Now, the question is “does first birth affect women’s life satisfaction?” use different models and select the approriate model Prepare the dataset

library(tidyverse) # Add the tidyverse package to my current library.
library(haven) # Handle labelled data.
library(splitstackshape) #transform wide data (with stacked variables) to long data
library(ggplot2)
library(plm)
library(lmtest)

##Import 6 waves of women data
for (i in 1:6) {
  assign(paste0("women", i), #assign is similar to <-; paste0 is to combine wave and i into a name, i ranges from 1 to 6. 
         read_dta(paste0("wave", i, "_women.dta"))
         )
} 

##Clean 6 waves of women data
clean_fun <- function(df) {  df %>% 
  transmute(
    id=zap_label(id), #remove label of id
    age=zap_label(age), #remove label of age
    wave=as.numeric(wave),
    relstat=as_factor(relstat), #make relstat as a factor
    relstat=case_when(relstat== "-7 Incomplete data" ~ as.character(NA), #specify when is missing for relstat
                      TRUE ~ as.character(relstat))%>% as_factor(), #make relstat as a factor again
    hlt=case_when(hlt1<0 ~ as.numeric(NA),  #specify when hlt1 is missing 
                   TRUE ~ as.numeric(hlt1)),
    nkidsbio=case_when(nkidsbio==-7~ as.numeric(NA), #specify when is missing for relstat
                      TRUE ~ as.numeric(nkidsbio)), 
    sat=case_when(sat6<0 ~ as.numeric(NA), #specify when sat6 is missing
                   TRUE ~ as.numeric(sat6)),
  )%>% drop_na()  }
women1a <- clean_fun(women1)
women2a <- clean_fun(women2)
women3a <- clean_fun(women3)
women4a <- clean_fun(women4)
women5a <- clean_fun(women5)
women6a <- clean_fun(women6)

women1b <- women1a %>% filter(nkidsbio==0)%>% #keep individuals who are childless in the first wave
rename(wave.1=wave, age.1=age, relstat.1=relstat, hlt.1=hlt, nkidsbio.1=nkidsbio, sat.1=sat ) #rename variables

women2b <- women2a %>% 
rename(wave.2=wave, age.2=age, relstat.2=relstat, hlt.2=hlt, nkidsbio.2=nkidsbio, sat.2=sat )

women3b <- women3a %>% 
rename(wave.3=wave, age.3=age, relstat.3=relstat, hlt.3=hlt, nkidsbio.3=nkidsbio, sat.3=sat )

women4b <- women4a %>% 
rename(wave.4=wave, age.4=age, relstat.4=relstat, hlt.4=hlt, nkidsbio.4=nkidsbio, sat.4=sat )

women5b <- women5a %>% 
rename(wave.5=wave, age.5=age, relstat.5=relstat, hlt.5=hlt, nkidsbio.5=nkidsbio, sat.5=sat )

women6b <- women6a %>% 
rename(wave.6=wave, age.6=age, relstat.6=relstat, hlt.6=hlt, nkidsbio.6=nkidsbio, sat.6=sat )


women_wide <- left_join(women1b, women2b, by = "id") %>%  # left join women1b and women2b
  left_join(women3b, by = "id") %>% # left join with women3b
  left_join(women4b, by = "id") %>% # left join with women4b
  left_join(women5b, by = "id") %>% # left join with women5b
  left_join(women6b, by = "id") # left join with women6b
#by using left_join I keep those have no kids in the first wave and follow them

women_long<- merged.stack(women_wide, #dataset for transfrom
                            var.stubs = c("age", "wave", "relstat", "hlt","nkidsbio", "sat"), 
#var.stubs is to specify the prefixes of the variable groups
                            sep = ".") %>%  
#sep is to specify the character that separates the "variable name" from the "times" in the source
                            drop_na(wave)
#drop the observations which did not join the wave


women_long <- women_long %>% 
  group_by(id) %>% 
  mutate(
    firstkid=case_when( nkidsbio!=dplyr::lag(nkidsbio, 1) & dplyr::lag(nkidsbio, 1)==0 & nkidsbio>0 ~ 1,
                          TRUE ~ 0),
    firstkid2=case_when( nkidsbio!=dplyr::lag(nkidsbio, 1) & dplyr::lag(nkidsbio, 1)==0 & nkidsbio==2 ~ 1,
                          TRUE ~ 0)
    ) #to identify individual whose first childbearing is twins

twinid <- women_long$id[women_long$firstkid2==1]

women_long <- women_long[!(women_long$id %in% twinid),] #remove respondents whose first childbearing is twins
women_long <-  filter(women_long, nkidsbio<2) # remove repeated event of childbearing, only focus on having first child

panel_data <- pdata.frame(women_long, index=c("id", "wave")) #define panel data

No. 1

Question

Run a random effect model to investigate the impact of first birth on women’s subjective wellbeing, and get a robust standard error estimation results

Answer

model1 <- plm(sat ~ nkidsbio, data=women_long, model="random") #random effect model
summary(model1) #results of random effect
## Oneway (individual) effect Random Effect Model 
##    (Swamy-Arora's transformation)
## 
## Call:
## plm(formula = sat ~ nkidsbio, data = women_long, model = "random")
## 
## Unbalanced Panel: n = 3753, T = 1-6, N = 14809
## 
## Effects:
##                 var std.dev share
## idiosyncratic 1.534   1.238  0.57
## individual    1.156   1.075  0.43
## theta:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.2449  0.5009  0.5745  0.5250  0.5745  0.5745 
## 
## Residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -7.8497 -0.5199  0.1618 -0.0026  0.7840  4.1609 
## 
## Coefficients:
##             Estimate Std. Error  z-value  Pr(>|z|)    
## (Intercept) 7.646763   0.021375 357.7462 < 2.2e-16 ***
## nkidsbio    0.171767   0.060486   2.8398  0.004514 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    29620
## Residual Sum of Squares: 22888
## R-Squared:      0.22738
## Adj. R-Squared: 0.22733
## Chisq: 8.06443 on 1 DF, p-value: 0.0045143
model1.1<- coeftest(model1, vcov. = vcovHC, type = "HC1") #get results with robust standard error

No. 2

Question

Run a fixed effect model and a pooled regression model to compare the results in three models

Answer

model2 <- plm(sat ~ nkidsbio, data=women_long, model="within") #fixed effect model
summary(model2) #results of fixed effect
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = sat ~ nkidsbio, data = women_long, model = "within")
## 
## Unbalanced Panel: n = 3753, T = 1-6, N = 14809
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -8.00000 -0.50000  0.00000  0.59092  5.66667 
## 
## Coefficients:
##          Estimate Std. Error t-value Pr(>|t|)   
## nkidsbio 0.181837   0.068196  2.6664 0.007679 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    16966
## Residual Sum of Squares: 16956
## R-Squared:      0.00064269
## Adj. R-Squared: -0.33862
## F-statistic: 7.10949 on 1 and 11055 DF, p-value: 0.0076788
model2.1<- coeftest(model2, vcov. = vcovHC, type = "HC1") #get results with robust standard error
model3 <- plm(sat ~ nkidsbio, data=women_long, model="pooling") #pooled OLS
summary(model3) #results of pooled OLS
## Pooling Model
## 
## Call:
## plm(formula = sat ~ nkidsbio, data = women_long, model = "pooling")
## 
## Unbalanced Panel: n = 3753, T = 1-6, N = 14809
## 
## Residuals:
##    Min. 1st Qu.  Median 3rd Qu.    Max. 
## -7.7834 -0.6381  0.3619  1.3619  2.3619 
## 
## Coefficients:
##             Estimate Std. Error  t-value Pr(>|t|)    
## (Intercept) 7.638097   0.013859 551.1472  < 2e-16 ***
## nkidsbio    0.145319   0.059330   2.4493  0.01432 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    39832
## Residual Sum of Squares: 39816
## R-Squared:      0.00040499
## Adj. R-Squared: 0.00033749
## F-statistic: 5.99919 on 1 and 14807 DF, p-value: 0.014324
model3.1<- coeftest(model3, vcov. = vcovHC, type = "HC1") #get results with robust standard error
texreg::htmlreg(list(model1.1, model2.1, model3.1), 
                custom.model.names=c("Random effect", "Fixed effect", "Pooled OLS"),
        include.ci = FALSE, omit.coef = "factor", center=TRUE,file = "compare2.html") 
## The table was written to the file 'compare2.html'.

No. 3

Question

Do a BPLM test to see whether we should select a random effect or pooled OLS regression

Answer

plmtest(model3, type=c("bp"))
## 
##  Lagrange Multiplier Test - (Breusch-Pagan)
## 
## data:  sat ~ nkidsbio
## chisq = 5119.3, df = 1, p-value < 2.2e-16
## alternative hypothesis: significant effects
#BPLM test is rejected. The test suggests that a random effect model should be used.

No. 4

Question

Do a Hausman test to see whether we should select a random effect or fixed effect model

Answer

phtest(model2, model1)
## 
##  Hausman Test
## 
## data:  sat ~ nkidsbio
## chisq = 0.10219, df = 1, p-value = 0.7492
## alternative hypothesis: one model is inconsistent
#Hausam test is not rejected. The test suggests that a random effect model should be used.