Correlation

Correlation Matrix

##                    Executive.Networks Anxiety Depression Stress ADHD
## Executive.Networks               1.00    0.29       0.20   0.31 0.19
## Anxiety                          0.29    1.00       0.79   0.88 0.46
## Depression                       0.20    0.79       1.00   0.80 0.31
## Stress                           0.31    0.88       0.80   1.00 0.50
## ADHD                             0.19    0.46       0.31   0.50 1.00

The Significance (p-value) of the correlation matrix

##                    Executive.Networks      Anxiety   Depression       Stress
## Executive.Networks         0.00000000 3.470147e-02 1.406429e-01 1.927158e-02
## Anxiety                    0.03470147 0.000000e+00 5.794143e-13 7.337602e-19
## Depression                 0.14064292 5.794143e-13 0.000000e+00 2.020561e-13
## Stress                     0.01927158 7.337602e-19 2.020561e-13 0.000000e+00
## ADHD                       0.17231945 4.484795e-04 2.009350e-02 9.250119e-05
##                            ADHD
## Executive.Networks 1.723195e-01
## Anxiety            4.484795e-04
## Depression         2.009350e-02
## Stress             9.250119e-05
## ADHD               0.000000e+00

Correlation Plot (Heat Map) showing the significance pair at alpha = 0.05

Those in Blue color is significant at alpha = 0.05.
Those in Blank/White color is NOT significant at alpha = 0.05.

In this plot, the darker shade of blue indicated a stronger relationship.

MEDIATION MODEL: Excutive.Networks (DV) - Stress (Mediator) - Anxiety (IV)

Here is a step by step procedure I perform

Prerequisite of significance must exist in these simple linear regressions:

Effect of Anxiety (IV) on Executive.Networks (DV) —- SIGNIFICANT p<0.05

## 
## Call:
## lm(formula = Executive.Networks ~ Anxiety, data = df[, -1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -183.356  -46.655    1.956   48.273  133.152 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 131.4666    20.3101   6.473 3.17e-08 ***
## Anxiety       2.1615     0.9972   2.168   0.0347 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 75.81 on 53 degrees of freedom
## Multiple R-squared:  0.08143,    Adjusted R-squared:  0.0641 
## F-statistic: 4.698 on 1 and 53 DF,  p-value: 0.0347

Effect of Anxiety (IV) on Stress (Mediator) — SIGNIFICANT p<0.001

## 
## Call:
## lm(formula = Stress ~ Anxiety, data = df[, -1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.1171  -3.7197   0.1222   2.6477  14.0623 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.07450    1.45119   2.119   0.0388 *  
## Anxiety      0.96581    0.07125  13.555   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.417 on 53 degrees of freedom
## Multiple R-squared:  0.7761, Adjusted R-squared:  0.7719 
## F-statistic: 183.7 on 1 and 53 DF,  p-value: < 2.2e-16

Effect of Stress (Mediator) on Executive.Networks (DV) —- NOT SIGNIFICANT!!!!

## 
## Call:
## lm(formula = Executive.Networks ~ Anxiety + Stress, data = df[, 
##     -1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -175.79  -49.43    4.34   54.20  125.79 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  125.458     21.146   5.933 2.46e-07 ***
## Anxiety        0.274      2.107   0.130    0.897    
## Stress         1.954      1.922   1.017    0.314    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 75.78 on 52 degrees of freedom
## Multiple R-squared:  0.09934,    Adjusted R-squared:  0.0647 
## F-statistic: 2.868 on 2 and 52 DF,  p-value: 0.06585

The result suggest NO mediation exist.

## 
## Mediation/Moderation Analysis 
## Call: mediate(y = "Executive.Networks", x = "Anxiety", m = "Stress", 
##     data = df[, -1], n.iter = 10000)
## 
## The DV (Y) was  Executive.Networks . The IV (X) was  Anxiety . The mediating variable(s) =  Stress .
## 
## Total effect(c) of  Anxiety  on  Executive.Networks  =  2.16   S.E. =  1  t  =  2.17  df=  53   with p =  0.035
## Direct effect (c') of  Anxiety  on  Executive.Networks  removing  Stress  =  0.27   S.E. =  2.11  t  =  0.13  df=  52   with p =  0.9
## Indirect effect (ab) of  Anxiety  on  Executive.Networks  through  Stress   =  1.89 
## Mean bootstrapped indirect effect =  1.99  with standard error =  1.95  Lower CI =  -1.52    Upper CI =  6.08
## R = 0.32 R2 = 0.1   F = 2.87 on 2 and 52 DF   p-value:  0.0453 
## 
## 
##  Full output  
## Call: mediate(y = "Executive.Networks", x = "Anxiety", m = "Stress", 
##     data = df[, -1], n.iter = 10000)
## 
## Direct effect estimates (traditional regression)    (c') X + M on Y 
##           Executive.Networks    se    t df     Prob
## Intercept             125.46 21.15 5.93 52 2.46e-07
## Anxiety                 0.27  2.11 0.13 52 8.97e-01
## Stress                  1.95  1.92 1.02 52 3.14e-01
## 
## R = 0.32 R2 = 0.1   F = 2.87 on 2 and 52 DF   p-value:  0.0658 
## 
##  Total effect estimates (c) (X on Y) 
##           Executive.Networks    se    t df     Prob
## Intercept             131.47 20.31 6.47 53 3.17e-08
## Anxiety                 2.16  1.00 2.17 53 3.47e-02
## 
##  'a'  effect estimates (X on M) 
##           Stress   se     t df     Prob
## Intercept   3.07 1.45  2.12 53 3.88e-02
## Anxiety     0.97 0.07 13.56 53 7.34e-19
## 
##  'b'  effect estimates (M on Y controlling for X) 
##        Executive.Networks   se    t df  Prob
## Stress               1.95 1.92 1.02 52 0.314
## 
##  'ab'  effect estimates (through all  mediators)
##         Executive.Networks boot   sd lower upper
## Anxiety               1.89 1.99 1.95 -1.52  6.08

Retest for indirect effect (aka mediation effect) – ACME NOT SIGNIFICANT

## 
## Causal Mediation Analysis 
## 
## Nonparametric Bootstrap Confidence Intervals with the Percentile Method
## 
##                Estimate 95% CI Lower 95% CI Upper p-value  
## ACME              1.887       -1.501         6.17   0.315  
## ADE               0.274       -4.535         4.24   0.901  
## Total Effect      2.162       -0.094         4.31   0.062 .
## Prop. Mediated    0.873       -2.412         7.80   0.354  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Sample Size Used: 55 
## 
## 
## Simulations: 10000