library(wooldridge)
library(rmarkdown)
data("cps78_85")
paged_table( cps78_85)
require(dplyr)
## Zorunlu paket yükleniyor: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
summary(lm(lwage ~ y85*(educ + female) + exper + I(exper^2) + union, data = cps78_85 ))
##
## Call:
## lm(formula = lwage ~ y85 * (educ + female) + exper + I(exper^2) +
## union, data = cps78_85)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.56098 -0.25828 0.00864 0.26571 2.11669
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.589e-01 9.345e-02 4.911 1.05e-06 ***
## y85 1.178e-01 1.238e-01 0.952 0.3415
## educ 7.472e-02 6.676e-03 11.192 < 2e-16 ***
## female -3.167e-01 3.662e-02 -8.648 < 2e-16 ***
## exper 2.958e-02 3.567e-03 8.293 3.27e-16 ***
## I(exper^2) -3.994e-04 7.754e-05 -5.151 3.08e-07 ***
## union 2.021e-01 3.029e-02 6.672 4.03e-11 ***
## y85:educ 1.846e-02 9.354e-03 1.974 0.0487 *
## y85:female 8.505e-02 5.131e-02 1.658 0.0977 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4127 on 1075 degrees of freedom
## Multiple R-squared: 0.4262, Adjusted R-squared: 0.4219
## F-statistic: 99.8 on 8 and 1075 DF, p-value: < 2.2e-16
mydata <- cps78_85 %>%
mutate(y78 = ifelse (year == 78, 1, 0) )