1333333 9.1 0.00029 0.019
Cow Bos herbi Artiodactyla domesticated 4.0 0.7 0.6666667 20.0 0.42300 600.000
Three-toed sloth Bradypus herbi Pilosa NA 14.4 2.2 0.7666667 9.6 NA 3.850
Northern fur seal Callorhinus carni Carnivora vu 8.7 1.4 0.3833333 15.3 NA 20.490
Vesper mouse Calomys NA Rodentia NA 7.0 NA NA 17.0 NA 0.045
Dog Canis carni Carnivora domesticated 10.1 2.9 0.3333333 13.9 0.07000 14.000
Roe deer Capreolus herbi Artiodactyla lc 3.0 NA NA 21.0 0.09820 14.800
Goat Capri herbi Artiodactyla lc 5.3 0.6 NA 18.7 0.11500 33.500
Guinea pig Cavis herbi Rodentia domesticated 9.4 0.8 0.2166667 14.6 0.00550 0.728
Grivet Cercopithecus omni Primates lc 10.0 0.7 NA 14.0 NA 4.750
Chinchilla Chinchilla herbi Rodentia domesticated 12.5 1.5 0.1166667 11.5 0.00640 0.420
Star-nosed mole Condylura omni Soricomorpha lc 10.3 2.2 NA 13.7 0.00100 0.060
African giant pouched rat Cricetomys omni Rodentia NA 8.3 2.0 NA 15.7 0.00660 1.000
Lesser short-tailed shrew Cryptotis omni Soricomorpha lc 9.1 1.4 0.1500000 14.9 0.00014 0.005
Long-nosed armadillo Dasypus carni Cingulata lc 17.4 3.1 0.3833333 6.6 0.01080 3.500
Tree hyrax Dendrohyrax herbi Hyracoidea lc 5.3 0.5 NA 18.7 0.01230 2.950
North American Opossum Didelphis omni Didelphimorphia lc 18.0 4.9 0.3333333 6.0 0.00630 1.700

5.9 presidential

Terms of 11 presidents from Eisenhower to Obama
name start end party
Eisenhower 1953-01-20 1961-01-20 Republican
Kennedy 1961-01-20 1963-11-22 Democratic
Johnson 1963-11-22 1969-01-20 Democratic
Nixon 1969-01-20 1974-08-09 Republican
Ford 1974-08-09 1977-01-20 Republican
Carter 1977-01-20 1981-01-20 Democratic
Reagan 1981-01-20 1989-01-20 Republican
Bush 1989-01-20 1993-01-20 Republican
Clinton 1993-01-20 2001-01-20 Democratic
Bush 2001-01-20 2009-01-20 Republican
Obama 2009-01-20 2017-01-20 Democratic

5.10 seals

Vector field of seal movements
lat long delta_long delta_lat
29.7 -172.8 -0.91504624 0.143475254
30.7 -172.8 -0.86701252 0.128388724
31.7 -172.8 -0.81892489 0.113232481
32.7 -172.8 -0.77077630 0.098020371
33.7 -172.8 -0.72255967 0.082766237
34.7 -172.8 -0.67426795 0.067483925
35.7 -172.8 -0.62589407 0.052187280
36.7 -172.8 -0.57743097 0.036890146
37.7 -172.8 -0.52887159 0.021606367
38.7 -172.8 -0.48020886 0.006349790
39.7 -172.8 -0.43143573 -0.008865742
40.7 -172.8 -0.38254512 -0.024026384
41.7 -172.8 -0.33352997 -0.039118291
42.7 -172.8 -0.28438323 -0.054127618
43.7 -172.8 -0.23509783 -0.069040521
44.7 -172.8 -0.18566671 -0.083843154
45.7 -172.8 -0.13608280 -0.098521673
46.7 -172.8 -0.08633904 -0.113062233
47.7 -172.8 -0.03642838 -0.127450990
48.7 -172.8 0.01365626 -0.141674098

5.11 txhousing

Housing sales in TX
city year month sales volume median listings inventory date
Abilene 2000 1 72 5380000 71400 701 6.3 2000.000
Abilene 2000 2 98 6505000 58700 746 6.6 2000.083
Abilene 2000 3 130 9285000 58100 784 6.8 2000.167
Abilene 2000 4 98 9730000 68600 785 6.9 2000.250
Abilene 2000 5 141 10590000 67300 794 6.8 2000.333
Abilene 2000 6 156 13910000 66900 780 6.6 2000.417
Abilene 2000 7 152 12635000 73500 742 6.2 2000.500
Abilene 2000 8 131 10710000 75000 765 6.4 2000.583
Abilene 2000 9 104 7615000 64500 771 6.5 2000.667
Abilene 2000 10 101 7040000 59300 764 6.6 2000.750
Abilene 2000 11 100 7890000 70900 721 6.2 2000.833
Abilene 2000 12 92 7285000 65000 658 5.7 2000.917
Abilene 2001 1 75 5730000 64500 779 6.8 2001.000
Abilene 2001 2 112 8670000 68900 700 6.0 2001.083
Abilene 2001 3 118 9550000 72300 738 6.4 2001.167
Abilene 2001 4 105 8705000 71500 810 7.0 2001.250
Abilene 2001 5 150 11850000 71000 772 6.6 2001.333
Abilene 2001 6 139 11290000 78100 825 7.2 2001.417
Abilene 2001 7 134 13175000 86700 801 7.1 2001.500
Abilene 2001 8 151 11840000 69000 891 7.7 2001.583

6 outbreaks

6.1 covid19_england_nhscalls_2020

Potential COVID19 cases reported through NHS pathways
site_type date sex age ccg_code ccg_name count postcode nhs_region day weekday
111 2020-03-18 female missing e38000062 nhs_gloucestershire_ccg 1 gl34fe South West 0 rest_of_week
111 2020-03-18 female missing e38000163 nhs_south_tyneside_ccg 1 ne325nn North East and Yorkshire 0 rest_of_week
111 2020-03-18 female 0-18 e38000001 nhs_airedale_wharfedale_and_craven_ccg 8 bd57jr North East and Yorkshire 0 rest_of_week
111 2020-03-18 female 0-18 e38000002 nhs_ashford_ccg 7 tn254ab South East 0 rest_of_week
111 2020-03-18 female 0-18 e38000004 nhs_barking_and_dagenham_ccg 35 rm13ae London 0 rest_of_week
111 2020-03-18 female 0-18 e38000005 nhs_barnet_ccg 9 n111np London 0 rest_of_week
111 2020-03-18 female 0-18 e38000006 nhs_barnsley_ccg 11 s752py North East and Yorkshire 0 rest_of_week
111 2020-03-18 female 0-18 e38000007 nhs_basildon_and_brentwood_ccg 19 ss143hg East of England 0 rest_of_week
111 2020-03-18 female 0-18 e38000008 nhs_bassetlaw_ccg 6 dn227xf North East and Yorkshire 0 rest_of_week
111 2020-03-18 female 0-18 e38000009 nhs_bath_and_north_east_somerset_ccg 9 ba25rp South West 0 rest_of_week
111 2020-03-18 female 0-18 e38000010 nhs_bedfordshire_ccg 27 mk454hr East of England 0 rest_of_week
111 2020-03-18 female 0-18 e38000011 nhs_bexley_ccg 13 da67at London 0 rest_of_week
111 2020-03-18 female 0-18 e38000014 nhs_blackburn_with_darwen_ccg 9 bb12fd North West 0 rest_of_week
111 2020-03-18 female 0-18 e38000015 nhs_blackpool_ccg 13 fy16jx North West 0 rest_of_week
111 2020-03-18 female 0-18 e38000016 nhs_bolton_ccg 20 bl11pp North West 0 rest_of_week
111 2020-03-18 female 0-18 e38000018 nhs_bradford_city_ccg 6 bd57jr North East and Yorkshire 0 rest_of_week
111 2020-03-18 female 0-18 e38000019 nhs_bradford_districts_ccg 21 bd57jr North East and Yorkshire 0 rest_of_week
111 2020-03-18 female 0-18 e38000020 nhs_brent_ccg 21 ha04uz London 0 rest_of_week
111 2020-03-18 female 0-18 e38000021 nhs_brighton_and_hove_ccg 13 bn34ah South East 0 rest_of_week
111 2020-03-18 female 0-18 e38000023 nhs_bromley_ccg 11 br33ql London 0 rest_of_week

6.2 dengue_fais_2011

Dengue on the island of Fais, Micronesia, 2011
onset_date nr value
2011-09-15 7 0
2011-09-22 14 0
2011-09-29 21 0
2011-10-06 28 0
2011-10-13 35 0
2011-10-20 42 0
2011-10-27 49 0
2011-11-03 56 0
2011-11-10 63 1
2011-11-11 64 0
2011-11-12 65 0
2011-11-13 66 0
2011-11-14 67 0
2011-11-15 68 0
2011-11-16 69 0
2011-11-17 70 0
2011-11-18 71 0
2011-11-19 72 0
2011-11-20 73 0
2011-11-21 74 0

6.3 dengue_yap_2011

Dengue on the Yap Main Islands, Micronesia, 2011
onset_date nr value
2011-07-07 7 0
2011-07-14 14 0
2011-07-21 21 0
2011-07-28 28 0
2011-08-04 35 0
2011-08-11 42 0
2011-08-18 49 0
2011-08-25 56 0
2011-09-01 63 1
2011-09-02 64 2
2011-09-03 65 0
2011-09-04 66 0
2011-09-05 67 0
2011-09-06 68 0
2011-09-07 69 0
2011-09-08 70 0
2011-09-09 71 1
2011-09-10 72 0
2011-09-11 73 0
2011-09-12 74 0

6.4 ebola_kikwit_1995

Ebola in Kikwit, Democratic Republic of the Congo, 1995
date onset death reporting
1995-01-06 1 0 TRUE
1995-01-07 0 0 FALSE
1995-01-08 0 0 FALSE
1995-01-09 0 0 FALSE
1995-01-10 0 0 FALSE
1995-01-11 0 0 FALSE
1995-01-12 0 0 FALSE
1995-01-13 0 0 FALSE
1995-01-14 0 0 FALSE
1995-01-15 0 0 FALSE
1995-01-16 0 0 FALSE
1995-01-17 0 0 FALSE
1995-01-18 0 0 FALSE
1995-01-19 0 0 FALSE
1995-01-20 0 0 FALSE
1995-01-21 0 0 FALSE
1995-01-22 0 0 FALSE
1995-01-23 0 0 FALSE
1995-01-24 0 0 FALSE
1995-01-25 0 0 FALSE

6.5 ebola_sierraleone_2014

Ebola in Sierra Leone, 2014
id age sex status date_of_onset date_of_sample district chiefdom
1 20 F confirmed 2014-05-18 2014-05-23 Kailahun Kissi Teng
2 42 F confirmed 2014-05-20 2014-05-25 Kailahun Kissi Teng
3 45 F confirmed 2014-05-20 2014-05-25 Kailahun Kissi Tonge
4 15 F confirmed 2014-05-21 2014-05-26 Kailahun Kissi Teng
5 19 F confirmed 2014-05-21 2014-05-26 Kailahun Kissi Teng
6 55 F confirmed 2014-05-21 2014-05-26 Kailahun Kissi Teng
7 50 F confirmed 2014-05-21 2014-05-26 Kailahun Kissi Teng
8 8 F confirmed 2014-05-22 2014-05-27 Kailahun Kissi Teng
9 54 F confirmed 2014-05-22 2014-05-27 Kailahun Kissi Teng
10 57 F confirmed 2014-05-22 2014-05-27 Kailahun Kissi Teng
11 50 F confirmed 2014-05-22 2014-05-27 Kailahun Kissi Teng
12 27 F confirmed 2014-05-22 2014-05-27 Kailahun Kissi Tonge
13 38 F confirmed 2014-05-22 2014-05-27 Kailahun Kissi Tonge
14 29 F suspected 2014-05-23 2014-05-28 Western Urban Freetowm
15 43 F suspected 2014-05-24 2014-05-29 Kailahun Penguia
16 NA F suspected 2014-05-24 2014-05-29 Western Urban Freetowm
17 38 F confirmed 2014-05-26 2014-05-31 Kailahun Jawei
18 36 F suspected 2014-05-26 2014-05-31 Bombali Bombali Sebora
19 35 F suspected 2014-05-26 2014-05-31 Kailahun Kissi Tonge
20 3 F suspected 2014-05-26 2014-05-31 Kailahun Kissi Tonge

6.6 fluH7N9_china_2013

Influenza A H7N9 in China, 2013
case_id date_of_onset date_of_hospitalisation date_of_outcome outcome gender age province
1 2013-02-19 NA 2013-03-04 Death m 87 Shanghai
2 2013-02-27 2013-03-03 2013-03-10 Death m 27 Shanghai
3 2013-03-09 2013-03-19 2013-04-09 Death f 35 Anhui
4 2013-03-19 2013-03-27 NA NA f 45 Jiangsu
5 2013-03-19 2013-03-30 2013-05-15 Recover f 48 Jiangsu
6 2013-03-21 2013-03-28 2013-04-26 Death f 32 Jiangsu
7 2013-03-20 2013-03-29 2013-04-09 Death m 83 Jiangsu
8 2013-03-07 2013-03-18 2013-03-27 Death m 38 Zhejiang
9 2013-03-25 2013-03-25 NA NA m 67 Zhejiang
10 2013-03-28 2013-04-01 2013-04-03 Death m 48 Shanghai
11 2013-03-29 2013-03-31 2013-04-04 Death m 64 Zhejiang
12 2013-03-27 NA 2013-04-03 Death f 52 Shanghai
13 2013-03-22 2013-03-25 2013-04-03 Death f 67 Shanghai
14 2013-03-31 NA 2013-04-10 Recover m 4 Shanghai
15 2013-03-20 NA NA NA f 61 Jiangsu
16 2013-03-21 NA NA NA m 79 Jiangsu
17 2013-03-28 2013-04-03 2013-04-11 Death m 74 Shanghai
18 2013-03-29 2013-04-02 2013-04-18 Recover m 66 Shanghai
19 2013-03-25 2013-03-30 2013-05-31 Death m 59 Shanghai
20 2013-03-28 2013-04-01 2013-04-19 Recover m 55 Anhui

6.7 influenza_england_1978_school

Influenza in a boarding school in England, 1978
date in_bed convalescent
1978-01-22 3 0
1978-01-23 8 0
1978-01-24 26 0
1978-01-25 76 0
1978-01-26 225 9
1978-01-27 298 17
1978-01-28 258 105
1978-01-29 233 162
1978-01-30 189 176
1978-01-31 128 166
1978-02-01 68 150
1978-02-02 29 85
1978-02-03 14 47
1978-02-04 4 20

6.8 measles_hagelloch_1861

Measles in Hagelloch, Germany, 1861
case_ID infector date_of_prodrome date_of_rash date_of_death age gender family_ID class complications x_loc y_loc
1 45 1861-11-21 1861-11-25 NA 7 f 41 1 yes 142.5 100.0
2 45 1861-11-23 1861-11-27 NA 6 f 41 1 yes 142.5 100.0
3 172 1861-11-28 1861-12-02 NA 4 f 41 0 yes 142.5 100.0
4 180 1861-11-27 1861-11-28 NA 13 m 61 2 yes 165.0 102.5
5 45 1861-11-22 1861-11-27 NA 8 f 42 1 yes 145.0 120.0
6 180 1861-11-26 1861-11-29 NA 12 m 42 2 yes 145.0 120.0
7 42 1861-11-24 1861-11-28 NA 6 m 26 0 yes 272.5 147.5
8 45 1861-11-21 1861-11-26 NA 10 m 44 1 yes 97.5 155.0
9 182 1861-11-26 1861-11-30 NA 13 m 44 2 yes 97.5 155.0
10 45 1861-11-21 1861-11-25 NA 7 f 29 1 yes 240.0 75.0
11 182 1861-11-25 1861-11-30 NA 11 f 27 2 yes 270.0 135.0
12 45 1861-11-20 1861-11-25 NA 7 f 32 1 yes 195.0 27.5
13 12 1861-11-30 1861-12-05 NA 13 m 32 2 yes 195.0 27.5
14 181 1861-11-22 1861-11-29 NA 13 f 22 2 yes 227.5 185.0
15 45 1861-11-24 1861-11-29 NA 8 m 22 1 yes 227.5 185.0
16 181 1861-11-21 1861-11-25 NA 15 f 43 2 yes 172.5 172.5
17 181 1861-11-20 1861-11-25 NA 10 f 43 2 yes 172.5 172.5
18 175 1861-11-23 1861-11-27 NA 2 f 43 0 yes 172.5 172.5
19 181 1861-11-20 1861-11-24 NA 11 m 11 2 yes 167.5 5.0
20 181 1861-11-22 1861-11-27 NA 10 m 11 2 yes 167.5 5.0

6.9 nipah_malaysia

Nipah in Malaysia and Sinagapore, 1997-1999
date perak negeri_sembilan selangor singapore
1997-01-04 0 0 0 0
1997-01-11 1 0 0 0
1997-01-18 0 0 0 0
1997-01-25 1 0 0 0
1997-02-01 1 0 0 0
1997-02-08 0 0 0 0
1997-02-15 1 0 0 0
1997-02-22 1 0 0 0
1997-03-01 0 0 0 0
1997-03-08 0 0 0 0
1997-03-15 0 0 0 0
1997-03-22 0 0 0 0
1997-03-29 0 0 0 0
1997-04-05 0 0 0 0
1997-04-12 0 0 0 0
1997-04-19 0 0 0 0
1997-04-26 0 0 0 0
1997-05-03 0 0 0 0
1997-05-10 0 0 0 0
1997-05-17 0 0 0 0

6.10 norovirus_derbyshire_2001_school

Norovirus in a primary school in Derbyshire, England, 2001
class day_absent start_illness end_illness day_vomiting
1 23 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 22 22 0
1 0 24 28 0
1 15 0 0 0
1 0 0 0 0
1 15 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 15 0 0 0

6.11 sars_canada_2003

Severe Acute Respiratory Syndrome in Canada, 2003
date cases_travel cases_household cases_healthcare cases_other
2003-02-23 1 0 0 0
2003-02-24 0 0 0 0
2003-02-25 0 0 0 0
2003-02-26 0 1 0 0
2003-02-27 0 0 0 0
2003-02-28 1 0 0 0
2003-03-01 0 0 0 0
2003-03-02 0 0 0 0
2003-03-03 0 1 0 0
2003-03-04 0 0 0 0
2003-03-05 0 1 0 0
2003-03-06 0 0 0 0
2003-03-07 0 1 0 0
2003-03-08 0 0 0 0
2003-03-09 0 0 1 0
2003-03-10 0 0 1 0
2003-03-11 0 0 0 0
2003-03-12 0 0 2 0
2003-03-13 1 0 2 0
2003-03-14 0 0 0 0

6.12 sarscov2_who_2019

SARS-CoV-2 World Health Organization Situation Reports 2019 Outbreak (COVID-19)
situation_report date cases_chn cases_kor cases_aus cases_jpn cases_mys cases_phl cases_sgp cases_nzl cases_vnm cases_brn cases_khm cases_mng cases_fji cases_lao cases_png cases_gum cases_pyf cases_ncl cases_mnp cases_region_westernpacific cases_idn cases_tha cases_ind cases_lka cases_mdv cases_bgd cases_btn cases_npl cases_mmr cases_tls cases_region_southeastasia cases_usa cases_can cases_bra cases_chl cases_ecu cases_mex cases_dom cases_pan cases_per cases_arg cases_col cases_cri cases_ury cases_cub cases_hnd cases_ven cases_bol cases_tto cases_pry cases_gtm cases_jam cases_slv cases_brb cases_bhm cases_guy cases_hti cases_lca cases_dma cases_grd cases_sur cases_kna cases_atg cases_nic cases_blz cases_vct cases_pri cases_mtq cases_glp cases_abw cases_guf cases_vir cases_bmu cases_cym cases_sxm cases_maf cases_cuw cases_blm cases_msr cases_tca cases_aia cases_vgb cases_bes cases_flk cases_spm cases_region_americas cases_esp cases_ita cases_deu cases_fra cases_gbr cases_tur cases_bel cases_che cases_nld cases_prt cases_aut cases_rus cases_isr cases_swe cases_irl cases_nor cases_dnk cases_pol cases_cze cases_rou cases_lux cases_srb cases_fin cases_ukr cases_grc cases_isl cases_hrv cases_mda cases_est cases_hun cases_svn cases_blr cases_ltu cases_arm cases_aze cases_bih cases_kaz cases_svk cases_mkd cases_bgr cases_uzb cases_and cases_lva cases_cyp cases_alb cases_smr cases_mlt cases_kgz cases_mne cases_geo cases_lie cases_mco cases_vat cases_kosovo cases_fro cases_ggy cases_jey cases_imn cases_gib cases_grl cases_region_european cases_irn cases_pak cases_sau cases_qat cases_egy cases_irq cases_are cases_mar cases_bhr cases_lbn cases_tun cases_jor cases_kwt cases_omn cases_afg cases_dji cases_syr cases_lby cases_sdn cases_som cases_yem cases_pse cases_region_easternmediterranean cases_zaf cases_dza cases_bfa cases_civ cases_sen cases_gha cases_cmr cases_nga cases_mus cases_cod cases_rwa cases_mdg cases_ken cases_zmb cases_tgo cases_uga cases_eth cases_ner cases_cog cases_tza cases_mli cases_gin cases_gnq cases_nam cases_swz cases_moz cases_syc cases_gab cases_ben cases_caf cases_eri cases_cpv cases_tcd cases_mrt cases_zwe cases_gmb cases_lbr cases_ago cases_gnb cases_bwa cases_mwi cases_stp cases_bdi cases_sle cases_ssd cases_reu cases_myt cases_region_african cases_internationalconveyance cases_global deaths_global deaths_chn deaths_kor deaths_aus deaths_mys deaths_jpn deaths_sgp deaths_phl deaths_nzl deaths_gum deaths_brn deaths_mnp deaths_region_westernpacific deaths_ita deaths_esp deaths_deu deaths_fra deaths_gbr deaths_tur deaths_che deaths_bel deaths_nld deaths_aut deaths_prt deaths_isr deaths_swe deaths_nor deaths_irl deaths_cze deaths_rus deaths_dnk deaths_pol deaths_rou deaths_lux deaths_fin deaths_grc deaths_srb deaths_isl deaths_ukr deaths_hrv deaths_est deaths_svn deaths_ltu deaths_arm deaths_hun deaths_mda deaths_bih deaths_lva deaths_bgr deaths_kaz deaths_aze deaths_and deaths_mkd deaths_cyp deaths_alb deaths_blr deaths_smr deaths_svk deaths_uzb deaths_mne deaths_geo deaths_mlt deaths_kgz deaths_mco deaths_lie deaths_kosovo deaths_jey deaths_ggy deaths_imn deaths_gib deaths_region_european deaths_tha deaths_idn deaths_ind deaths_bgd deaths_lka deaths_mmr deaths_region_southeastasia deaths_irn deaths_pak deaths_sau deaths_are deaths_qat deaths_egy deaths_mar deaths_irq deaths_kwt deaths_bhr deaths_tun deaths_lbn deaths_afg deaths_omn deaths_jor deaths_dji deaths_lby deaths_syr deaths_sdn deaths_som deaths_pse deaths_region_easternmediterranean deaths_usa deaths_can deaths_bra deaths_chl deaths_ecu deaths_per deaths_dom deaths_mex deaths_pan deaths_arg deaths_col deaths_cri deaths_ury deaths_cub deaths_hnd Venezuela.deaths deaths_bol deaths_tto deaths_pry deaths_gtm deaths_jam deaths_slv deaths_bhm deaths_guy deaths_atg deaths_sur deaths_brb deaths_hti deaths_blz deaths_nic deaths_pri deaths_mtq deaths_glp deaths_vir Aruba.deaths deaths_guf deaths_bmu deaths_cym deaths_cuw deaths_maf deaths_sxm deaths_tca deaths_vgb deaths_region_americas deaths_zaf deaths_dza deaths_bfa deaths_gha deaths_sen deaths_mus deaths_cmr deaths_gin deaths_nga deaths_cod deaths_ken deaths_ner deaths_tgo deaths_cog deaths_eth deaths_mli deaths_zmb deaths_civ deaths_tza deaths_ago deaths_lbr deaths_zwe deaths_ben deaths_gab deaths_swz deaths_mwi deaths_cpv deaths_bwa deaths_mrt deaths_gmb deaths_bdi deaths_myt deaths_region_african deaths_internationalconveyance Region.Other.deaths critical_chn clinical_chn_hubei cases_outside_chn countries_outside_chn deaths_outside_chn risk_chn risk_regional risk_global cases_health_care_workers cases_chn_wuhan cases_chn_hubei cases_chn_guangdong cases_chn_beijing cases_chn_shanghai cases_chn_chongqing cases_chn_zhejiang cases_chn_jiangxi cases_chn_sichuan cases_chn_tianjin cases_chn_henan cases_chn_hunan cases_chn_shandong cases_chn_yunnan cases_chn_taiwan cases_chn_taipei cases_chn_hkg cases_chn_mac cases_chn_unspecified cases_chn_anhui cases_chn_jiangsu cases_chn_fujian cases_chn_shaanxi cases_chn_guangxi cases_chn_hebei cases_chn_heilongjiang cases_chn_liaoning cases_chn_hainan cases_chn_shanxi cases_chn_gansu cases_chn_guizhou cases_chn_ningxia cases_chn_mng cases_chn_xinjiang cases_chn_jilin cases_chn_qinghai cases_chn_xizang deaths_chn_hubei deaths_chn_guangdong deaths_chn_beijing deaths_chn_shanghai deaths_chn_chongqing deaths_chn_zhejiang deaths_chn_jiangxi deaths_chn_sichuan deaths_chn_tianjin deaths_chn_henan deaths_chn_hunan deaths_chn_shandong deaths_chn_yunnan deaths_chn_taipei deaths_chn_hkg deaths_chn_mac deaths_chn_anhui deaths_chn_jiangsu deaths_chn_fujian deaths_chn_shaanxi deaths_chn_guangxi deaths_chn_hebei deaths_chn_heilongjiang deaths_chn_liaoning deaths_chn_hainan deaths_chn_shanxi deaths_chn_gansu deaths_chn_guizhou deaths_chn_ningxia deaths_chn_mng deaths_chn_xinjiang deaths_chn_jilin deaths_chn_qinghai deaths_chn_xizang suspected_chn severe_chn cases_outside_chn_wuhan_travel_history cases_outside_chn_chn_travel_history
1 2020-01-20 278 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 2 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 282 NA 6 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA 12 NA NA NA NA NA 60 258 14 5 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 51 4 NA
2 2020-01-21 309 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 2 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 314 NA 6 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA 12 NA 4 NA NA 16 82 270 17 5 2 1 5 2 1 2 1 1 1 1 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 51 4 NA
3 2020-01-23 571 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 4 0 0 0 0 0 0 0 0 NA 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 581 NA 17 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA NA NA NA Very High High High NA NA 375 26 10 9 5 5 2 2 2 1 1 1 1 NA 1 1 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 95 NA NA
4 2020-01-24 830 2 0 1 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 NA 0 4 0 0 0 0 0 0 0 0 NA 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 846 NA 25 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 11 6 NA Very High High High NA NA 375 32 10 9 5 5 2 2 2 1 1 1 1 NA 1 2 2 384 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 177 10 NA
5 2020-01-25 1297 2 3 3 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 NA 0 4 0 0 0 0 0 1 0 0 NA 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 1320 NA 41 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 23 9 NA Very High High High NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 5 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1965 237 21 NA
6 2020-01-26 1985 2 4 3 3 0 4 0 2 0 0 0 0 0 0 0 0 0 0 NA 0 5 0 0 0 0 0 1 0 0 NA 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 2014 NA 56 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 29 10 NA Very High High High NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 5 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 52 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 324 26 NA
7 2020-01-27 2761 4 4 4 4 0 4 0 2 0 0 0 0 0 0 0 0 0 0 NA 0 5 0 0 0 0 0 1 0 0 NA 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 2798 NA 80 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 37 11 NA Very High High High NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4 8 5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 5794 461 NA NA
8 2020-01-28 4537 4 5 6 4 0 7 0 2 0 1 0 0 0 0 0 0 0 0 NA 0 14 0 1 0 0 0 1 0 0 NA 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 4593 NA 106 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 56 14 NA Very High High High NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 7 8 7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 6973 976 NA NA
9 2020-01-29 5997 4 7 7 4 0 7 0 2 0 1 0 0 0 0 0 0 0 0 NA 0 14 0 1 0 0 0 1 0 0 NA 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 6065 NA 132 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 68 15 NA Very High High High NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 8 8 7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 9239 1239 NA NA
10 2020-01-30 7736 4 7 11 7 1 10 0 2 0 1 0 0 0 0 0 0 0 0 NA 0 14 1 1 0 0 0 1 0 0 NA 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 7818 NA 170 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 82 18 NA Very High High High NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 8 10 7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 12167 1370 NA NA
11 2020-01-31 9720 11 9 14 8 1 13 0 5 0 1 0 0 0 0 0 0 0 0 NA 0 14 1 1 0 0 0 1 0 0 NA 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 2 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 9826 NA 213 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 106 19 NA Very High High High NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 9 12 7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 15238 1527 NA NA
12 2020-02-01 11821 12 12 17 8 1 16 0 6 0 1 0 0 0 0 0 0 0 0 NA 0 19 1 1 0 0 0 1 0 0 NA 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 2 7 6 2 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 11953 NA 259 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 132 23 NA Very High High High NA NA 7153 520 156 153 238 599 286 207 34 422 389 202 91 NA 10 13 7 NA 297 202 144 101 100 96 80 60 57 47 35 29 26 23 18 17 8 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1795 NA NA
13 2020-02-02 14411 15 12 20 8 2 18 0 7 0 1 0 0 0 0 0 0 0 0 NA 0 19 2 1 0 0 0 1 0 0 NA 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 2 8 6 2 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 14557 NA 304 0 0 0 0 0 1 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 146 23 1 Very High High High NA NA 9074 604 183 177 262 661 333 236 40 493 463 225 99 NA 10 14 7 NA 340 231 159 116 111 104 95 64 63 56 45 40 28 26 23 21 9 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2110 NA NA
14 2020-02-03 17238 15 12 20 8 2 18 0 8 0 1 0 0 0 0 0 0 0 0 NA 0 19 3 1 0 0 0 1 0 0 NA 11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 2 10 6 2 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 17391 NA 361 0 0 0 0 0 1 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 153 23 1 Very High High High NA NA 11177 683 212 193 300 724 391 254 49 566 521 246 109 NA 10 15 8 NA 408 271 179 128 127 113 118 70 70 66 51 46 31 33 24 31 13 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2296 NA NA
15 2020-02-04 20471 16 12 20 10 2 18 0 9 0 1 0 0 0 0 0 0 0 0 NA 0 19 3 1 0 0 0 1 0 0 NA 11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 2 12 6 2 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 20630 NA 425 0 0 0 0 0 1 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 159 23 1 Very High High High NA NA 13522 797 228 208 337 829 476 282 63 675 593 270 117 NA 10 15 8 NA 480 308 194 142 139 126 155 74 79 74 56 56 34 37 29 42 15 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2788 NA NA
16 2020-02-05 24363 18 13 33 10 3 24 0 10 0 1 0 0 0 0 0 0 0 0 NA 0 25 3 1 0 0 0 1 0 0 NA 11 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 2 12 6 2 0 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 24554 NA 491 0 0 0 0 0 1 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 191 24 1 Very High High High NA NA 16678 870 253 233 366 895 548 301 67 764 661 298 122 NA 11 18 10 NA 530 341 205 165 150 135 190 81 89 81 57 64 34 42 32 54 17 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3219 NA NA
17 2020-02-06 28060 23 14 25 12 3 28 0 10 0 1 0 0 0 0 0 0 0 0 NA 0 25 3 1 0 0 0 1 0 0 NA 12 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 2 12 6 2 0 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 20 28276 NA 564 0 0 0 0 0 1 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 216 24 1 Very High High High NA NA 19665 944 274 254 389 954 600 321 70 851 711 343 128 NA 11 21 10 NA 591 373 215 173 168 157 227 89 100 90 62 69 40 46 36 59 18 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3859 NA NA
18 2020-02-07 31211 24 15 25 14 3 30 0 12 0 1 0 0 0 0 0 0 0 0 NA 0 25 3 1 0 0 0 1 0 0 NA 12 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 3 13 6 3 0 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 61 31481 NA 637 0 0 0 0 0 1 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 270 24 1 Very High High High NA NA 22112 1018 297 269 411 1006 661 344 79 914 772 379 135 NA 16 24 10 NA 665 408 224 184 172 171 277 94 111 96 70 77 43 49 39 65 18 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4821 NA NA
19 2020-02-08 34598 24 15 25 15 3 33 0 13 0 1 0 0 0 0 0 0 0 0 NA 0 32 3 1 0 0 0 1 0 0 NA 12 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 3 14 6 3 0 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 64 34886 NA 723 0 0 0 0 0 1 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 288 24 1 Very High High High NA NA 24953 1075 315 281 426 1048 698 363 81 981 803 407 138 NA 16 26 10 NA 733 439 239 195 183 195 282 99 123 104 71 89 45 50 42 69 18 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 6101 NA NA
20 2020-02-09 37251 27 15 26 17 3 40 0 14 0 1 0 0 0 0 0 0 0 0 NA 0 32 3 1 0 0 0 1 0 0 NA 12 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 3 14 11 3 0 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 64 37558 NA 812 0 0 0 0 0 1 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 NA NA NA 307 24 1 Very High High High NA NA 27100 1120 326 292 446 1075 740 386 88 1033 838 435 140 NA 17 26 10 NA 779 468 250 208 195 206 307 105 128 115 81 96 45 54 45 78 18 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 6188 NA NA

6.13 smallpox_abakaliki_1967

Smallpox in Abakaliki, Nigeria, 1967
case_ID date_of_onset age gender vaccinated vaccscar ftc compound
1 1967-04-05 10 f n n y 1
2 1967-04-18 25 f n n y 1
3 1967-04-25 35 m n n y 1
4 1967-04-27 4 f n n y 1
5 1967-04-30 11 m n n y 1
6 1967-04-30 1 m n n y 1
7 1967-04-30 4 f n n y 1
8 1967-05-01 8 f y n y 2
9 1967-05-05 12 m y y y 2
10 1967-05-10 2 m n n y 1
11 1967-05-13 35 m n n y 4
12 1967-05-15 28 f n n y 5
13 1967-05-15 3 m n n y 1
14 1967-05-17 1 f n n y 1
15 1967-05-17 2 m n n y 1
16 1967-05-22 3 f n n y 1
17 1967-05-25 1 f n n y 5
18 1967-05-26 30 f n n y 2
19 1967-05-30 4 f n n y 1
20 1967-05-30 13 m y n y 2

6.14 varicella_sim_berlin

Simulated Varicella outbreak
sex ethnicity firstname lastname age center1 arrival1 leave1 center2 arrival2 leave2 onset disease
female arabic Saleema al-Ismael 16 Oranienburger Str 2015-05-06 2015-06-20 Bizetstr 2015-06-27 2015-08-19 NA NA
male hispanic Domonic Jaramillo 25 Platz der Luftbruecke 2015-01-19 2015-01-21 Bizetstr 2015-01-30 2015-03-02 NA NA
female arabic Haaniya el-Mitri 34 Platz der Luftbruecke 2015-04-11 2015-07-09 Platz der Luftbruecke 2015-07-18 2015-10-03 2015-07-06 varicella
female asian Erica Tanghal 11 Platz der Luftbruecke 2015-01-20 2015-03-30 Oranienburger Str 2015-04-08 2015-07-13 2015-08-20 varicella
male asian Fermin Joshua Kikuchi 34 Platz der Luftbruecke 2015-06-15 2015-08-17 Platz der Luftbruecke 2015-08-22 2015-11-01 NA NA
male arabic Muslim al-Moussa 5 Bizetstr 2014-11-18 2015-02-03 Platz der Luftbruecke 2015-02-17 2015-04-27 NA NA
male arabic Abdul Baari al-Ozer 35 Oranienburger Str 2015-07-19 2015-10-28 Oranienburger Str 2015-11-06 2015-11-09 NA NA
female arabic Wadha el-Dia 11 Platz der Luftbruecke 2015-02-15 2015-04-10 Platz der Luftbruecke 2015-04-16 2015-06-08 2015-06-24 varicella
male asian Binh Kaneko 13 Bizetstr 2015-05-06 2015-06-23 Bizetstr 2015-06-29 2015-08-28 2015-03-16 varicella
female native-american Ruby Cook 15 Platz der Luftbruecke 2014-12-15 2015-01-07 Bizetstr 2015-01-13 2015-01-16 NA NA
female asian Kelyn Maranto 1 Platz der Luftbruecke 2015-05-19 2015-06-29 Platz der Luftbruecke 2015-07-11 2015-09-10 NA NA
male caucasian Aaron Arendall 3 Platz der Luftbruecke 2014-12-30 2015-02-17 Platz der Luftbruecke 2015-03-02 2015-03-14 NA NA
male hispanic Trey Munoz 7 Oranienburger Str 2015-05-16 2015-07-04 Bizetstr 2015-07-18 2015-08-11 NA NA
female african Tia Busterna 26 Platz der Luftbruecke 2014-12-20 2015-03-07 Bizetstr 2015-03-17 2015-03-30 NA NA
male caucasian Jessie Montgomery 24 Platz der Luftbruecke 2015-05-01 2015-07-23 Bizetstr 2015-08-05 2015-09-17 2015-08-15 varicella
female african Amira Jackson 17 Platz der Luftbruecke 2015-01-03 2015-02-14 Platz der Luftbruecke 2015-02-19 2015-04-14 NA NA
male asian John Van Zee 8 Bizetstr 2015-08-19 2015-10-06 Buchholzerstr 2015-10-21 2015-12-28 NA NA
female hispanic Lorrana Orozco 23 Bizetstr 2014-12-28 2015-02-13 Platz der Luftbruecke 2015-02-18 2015-05-03 NA NA
female arabic Tasneem al-Naqvi 15 Platz der Luftbruecke 2015-04-18 2015-05-11 Buchholzerstr 2015-05-18 2015-07-14 2015-06-25 varicella
male asian Max Schultz 22 Oranienburger Str 2014-12-09 2015-01-31 Platz der Luftbruecke 2015-02-12 2015-04-19 NA NA

6.15 zika_girardot_2015

Zika in Girardot, Colombia, 2015
date cases
2015-10-19 1
2015-10-22 2
2015-10-23 1
2015-10-24 4
2015-10-25 2
2015-10-26 5
2015-10-27 2
2015-10-28 4
2015-10-29 5
2015-10-30 4
2015-10-31 6
2015-11-01 8
2015-11-02 11
2015-11-03 11
2015-11-04 22
2015-11-05 31
2015-11-06 32
2015-11-07 40
2015-11-08 42
2015-11-09 54

6.16 zika_sanandres_2015

Zika in San Andres, Colombia, 2015
date cases
2015-09-06 1
2015-09-07 1
2015-09-08 1
2015-09-13 1
2015-09-15 4
2015-09-19 1
2015-09-20 1
2015-09-23 1
2015-09-24 1
2015-09-26 1
2015-09-28 2
2015-09-29 1
2015-09-30 2
2015-10-01 6
2015-10-02 5
2015-10-03 3
2015-10-04 3
2015-10-05 6
2015-10-06 9
2015-10-07 7

6.17 zika_yap_2007

Zika on the Yap Main Islands, Micronesia, 2007
onset_date nr value
2007-02-18 7 0
2007-02-25 14 0
2007-03-04 21 0
2007-03-11 28 0
2007-03-18 35 0
2007-03-25 42 0
2007-04-01 49 0
2007-04-08 56 0
2007-04-15 63 1
2007-04-22 70 2
2007-04-29 77 0
2007-05-06 84 1
2007-05-13 91 1
2007-05-20 98 9
2007-05-27 105 29
2007-06-03 112 15
2007-06-10 119 9
2007-06-17 126 15
2007-06-24 133 19
2007-07-01 140 6

7 datasets

7.1 BOD

Biochemical Oxygen Demand
Time demand
1 8.3
2 10.3
3 19.0
4 16.0
5 15.6
7 19.8

7.2 CO2

Carbon Dioxide Uptake in Grass Plants
Plant Type Treatment conc uptake
Qn1 Quebec nonchilled 95 16.0
Qn1 Quebec nonchilled 175 30.4
Qn1 Quebec nonchilled 250 34.8
Qn1 Quebec nonchilled 350 37.2
Qn1 Quebec nonchilled 500 35.3
Qn1 Quebec nonchilled 675 39.2
Qn1 Quebec nonchilled 1000 39.7
Qn2 Quebec nonchilled 95 13.6
Qn2 Quebec nonchilled 175 27.3
Qn2 Quebec nonchilled 250 37.1
Qn2 Quebec nonchilled 350 41.8
Qn2 Quebec nonchilled 500 40.6
Qn2 Quebec nonchilled 675 41.4
Qn2 Quebec nonchilled 1000 44.3
Qn3 Quebec nonchilled 95 16.2
Qn3 Quebec nonchilled 175 32.4
Qn3 Quebec nonchilled 250 40.3
Qn3 Quebec nonchilled 350 42.1
Qn3 Quebec nonchilled 500 42.9
Qn3 Quebec nonchilled 675 43.9

7.3 ChickWeight

Weight versus age of chicks on different diets
weight Time Chick Diet
42 0 1 1
51 2 1 1
59 4 1 1
64 6 1 1
76 8 1 1
93 10 1 1
106 12 1 1
125 14 1 1
149 16 1 1
171 18 1 1
199 20 1 1
205 21 1 1
40 0 2 1
49 2 2 1
58 4 2 1
72 6 2 1
84 8 2 1
103 10 2 1
122 12 2 1
138 14 2 1

7.4 DNase

Elisa assay of DNase
Run conc density
1 0.04882812 0.017
1 0.04882812 0.018
1 0.19531250 0.121
1 0.19531250 0.124
1 0.39062500 0.206
1 0.39062500 0.215
1 0.78125000 0.377
1 0.78125000 0.374
1 1.56250000 0.614
1 1.56250000 0.609
1 3.12500000 1.019
1 3.12500000 1.001
1 6.25000000 1.334
1 6.25000000 1.364
1 12.50000000 1.730
1 12.50000000 1.710
2 0.04882812 0.045
2 0.04882812 0.050
2 0.19531250 0.137
2 0.19531250 0.123

7.5 Formaldehyde

Determination of Formaldehyde
carb optden
0.1 0.086
0.3 0.269
0.5 0.446
0.6 0.538
0.7 0.626
0.9 0.782

7.6 Indometh

Pharmacokinetics of Indomethacin
Subject time conc
1 0.25 1.50
1 0.50 0.94
1 0.75 0.78
1 1.00 0.48
1 1.25 0.37
1 2.00 0.19
1 3.00 0.12
1 4.00 0.11
1 5.00 0.08
1 6.00 0.07
1 8.00 0.05
2 0.25 2.03
2 0.50 1.63
2 0.75 0.71
2 1.00 0.70
2 1.25 0.64
2 2.00 0.36
2 3.00 0.32
2 4.00 0.20
2 5.00 0.25

7.7 InsectSprays

Effectiveness of Insect Sprays
count spray
10 A
7 A
20 A
14 A
14 A
12 A
10 A
23 A
17 A
20 A
14 A
13 A
11 B
17 B
21 B
11 B
16 B
14 B
17 B
17 B

7.8 LifeCycleSavings

Intercountry Life-Cycle Savings Data
sr pop15 pop75 dpi ddpi
11.43 29.35 2.87 2329.68 2.87
12.07 23.32 4.41 1507.99 3.93
13.17 23.80 4.43 2108.47 3.82
5.75 41.89 1.67 189.13 0.22
12.88 42.19 0.83 728.47 4.56
8.79 31.72 2.85 2982.88 2.43
0.60 39.74 1.34 662.86 2.67
11.90 44.75 0.67 289.52 6.51
4.98 46.64 1.06 276.65 3.08
10.78 47.64 1.14 471.24 2.80
16.85 24.42 3.93 2496.53 3.99
3.59 46.31 1.19 287.77 2.19
11.24 27.84 2.37 1681.25 4.32
12.64 25.06 4.70 2213.82 4.52
12.55 23.31 3.35 2457.12 3.44
10.67 25.62 3.10 870.85 6.28
3.01 46.05 0.87 289.71 1.48
7.70 47.32 0.58 232.44 3.19
1.27 34.03 3.08 1900.10 1.12
9.00 41.31 0.96 88.94 1.54

7.9 Loblolly

Growth of Loblolly pine trees
height age Seed
4.51 3 301
10.89 5 301
28.72 10 301
41.74 15 301
52.70 20 301
60.92 25 301
4.55 3 303
10.92 5 303
29.07 10 303
42.83 15 303
53.88 20 303
63.39 25 303
4.79 3 305
11.37 5 305
30.21 10 305
44.40 15 305
55.82 20 305
64.10 25 305
3.91 3 307
9.48 5 307

7.10 Orange

Growth of Orange Trees
Tree age circumference
1 118 30
1 484 58
1 664 87
1 1004 115
1 1231 120
1 1372 142
1 1582 145
2 118 33
2 484 69
2 664 111
2 1004 156
2 1231 172
2 1372 203
2 1582 203
3 118 30
3 484 51
3 664 75
3 1004 108
3 1231 115
3 1372 139

7.11 OrchardSprays

Potency of Orchard Sprays
decrease rowpos colpos treatment
57 1 1 D
95 2 1 E
8 3 1 B
69 4 1 H
92 5 1 G
90 6 1 F
15 7 1 C
2 8 1 A
84 1 2 C
6 2 2 B
127 3 2 H
36 4 2 D
51 5 2 E
2 6 2 A
69 7 2 F
71 8 2 G
87 1 3 F
72 2 3 H
5 3 3 A
39 4 3 E

7.12 PlantGrowth

Results from an Experiment on Plant Growth
weight group
4.17 ctrl
5.58 ctrl
5.18 ctrl
6.11 ctrl
4.50 ctrl
4.61 ctrl
5.17 ctrl
4.53 ctrl
5.33 ctrl
5.14 ctrl
4.81 trt1
4.17 trt1
4.41 trt1
3.59 trt1
5.87 trt1
3.83 trt1
6.03 trt1
4.89 trt1
4.32 trt1
4.69 trt1

7.13 Puromycin

Reaction Velocity of an Enzymatic Reaction
conc rate state
0.02 76 treated
0.02 47 treated
0.06 97 treated
0.06 107 treated
0.11 123 treated
0.11 139 treated
0.22 159 treated
0.22 152 treated
0.56 191 treated
0.56 201 treated
1.10 207 treated
1.10 200 treated
0.02 67 untreated
0.02 51 untreated
0.06 84 untreated
0.06 86 untreated
0.11 98 untreated
0.11 115 untreated
0.22 131 untreated
0.22 124 untreated

7.14 Theoph

Pharmacokinetics of Theophylline
Subject Wt Dose Time conc
1 79.6 4.02 0.00 0.74
1 79.6 4.02 0.25 2.84
1 79.6 4.02 0.57 6.57
1 79.6 4.02 1.12 10.50
1 79.6 4.02 2.02 9.66
1 79.6 4.02 3.82 8.58
1 79.6 4.02 5.10 8.36
1 79.6 4.02 7.03 7.47
1 79.6 4.02 9.05 6.89
1 79.6 4.02 12.12 5.94
1 79.6 4.02 24.37 3.28
2 72.4 4.40 0.00 0.00
2 72.4 4.40 0.27 1.72
2 72.4 4.40 0.52 7.91
2 72.4 4.40 1.00 8.31
2 72.4 4.40 1.92 8.33
2 72.4 4.40 3.50 6.85
2 72.4 4.40 5.02 6.08
2 72.4 4.40 7.03 5.40
2 72.4 4.40 9.00 4.55

7.15 ToothGrowth

The Effect of Vitamin C on Tooth Growth in Guinea Pigs
len supp dose
4.2 VC 0.5
11.5 VC 0.5
7.3 VC 0.5
5.8 VC 0.5
6.4 VC 0.5
10.0 VC 0.5
11.2 VC 0.5
11.2 VC 0.5
5.2 VC 0.5
7.0 VC 0.5
16.5 VC 1.0
16.5 VC 1.0
15.2 VC 1.0
17.3 VC 1.0
22.5 VC 1.0
17.3 VC 1.0
13.6 VC 1.0
14.5 VC 1.0
18.8 VC 1.0
15.5 VC 1.0

7.16 USArrests

Violent Crime Rates by US State
Murder Assault UrbanPop Rape
13.2 236 58 21.2
10.0 263 48 44.5
8.1 294 80 31.0
8.8 190 50 19.5
9.0 276 91 40.6
7.9 204 78 38.7
3.3 110 77 11.1
5.9 238 72 15.8
15.4 335 80 31.9
17.4 211 60 25.8
5.3 46 83 20.2
2.6 120 54 14.2
10.4 249 83 24.0
7.2 113 65 21.0
2.2 56 57 11.3
6.0 115 66 18.0
9.7 109 52 16.3
15.4 249 66 22.2
2.1 83 51 7.8
11.3 300 67 27.8

7.17 USJudgeRatings

Lawyers’ Ratings of State Judges in the US Superior Court
CONT INTG DMNR DILG CFMG DECI PREP FAMI ORAL WRIT PHYS RTEN
5.7 7.9 7.7 7.3 7.1 7.4 7.1 7.1 7.1 7.0 8.3 7.8
6.8 8.9 8.8 8.5 7.8 8.1 8.0 8.0 7.8 7.9 8.5 8.7
7.2 8.1 7.8 7.8 7.5 7.6 7.5 7.5 7.3 7.4 7.9 7.8
6.8 8.8 8.5 8.8 8.3 8.5 8.7 8.7 8.4 8.5 8.8 8.7
7.3 6.4 4.3 6.5 6.0 6.2 5.7 5.7 5.1 5.3 5.5 4.8
6.2 8.8 8.7 8.5 7.9 8.0 8.1 8.0 8.0 8.0 8.6 8.6
10.6 9.0 8.9 8.7 8.5 8.5 8.5 8.5 8.6 8.4 9.1 9.0
7.0 5.9 4.9 5.1 5.4 5.9 4.8 5.1 4.7 4.9 6.8 5.0
7.3 8.9 8.9 8.7 8.6 8.5 8.4 8.4 8.4 8.5 8.8 8.8
8.2 7.9 6.7 8.1 7.9 8.0 7.9 8.1 7.7 7.8 8.5 7.9
7.0 8.0 7.6 7.4 7.3 7.5 7.1 7.2 7.1 7.2 8.4 7.7
6.5 8.0 7.6 7.2 7.0 7.1 6.9 7.0 7.0 7.1 6.9 7.2
6.7 8.6 8.2 6.8 6.9 6.6 7.1 7.3 7.2 7.2 8.1 7.7
7.0 7.5 6.4 6.8 6.5 7.0 6.6 6.8 6.3 6.6 6.2 6.5
6.5 8.1 8.0 8.0 7.9 8.0 7.9 7.8 7.8 7.8 8.4 8.0
7.3 8.0 7.4 7.7 7.3 7.3 7.3 7.2 7.1 7.2 8.0 7.6
8.0 7.6 6.6 7.2 6.5 6.5 6.8 6.7 6.4 6.5 6.9 6.7
7.7 7.7 6.7 7.5 7.4 7.5 7.1 7.3 7.1 7.3 8.1 7.4
8.3 8.2 7.4 7.8 7.7 7.7 7.7 7.8 7.5 7.6 8.0 8.0
9.6 6.9 5.7 6.6 6.9 6.6 6.2 6.0 5.8 5.8 7.2 6.0

7.18 airquality

New York Air Quality Measurements
Ozone Solar.R Wind Temp Month Day
41 190 7.4 67 5 1
36 118 8.0 72 5 2
12 149 12.6 74 5 3
18 313 11.5 62 5 4
NA NA 14.3 56 5 5
28 NA 14.9 66 5 6
23 299 8.6 65 5 7
19 99 13.8 59 5 8
8 19 20.1 61 5 9
NA 194 8.6 69 5 10
7 NA 6.9 74 5 11
16 256 9.7 69 5 12
11 290 9.2 66 5 13
14 274 10.9 68 5 14
18 65 13.2 58 5 15
14 334 11.5 64 5 16
34 307 12.0 66 5 17
6 78 18.4 57 5 18
30 322 11.5 68 5 19
11 44 9.7 62 5 20

7.19 anscombe

Anscombe’s Quartet of ‘Identical’ Simple Linear Regressions
x1 x2 x3 x4 y1 y2 y3 y4
10 10 10 8 8.04 9.14 7.46 6.58
8 8 8 8 6.95 8.14 6.77 5.76
13 13 13 8 7.58 8.74 12.74 7.71
9 9 9 8 8.81 8.77 7.11 8.84
11 11 11 8 8.33 9.26 7.81 8.47
14 14 14 8 9.96 8.10 8.84 7.04
6 6 6 8 7.24 6.13 6.08 5.25
4 4 4 19 4.26 3.10 5.39 12.50
12 12 12 8 10.84 9.13 8.15 5.56
7 7 7 8 4.82 7.26 6.42 7.91
5 5 5 8 5.68 4.74 5.73 6.89

7.20 attenu

The Joyner-Boore Attenuation Data
event mag station dist accel
1 7.0 117 12.0 0.359
2 7.4 1083 148.0 0.014
2 7.4 1095 42.0 0.196
2 7.4 283 85.0 0.135
2 7.4 135 107.0 0.062
2 7.4 475 109.0 0.054
2 7.4 113 156.0 0.014
2 7.4 1008 224.0 0.018
2 7.4 1028 293.0 0.010
2 7.4 2001 359.0 0.004
2 7.4 117 370.0 0.004
3 5.3 1117 8.0 0.127
4 6.1 1438 16.1 0.411
4 6.1 1083 63.6 0.018
4 6.1 1013 6.6 0.509
4 6.1 1014 9.3 0.467
4 6.1 1015 13.0 0.279
4 6.1 1016 17.3 0.072
4 6.1 1095 105.0 0.012
4 6.1 1011 112.0 0.006

7.21 attitude

The Chatterjee-Price Attitude Data
rating complaints privileges learning raises critical advance
43 51 30 39 61 92 45
63 64 51 54 63 73 47
71 70 68 69 76 86 48
61 63 45 47 54 84 35
81 78 56 66 71 83 47
43 55 49 44 54 49 34
58 67 42 56 66 68 35
71 75 50 55 70 66 41
72 82 72 67 71 83 31
67 61 45 47 62 80 41
64 53 53 58 58 67 34
67 60 47 39 59 74 41
69 62 57 42 55 63 25
68 83 83 45 59 77 35
77 77 54 72 79 77 46
81 90 50 72 60 54 36
74 85 64 69 79 79 63
65 60 65 75 55 80 60
65 70 46 57 75 85 46
50 58 68 54 64 78 52

7.22 beaver1

Body Temperature Series of Two Beavers
day time temp activ
346 840 36.33 0
346 850 36.34 0
346 900 36.35 0
346 910 36.42 0
346 920 36.55 0
346 930 36.69 0
346 940 36.71 0
346 950 36.75 0
346 1000 36.81 0
346 1010 36.88 0
346 1020 36.89 0
346 1030 36.91 0
346 1040 36.85 0
346 1050 36.89 0
346 1100 36.89 0
346 1110 36.67 0
346 1120 36.50 0
346 1130 36.74 0
346 1140 36.77 0
346 1150 36.76 0

7.23 beaver2

Body Temperature Series of Two Beavers
day time temp activ
307 930 36.58 0
307 940 36.73 0
307 950 36.93 0
307 1000 37.15 0
307 1010 37.23 0
307 1020 37.24 0
307 1030 37.24 0
307 1040 36.90 0
307 1050 36.95 0
307 1100 36.89 0
307 1110 36.95 0
307 1120 37.00 0
307 1130 36.90 0
307 1140 36.99 0
307 1150 36.99 0
307 1200 37.01 0
307 1210 37.04 0
307 1220 37.04 0
307 1230 37.14 0
307 1240 37.07 0

7.24 cars

Speed and Stopping Distances of Cars
speed dist
4 2
4 10
7 4
7 22
8 16
9 10
10 18
10 26
10 34
11 17
11 28
12 14
12 20
12 24
12 28
13 26
13 34
13 34
13 46
14 26

7.25 chickwts

Chicken Weights by Feed Type
weight feed
179 horsebean
160 horsebean
136 horsebean
227 horsebean
217 horsebean
168 horsebean
108 horsebean
124 horsebean
143 horsebean
140 horsebean
309 linseed
229 linseed
181 linseed
141 linseed
260 linseed
203 linseed
148 linseed
169 linseed
213 linseed
257 linseed

7.26 esoph

Smoking, Alcohol and (O)esophageal Cancer
agegp alcgp tobgp ncases ncontrols
25-34 0-39g/day 0-9g/day 0 40
25-34 0-39g/day 10-19 0 10
25-34 0-39g/day 20-29 0 6
25-34 0-39g/day 30+ 0 5
25-34 40-79 0-9g/day 0 27
25-34 40-79 10-19 0 7
25-34 40-79 20-29 0 4
25-34 40-79 30+ 0 7
25-34 80-119 0-9g/day 0 2
25-34 80-119 10-19 0 1
25-34 80-119 30+ 0 2
25-34 120+ 0-9g/day 0 1
25-34 120+ 10-19 1 0
25-34 120+ 20-29 0 1
25-34 120+ 30+ 0 2
35-44 0-39g/day 0-9g/day 0 60
35-44 0-39g/day 10-19 1 13
35-44 0-39g/day 20-29 0 7
35-44 0-39g/day 30+ 0 8
35-44 40-79 0-9g/day 0 35

7.27 faithful

Old Faithful Geyser Data
eruptions waiting
3.600 79
1.800 54
3.333 74
2.283 62
4.533 85
2.883 55
4.700 88
3.600 85
1.950 51
4.350 85
1.833 54
3.917 84
4.200 78
1.750 47
4.700 83
2.167 52
1.750 62
4.800 84
1.600 52
4.250 79

7.28 freeny

Freeny’s Revenue Data
y lag.quarterly.revenue price.index income.level market.potential
8.79236 8.79636 4.70997 5.82110 12.9699
8.79137 8.79236 4.70217 5.82558 12.9733
8.81486 8.79137 4.68944 5.83112 12.9774
8.81301 8.81486 4.68558 5.84046 12.9806
8.90751 8.81301 4.64019 5.85036 12.9831
8.93673 8.90751 4.62553 5.86464 12.9854
8.96161 8.93673 4.61991 5.87769 12.9900
8.96044 8.96161 4.61654 5.89763 12.9943
9.00868 8.96044 4.61407 5.92574 12.9992
9.03049 9.00868 4.60766 5.94232 13.0033
9.06906 9.03049 4.60227 5.95365 13.0099
9.05871 9.06906 4.58960 5.96120 13.0159
9.10698 9.05871 4.57592 5.97805 13.0212
9.12685 9.10698 4.58661 6.00377 13.0265
9.17096 9.12685 4.57997 6.02829 13.0351
9.18665 9.17096 4.57176 6.03475 13.0429
9.23823 9.18665 4.56104 6.03906 13.0497
9.26487 9.23823 4.54906 6.05046 13.0551
9.28436 9.26487 4.53957 6.05563 13.0634
9.31378 9.28436 4.51018 6.06093 13.0693

7.29 infert

Infertility after Spontaneous and Induced Abortion
education age parity induced case spontaneous stratum pooled.stratum
0-5yrs 26 6 1 1 2 1 3
0-5yrs 42 1 1 1 0 2 1
0-5yrs 39 6 2 1 0 3 4
0-5yrs 34 4 2 1 0 4 2
6-11yrs 35 3 1 1 1 5 32
6-11yrs 36 4 2 1 1 6 36
6-11yrs 23 1 0 1 0 7 6
6-11yrs 32 2 0 1 0 8 22
6-11yrs 21 1 0 1 1 9 5
6-11yrs 28 2 0 1 0 10 19
6-11yrs 29 2 1 1 0 11 20
6-11yrs 37 4 2 1 1 12 37
6-11yrs 31 1 1 1 0 13 9
6-11yrs 29 3 2 1 0 14 29
6-11yrs 31 2 1 1 1 15 21
6-11yrs 27 2 2 1 0 16 18
6-11yrs 30 5 2 1 1 17 38
6-11yrs 26 1 0 1 1 18 7
6-11yrs 25 3 2 1 1 19 28
6-11yrs 44 1 0 1 1 20 17

7.30 iris

Edgar Anderson’s Iris Data
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa
5.4 3.7 1.5 0.2 setosa
4.8 3.4 1.6 0.2 setosa
4.8 3.0 1.4 0.1 setosa
4.3 3.0 1.1 0.1 setosa
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.4 3.9 1.3 0.4 setosa
5.1 3.5 1.4 0.3 setosa
5.7 3.8 1.7 0.3 setosa
5.1 3.8 1.5 0.3 setosa

7.31 longley

Longley’s Economic Regression Data
GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
83.0 234.289 235.6 159.0 107.608 1947 60.323
88.5 259.426 232.5 145.6 108.632 1948 61.122
88.2 258.054 368.2 161.6 109.773 1949 60.171
89.5 284.599 335.1 165.0 110.929 1950 61.187
96.2 328.975 209.9 309.9 112.075 1951 63.221
98.1 346.999 193.2 359.4 113.270 1952 63.639
99.0 365.385 187.0 354.7 115.094 1953 64.989
100.0 363.112 357.8 335.0 116.219 1954 63.761
101.2 397.469 290.4 304.8 117.388 1955 66.019
104.6 419.180 282.2 285.7 118.734 1956 67.857
108.4 442.769 293.6 279.8 120.445 1957 68.169
110.8 444.546 468.1 263.7 121.950 1958 66.513
112.6 482.704 381.3 255.2 123.366 1959 68.655
114.2 502.601 393.1 251.4 125.368 1960 69.564
115.7 518.173 480.6 257.2 127.852 1961 69.331
116.9 554.894 400.7 282.7 130.081 1962 70.551

7.32 morley

Michelson Speed of Light Data
Expt Run Speed
1 1 850
1 2 740
1 3 900
1 4 1070
1 5 930
1 6 850
1 7 950
1 8 980
1 9 980
1 10 880
1 11 1000
1 12 980
1 13 930
1 14 650
1 15 760
1 16 810
1 17 1000
1 18 1000
1 19 960
1 20 960

7.33 mtcars

Motor Trend Car Road Tests
mpg cyl disp hp drat wt qsec vs am gear carb
21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

7.34 npk

Classical N, P, K Factorial Experiment
block N P K yield
1 0 1 1 49.5
1 1 1 0 62.8
1 0 0 0 46.8
1 1 0 1 57.0
2 1 0 0 59.8
2 1 1 1 58.5
2 0 0 1 55.5
2 0 1 0 56.0
3 0 1 0 62.8
3 1 1 1 55.8
3 1 0 0 69.5
3 0 0 1 55.0
4 1 0 0 62.0
4 1 1 1 48.8
4 0 0 1 45.5
4 0 1 0 44.2
5 1 1 0 52.0
5 0 0 0 51.5
5 1 0 1 49.8
5 0 1 1 48.8

7.35 pressure

Vapor Pressure of Mercury as a Function of Temperature
temperature pressure
0 0.0002
20 0.0012
40 0.0060
60 0.0300
80 0.0900
100 0.2700
120 0.7500
140 1.8500
160 4.2000
180 8.8000
200 17.3000
220 32.1000
240 57.0000
260 96.0000
280 157.0000
300 247.0000
320 376.0000
340 558.0000
360 806.0000

7.36 quakes

Locations of Earthquakes off Fiji
lat long depth mag stations
-20.42 181.62 562 4.8 41
-20.62 181.03 650 4.2 15
-26.00 184.10 42 5.4 43
-17.97 181.66 626 4.1 19
-20.42 181.96 649 4.0 11
-19.68 184.31 195 4.0 12
-11.70 166.10 82 4.8 43
-28.11 181.93 194 4.4 15
-28.74 181.74 211 4.7 35
-17.47 179.59 622 4.3 19
-21.44 180.69 583 4.4 13
-12.26 167.00 249 4.6 16
-18.54 182.11 554 4.4 19
-21.00 181.66 600 4.4 10
-20.70 169.92 139 6.1 94
-15.94 184.95 306 4.3 11
-13.64 165.96 50 6.0 83
-17.83 181.50 590 4.5 21
-23.50 179.78 570 4.4 13
-22.63 180.31 598 4.4 18

7.37 randu

Random Numbers from Congruential Generator RANDU
x y z
0.000031 0.000183 0.000824
0.044495 0.155732 0.533939
0.822440 0.873416 0.838542
0.322291 0.648545 0.990648
0.393595 0.826873 0.418881
0.309097 0.926590 0.777664
0.826368 0.308540 0.413932
0.729424 0.741526 0.884338
0.317649 0.393468 0.501968
0.599793 0.846041 0.678107
0.647603 0.281525 0.860718
0.547048 0.948790 0.769314
0.529873 0.348011 0.319211
0.908040 0.013456 0.908380
0.835195 0.814513 0.370327
0.068696 0.275943 0.037394
0.984329 0.927687 0.707165
0.945783 0.689675 0.626002
0.017137 0.166494 0.844727
0.772506 0.282393 0.741801

7.38 rock

Measurements on Petroleum Rock Samples
area peri shape perm
4990 2791.90 0.0903296 6.3
7002 3892.60 0.1486220 6.3
7558 3930.66 0.1833120 6.3
7352 3869.32 0.1170630 6.3
7943 3948.54 0.1224170 17.1
7979 4010.15 0.1670450 17.1
9333 4345.75 0.1896510 17.1
8209 4344.75 0.1641270 17.1
8393 3682.04 0.2036540 119.0
6425 3098.65 0.1623940 119.0
9364 4480.05 0.1509440 119.0
8624 3986.24 0.1481410 119.0
10651 4036.54 0.2285950 82.4
8868 3518.04 0.2316230 82.4
9417 3999.37 0.1725670 82.4
8874 3629.07 0.1534810 82.4
10962 4608.66 0.2043140 58.6
10743 4787.62 0.2627270 58.6
11878 4864.22 0.2000710 58.6
9867 4479.41 0.1448100 58.6

7.39 sleep

Student’s Sleep Data
extra group ID
0.7 1 1
-1.6 1 2
-0.2 1 3
-1.2 1 4
-0.1 1 5
3.4 1 6
3.7 1 7
0.8 1 8
0.0 1 9
2.0 1 10
1.9 2 1
0.8 2 2
1.1 2 3
0.1 2 4
-0.1 2 5
4.4 2 6
5.5 2 7
1.6 2 8
4.6 2 9
3.4 2 10

7.40 stackloss

Brownlee’s Stack Loss Plant Data
Air.Flow Water.Temp Acid.Conc. stack.loss
80 27 89 42
80 27 88 37
75 25 90 37
62 24 87 28
62 22 87 18
62 23 87 18
62 24 93 19
62 24 93 20
58 23 87 15
58 18 80 14
58 18 89 14
58 17 88 13
58 18 82 11
58 19 93 12
50 18 89 8
50 18 86 7
50 19 72 8
50 19 79 8
50 20 80 9
56 20 82 15

7.41 swiss

Swiss Fertility and Socioeconomic Indicators (1888) Data
Fertility Agriculture Examination Education Catholic Infant.Mortality
80.2 17.0 15 12 9.96 22.2
83.1 45.1 6 9 84.84 22.2
92.5 39.7 5 5 93.40 20.2
85.8 36.5 12 7 33.77 20.3
76.9 43.5 17 15 5.16 20.6
76.1 35.3 9 7 90.57 26.6
83.8 70.2 16 7 92.85 23.6
92.4 67.8 14 8 97.16 24.9
82.4 53.3 12 7 97.67 21.0
82.9 45.2 16 13 91.38 24.4
87.1 64.5 14 6 98.61 24.5
64.1 62.0 21 12 8.52 16.5
66.9 67.5 14 7 2.27 19.1
68.9 60.7 19 12 4.43 22.7
61.7 69.3 22 5 2.82 18.7
68.3 72.6 18 2 24.20 21.2
71.7 34.0 17 8 3.30 20.0
55.7 19.4 26 28 12.11 20.2
54.3 15.2 31 20 2.15 10.8
65.1 73.0 19 9 2.84 20.0

7.42 trees

Diameter, Height and Volume for Black Cherry Trees
Girth Height Volume
8.3 70 10.3
8.6 65 10.3
8.8 63 10.2
10.5 72 16.4
10.7 81 18.8
10.8 83 19.7
11.0 66 15.6
11.0 75 18.2
11.1 80 22.6
11.2 75 19.9
11.3 79 24.2
11.4 76 21.0
11.4 76 21.4
11.7 69 21.3
12.0 75 19.1
12.9 74 22.2
12.9 85 33.8
13.3 86 27.4
13.7 71 25.7
13.8 64 24.9

7.43 warpbreaks

The Number of Breaks in Yarn during Weaving
breaks wool tension
26 A L
30 A L
54 A L
25 A L
70 A L
52 A L
51 A L
26 A L
67 A L
18 A M
21 A M
29 A M
17 A M
12 A M
18 A M
35 A M
30 A M
36 A M
36 A H
21 A H

7.44 women

Average Heights and Weights for American Women
height weight
58 115
59 117
60 120
61 123
62 126
63 129
64 132
65 135
66 139
67 142
68 146
69 150
70 154
71 159
72 164