Harold Nelson
2022-11-14
Create a project “Shiny” in a folder with that name. Make this your working directory by opening the project.
Start a new shiny app using the pulldown. Use the name “Hello”. That will produce the following R code and put it in a folder named “Hello” in your shiny directory.
The code in app.R will look likw this.
#
# This is a Shiny web application. You can run the application by clicking
# the 'Run App' button above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
library(shiny)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Application title
titlePanel("Old Faithful Geyser Data"),
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
sliderInput("bins",
"Number of bins:",
min = 1,
max = 50,
value = 30)
),
# Show a plot of the generated distribution
mainPanel(
plotOutput("distPlot")
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output) {
output$distPlot <- renderPlot({
# generate bins based on input$bins from ui.R
x <- faithful[, 2]
bins <- seq(min(x), max(x), length.out = input$bins + 1)
# draw the histogram with the specified number of bins
hist(x, breaks = bins, col = 'darkgray', border = 'white',
xlab = 'Waiting time to next eruption (in mins)',
main = 'Histogram of waiting times')
})
}
# Run the application
shinyApp(ui = ui, server = server)
Modify the app as follows.
Let the user select the color of the histogram using a selectInput control.
#
# This is a Shiny web application. You can run the application by clicking
# the 'Run App' button above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
library(shiny)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Application title
titlePanel("Old Faithful Geyser Data"),
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
sliderInput("bins",
"Number of bins:",
min = 1,
max = 50,
value = 30),
selectInput("color",
label = "Histogram Color",
c("red","yellow",'purple'))
),
# Show a plot of the generated distribution
mainPanel(
plotOutput("distPlot")
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output) {
output$distPlot <- renderPlot({
# generate bins based on input$bins from ui.R
x <- faithful[, 2]
bins <- seq(min(x), max(x), length.out = input$bins + 1)
# draw the histogram with the specified number of bins
hist(x, breaks = bins, col = input$color, border = 'white',
xlab = 'Waiting time to next eruption (in mins)',
main = 'Histogram of waiting times')
})
}
# Run the application
shinyApp(ui = ui, server = server)
Instead of limiting the selection of colors, use the rgb() function. It has three parameters, red, green, and blue. These have values in the range 0 to 1. Provide sliders in the UI to obtain these values.
#
# This is a Shiny web application. You can run the application by clicking
# the 'Run App' button above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
library(shiny)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Application title
titlePanel("Old Faithful Geyser Data"),
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
sliderInput("bins",
"Number of bins:",
min = 1,
max = 50,
value = 30),
sliderInput("red",
"Red Value",
min = 0,
max = 1,
value = .5),
sliderInput("green",
"Green Value",
min = 0,
max = 1,
value = .5),
sliderInput("blue",
"Blue Value",
min = 0,
max = 1,
value = .5)
),
# Show a plot of the generated distribution
mainPanel(
plotOutput("distPlot")
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output) {
output$distPlot <- renderPlot({
# generate bins based on input$bins from ui.R
x <- faithful[, 2]
bins <- seq(min(x), max(x), length.out = input$bins + 1)
# draw the histogram with the specified number of bins
hist(x, breaks = bins, col = rgb(input$red,input$green,input$blue), border = 'white',
xlab = 'Waiting time to next eruption (in mins)',
main = 'Histogram of waiting times')
})
}
# Run the application
shinyApp(ui = ui, server = server)
Use ggplot2 and add a density plot to the output. Use geom_density() with an adjust parameter. Let the user select the value of adjust in the range .1 to 5 with a starting value of 1. Use an input slider.
Note that the dataframe is “faithful” and the variable is “waiting”.
library(shiny)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Application title
titlePanel("Old Faithful Geyser Data"),
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
sliderInput("bins",
"Number of bins:",
min = 1,
max = 50,
value = 30),
sliderInput("adjust",
"Density Adjustment",
min = .1,
max = 3,
value = 1),
sliderInput("red",
"Red Value",
min = 0,
max = 1,
value = .5),
sliderInput("green",
"Green Value",
min = 0,
max = 1,
value = .5),
sliderInput("blue",
"Blue Value",
min = 0,
max = 1,
value = .5)
),
# Show a plot of the generated distribution
mainPanel(
plotOutput("distPlot"),
plotOutput("densityPlot")
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output) {
library(ggplot2)
output$distPlot <- renderPlot({
# generate bins based on input$bins from ui.R
x <- faithful[, 2]
bins <- seq(min(x), max(x), length.out = input$bins + 1)
# draw the histogram with the specified number of bins
hist(x, breaks = bins, col = rgb(input$red,input$green,input$blue), border = 'white',
xlab = 'Waiting time to next eruption (in mins)',
main = 'Histogram of waiting times')
})
output$densityPlot = renderPlot({
ggplot(faithful,aes(waiting)) +
geom_density(adjust = input$adjust) +
ggtitle("Density of Waiting Time")
})
}
# Run the application
shinyApp(ui = ui, server = server)
Repeat the previous exercise with tabbed output.
library(shiny)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Application title
titlePanel("Old Faithful Geyser Data"),
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
sliderInput("bins",
"Number of bins:",
min = 1,
max = 50,
value = 30),
sliderInput("adjust",
"Density Adjustment",
min = .1,
max = 3,
value = 1),
sliderInput("red",
"Red Value",
min = 0,
max = 1,
value = .5),
sliderInput("green",
"Green Value",
min = 0,
max = 1,
value = .5),
sliderInput("blue",
"Blue Value",
min = 0,
max = 1,
value = .5)
),
# Show a plot of the generated distribution
tabsetPanel(type = "tabs",
tabPanel("Histogram", plotOutput("distPlot")),
tabPanel("Density", plotOutput("densityPlot"))
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output) {
library(ggplot2)
output$distPlot <- renderPlot({
# generate bins based on input$bins from ui.R
x <- faithful[, 2]
bins <- seq(min(x), max(x), length.out = input$bins + 1)
# draw the histogram with the specified number of bins
hist(x, breaks = bins, col = rgb(input$red,input$green,input$blue), border = 'white',
xlab = 'Waiting time to next eruption (in mins)',
main = 'Histogram of waiting times')
})
output$densityPlot = renderPlot({
ggplot(faithful,aes(waiting)) +
geom_density(adjust = input$adjust) +
ggtitle("Density of Waiting Time")
})
}
# Run the application
shinyApp(ui = ui, server = server)