cps78_85 Regresyon Modeli

library(wooldridge) 
library(rmarkdown) 
data("cps78_85")
paged_table(cps78_85)
require(dplyr)
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
summary(lm(lwage ~ y85*(educ + female) + exper + I(exper^2) + union, data = cps78_85))
## 
## Call:
## lm(formula = lwage ~ y85 * (educ + female) + exper + I(exper^2) + 
##     union, data = cps78_85)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.56098 -0.25828  0.00864  0.26571  2.11669 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.589e-01  9.345e-02   4.911 1.05e-06 ***
## y85          1.178e-01  1.238e-01   0.952   0.3415    
## educ         7.472e-02  6.676e-03  11.192  < 2e-16 ***
## female      -3.167e-01  3.662e-02  -8.648  < 2e-16 ***
## exper        2.958e-02  3.567e-03   8.293 3.27e-16 ***
## I(exper^2)  -3.994e-04  7.754e-05  -5.151 3.08e-07 ***
## union        2.021e-01  3.029e-02   6.672 4.03e-11 ***
## y85:educ     1.846e-02  9.354e-03   1.974   0.0487 *  
## y85:female   8.505e-02  5.131e-02   1.658   0.0977 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4127 on 1075 degrees of freedom
## Multiple R-squared:  0.4262, Adjusted R-squared:  0.4219 
## F-statistic:  99.8 on 8 and 1075 DF,  p-value: < 2.2e-16

y78 Kukla Değişkeni Oluşturma

benimdata <- cps78_85 %>%
  mutate(y78 = ifelse (year == 78, 1, 0) )
model1 <- lm(lwage ~ y85*(educ + female) + y78 + exper + I(exper^2) + union -1 , data = benimdata)
summary(model1)
## 
## Call:
## lm(formula = lwage ~ y85 * (educ + female) + y78 + exper + I(exper^2) + 
##     union - 1, data = benimdata)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.56098 -0.25828  0.00864  0.26571  2.11669 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## y85         5.767e-01  1.015e-01   5.684 1.69e-08 ***
## educ        7.472e-02  6.676e-03  11.192  < 2e-16 ***
## female     -3.167e-01  3.662e-02  -8.648  < 2e-16 ***
## y78         4.589e-01  9.345e-02   4.911 1.05e-06 ***
## exper       2.958e-02  3.567e-03   8.293 3.27e-16 ***
## I(exper^2) -3.994e-04  7.754e-05  -5.151 3.08e-07 ***
## union       2.021e-01  3.029e-02   6.672 4.03e-11 ***
## y85:educ    1.846e-02  9.354e-03   1.974   0.0487 *  
## y85:female  8.505e-02  5.131e-02   1.658   0.0977 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4127 on 1075 degrees of freedom
## Multiple R-squared:  0.9553, Adjusted R-squared:  0.955 
## F-statistic:  2554 on 9 and 1075 DF,  p-value: < 2.2e-16

İnterceptsiz Model

model2 <- lm(lwage ~ y85*(educ + female) + exper + I(exper^2) + union -1 , data = cps78_85)
summary(model2)
## 
## Call:
## lm(formula = lwage ~ y85 * (educ + female) + exper + I(exper^2) + 
##     union - 1, data = cps78_85)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.56331 -0.24500  0.01702  0.27741  2.16580 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## y85         4.794e-01  1.006e-01   4.767 2.13e-06 ***
## educ        1.046e-01  2.767e-03  37.816  < 2e-16 ***
## female     -2.924e-01  3.667e-02  -7.973 3.92e-15 ***
## exper       3.355e-02  3.512e-03   9.552  < 2e-16 ***
## I(exper^2) -4.391e-04  7.794e-05  -5.634 2.24e-08 ***
## union       2.199e-01  3.040e-02   7.232 9.00e-13 ***
## y85:educ   -8.124e-03  7.710e-03  -1.054    0.292    
## y85:female  5.859e-02  5.157e-02   1.136    0.256    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4171 on 1076 degrees of freedom
## Multiple R-squared:  0.9543, Adjusted R-squared:  0.954 
## F-statistic:  2810 on 8 and 1076 DF,  p-value: < 2.2e-16
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
stargazer(model1, model2, type = 'text')
## 
## ===========================================================================
##                                       Dependent variable:                  
##                     -------------------------------------------------------
##                                              lwage                         
##                                 (1)                         (2)            
## ---------------------------------------------------------------------------
## y85                          0.577***                    0.479***          
##                               (0.101)                     (0.101)          
##                                                                            
## educ                         0.075***                    0.105***          
##                               (0.007)                     (0.003)          
##                                                                            
## female                       -0.317***                   -0.292***         
##                               (0.037)                     (0.037)          
##                                                                            
## y78                          0.459***                                      
##                               (0.093)                                      
##                                                                            
## exper                        0.030***                    0.034***          
##                               (0.004)                     (0.004)          
##                                                                            
## I(exper2)                   -0.0004***                  -0.0004***         
##                              (0.0001)                    (0.0001)          
##                                                                            
## union                        0.202***                    0.220***          
##                               (0.030)                     (0.030)          
##                                                                            
## y85:educ                      0.018**                     -0.008           
##                               (0.009)                     (0.008)          
##                                                                            
## y85:female                    0.085*                       0.059           
##                               (0.051)                     (0.052)          
##                                                                            
## ---------------------------------------------------------------------------
## Observations                   1,084                       1,084           
## R2                             0.955                       0.954           
## Adjusted R2                    0.955                       0.954           
## Residual Std. Error      0.413 (df = 1075)           0.417 (df = 1076)     
## F Statistic         2,554.399*** (df = 9; 1075) 2,810.303*** (df = 8; 1076)
## ===========================================================================
## Note:                                           *p<0.1; **p<0.05; ***p<0.01