Writing Model Equation:
\[ y_{ij}=\mu+\alpha_{i}+\beta_{j}+\alpha\beta_{ij}+\epsilon_{ijk} \]
Writing the Hypothesis:
Interaction:
Null:\[H_o:\alpha\beta_{ij}=0\space\forall\space"i,j"\]
Alternate:\[H_a:\alpha\beta_{ij}\neq0\space\exists\space"i,j"\]
Main Effects:
Null:\[H_o:\alpha_{i}=0\space\forall\space"i"\]
\[ H_o:\beta_{j}=0\space\forall\space"j" \]
Alternate:\[H_a:\alpha{i}\neq0\space\exists\space"i"\]
\[ H_a:\beta{j}\neq0\space\exists\space"j" \]
Reading the Data:
CultureMedium <- c(1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2)
Time <- c(rep(12,12),rep(18,12))
Values <- c(21,22,25,26,23,28,24,25,20,26,29,27,37,39,31,34,38,38,29,33,35,36,30,35)
CM <- as.factor(CultureMedium)
Time <- as.factor(Time)
Data <- data.frame(CM,Time,Values)
Model <- aov(Values~CM*Time,data = Data)
summary(Model)
## Df Sum Sq Mean Sq F value Pr(>F)
## CM 1 9.4 9.4 1.835 0.190617
## Time 1 590.0 590.0 115.506 9.29e-10 ***
## CM:Time 1 92.0 92.0 18.018 0.000397 ***
## Residuals 20 102.2 5.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> we can conclude that interaction of Factor A & B is significant. Therefore, we’ll reject Null hypothesis of interaction and stop here and we will look at the interaction plot
Interaction Plot:
interaction.plot(CultureMedium,Time,Values,col = c("blue","red"))
Model Adequacy:
library(ggfortify)
library(ggplot2)
autoplot(Model)
Comment:
--> As per Normal Q-Q Plot data seems to follow normality but the residual vs fitted values plot indicates that constant variation assumption may not hold since the plot is uneven and due to this model may not holdEstimate the factor effects.
Conduct an analysis of variance. Which factors are important?
Write down a regression equation that could be used to predict epitaxial layer thickness over the region of arsenic flow rate and deposition time used in this experiment.
Analyze the residuals. Are there any residuals that should cause concern?
Discuss how you might deal with the potential outlier found in part (d).
Writing Model Equation:
\[ y_{ij}=\mu+\alpha_{i}+\beta_{j}+\alpha\beta_{ij}+\epsilon_{ijk} \]
Reading the Data:
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
Obs <- c(14.037,13.880,14.821,14.888,16.165,13.860,14.757,14.921,13.972,14.032,14.843,14.415,13.907,13.914,14.878,14.932)
A <- as.factor(A)
B <- as.factor(B)
Data <- data.frame(A,B,Obs)
PART A:
One <- c(14.037,16.165,13.972,13.907)
A <- c(13.88,13.86,14.032,13.914)
B <- c(14.821,14.757,14.843,14.878)
AB <- c(14.888,14.921,14.415,14.932)
S1 <- sum(One)
SA <- sum(A)
SB <- sum(B)
SAB <- sum(AB)
EffectA <- (2*(SA+SAB-S1-SB)/(4*4))
EffectB <- (2*(SB+SAB-S1-SA)/(4*4))
EffectAB <- (2*(SA+SB-S1-SAB)/(4*4))
print(EffectA)
## [1] -0.31725
print(EffectB)
## [1] 0.586
print(EffectAB)
## [1] -0.2815
PART B:
Writing the Hypothesis:
Interaction:
Null:\[H_o:\alpha\beta_{ij}=0\space\forall\space"i,j"\]
Alternate:\[H_a:\alpha\beta_{ij}\neq0\space\exists\space"i,j"\]
Main Effects:
Null:\[H_o:\alpha_{i}=0\space\forall\space"i"\]
\[ H_o:\beta_{j}=0\space\forall\space"j" \]
Alternate:\[H_a:\alpha{i}\neq0\space\exists\space"i"\]
\[ H_a:\beta{j}\neq0\space\exists\space"j" \]
Running the Model:
Model <- aov(Obs~A*B,data = Data)
summary(Model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 0.403 0.4026 1.262 0.2833
## B 1 1.374 1.3736 4.305 0.0602 .
## A:B 1 0.317 0.3170 0.994 0.3386
## Residuals 12 3.828 0.3190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> From above result, we can conclude that interaction between factors A & B is insignificant. Thus removing interaction effect and testing for main effects.
Model <- aov(Obs~A+B,data = Data)
summary(Model)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 0.403 0.4026 1.263 0.2815
## B 1 1.374 1.3736 4.308 0.0584 .
## Residuals 13 4.145 0.3189
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> From above results the main effects are also insignificant
PART C:
Model <- lm(Obs~A*B,data = Data)
coef(Model)
## (Intercept) A1 B1 A1:B1
## 14.52025 -0.59875 0.30450 0.56300
summary(Model)
##
## Call:
## lm(formula = Obs ~ A * B, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.61325 -0.14431 -0.00563 0.10188 1.64475
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.5202 0.2824 51.414 1.93e-15 ***
## A1 -0.5987 0.3994 -1.499 0.160
## B1 0.3045 0.3994 0.762 0.461
## A1:B1 0.5630 0.5648 0.997 0.339
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5648 on 12 degrees of freedom
## Multiple R-squared: 0.3535, Adjusted R-squared: 0.1918
## F-statistic: 2.187 on 3 and 12 DF, p-value: 0.1425
Therefore Regression Equation:
\[ Y_{i,j,k}= 14.52025 - 0.59875 \alpha_{i} + 0.30450\beta_{j} + 0.5630\alpha\beta\gamma_{ijk} + \epsilon_{i,j,k} \]
PART D:
Analyzing Residuals:
autoplot(Model)
PART E:
--> We can perform a BoxCox transformation on the data and find out the appropriate value of lambda and then perform the ANOVA analysis on the transformed dataAnalyze the data from this experiment. Which factors significantly affect putting performance?
Analyze the residuals from this experiment. Are there any indications of model inadequacy?
Reading the Data;
Typeofputter <- c(rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7))
LengthofPutt <- c(rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7),rep(-1,7),rep(1,7))
Slopeofputt <- c(rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7))
Breakofputt <- c(rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(-1,7),rep(1,7),rep(1,7),rep(1,7),rep(1,7))
DistancefromCup <- c(10,18,14,12.5,19,16,18.5, 0,16.5,4.5,17.5,20.5,17.5,33, 4,6,1,14.5,12,14,5, 0,10,34,11,25.5,21.5,0, 0,0,18.5,19.5,16,15,11, 5,20.5,18,20,29.5,19,10, 6.5,18.5,7.5,6,0,10,0, 16.5,4.5,0,23.5,8,8,8, 4.5,18,14.5,10,0,17.5,6, 19.5,18,16,5.5,10,7,36, 15,16,8.5,0,0.5,9,3, 41.5,39,6.5,3.5,7,8.5,36, 8,4.5,6.5,10,13,41,14, 21.5,10.5,6.5,0,15.5,24,16, 0,0,0,4.5,1,4,6.5, 18,5,7,10,32.5,18.5,8)
library(GAD)
Typeofputter <- as.fixed(Typeofputter)
LengthofPutt <- as.fixed(LengthofPutt)
Slopeofputt <- as.fixed(Slopeofputt)
Breakofputt <- as.fixed(Breakofputt)
Dat3 <- data.frame(LengthofPutt, Typeofputter, Breakofputt, Slopeofputt, DistancefromCup)
Model <- lm(DistancefromCup~LengthofPutt*Typeofputter*Breakofputt*Slopeofputt, data = Dat3)
coef(Model)
## (Intercept)
## 15.4285714
## LengthofPutt1
## 0.2142857
## Typeofputter1
## -7.3571429
## Breakofputt1
## -4.0000000
## Slopeofputt1
## -5.3571429
## LengthofPutt1:Typeofputter1
## 6.2857143
## LengthofPutt1:Breakofputt1
## 5.7857143
## Typeofputter1:Breakofputt1
## 2.8571429
## LengthofPutt1:Slopeofputt1
## 5.7142857
## Typeofputter1:Slopeofputt1
## 4.7142857
## Breakofputt1:Slopeofputt1
## 7.7857143
## LengthofPutt1:Typeofputter1:Breakofputt1
## -9.4285714
## LengthofPutt1:Typeofputter1:Slopeofputt1
## 0.6428571
## LengthofPutt1:Breakofputt1:Slopeofputt1
## -12.1428571
## Typeofputter1:Breakofputt1:Slopeofputt1
## -11.7857143
## LengthofPutt1:Typeofputter1:Breakofputt1:Slopeofputt1
## 14.7857143
Running GAD Model:
Model <- aov(Model)
gad(Model)
## Analysis of Variance Table
##
## Response: DistancefromCup
## Df Sum Sq Mean Sq F value
## LengthofPutt 1 917.1 917.15 10.5878
## Typeofputter 1 388.1 388.15 4.4809
## Breakofputt 1 145.1 145.15 1.6756
## Slopeofputt 1 1.4 1.40 0.0161
## LengthofPutt:Typeofputter 1 218.7 218.68 2.5245
## LengthofPutt:Breakofputt 1 11.9 11.90 0.1373
## Typeofputter:Breakofputt 1 115.0 115.02 1.3278
## LengthofPutt:Slopeofputt 1 93.8 93.81 1.0829
## Typeofputter:Slopeofputt 1 56.4 56.43 0.6515
## Breakofputt:Slopeofputt 1 1.6 1.63 0.0188
## LengthofPutt:Typeofputter:Breakofputt 1 7.3 7.25 0.0837
## LengthofPutt:Typeofputter:Slopeofputt 1 113.0 113.00 1.3045
## LengthofPutt:Breakofputt:Slopeofputt 1 39.5 39.48 0.4558
## Typeofputter:Breakofputt:Slopeofputt 1 33.8 33.77 0.3899
## LengthofPutt:Typeofputter:Breakofputt:Slopeofputt 1 95.6 95.65 1.1042
## Residual 96 8315.8 86.62
## Pr(>F)
## LengthofPutt 0.001572 **
## Typeofputter 0.036862 *
## Breakofputt 0.198615
## Slopeofputt 0.899280
## LengthofPutt:Typeofputter 0.115377
## LengthofPutt:Breakofputt 0.711776
## Typeofputter:Breakofputt 0.252054
## LengthofPutt:Slopeofputt 0.300658
## Typeofputter:Slopeofputt 0.421588
## Breakofputt:Slopeofputt 0.891271
## LengthofPutt:Typeofputter:Breakofputt 0.772939
## LengthofPutt:Typeofputter:Slopeofputt 0.256228
## LengthofPutt:Breakofputt:Slopeofputt 0.501207
## Typeofputter:Breakofputt:Slopeofputt 0.533858
## LengthofPutt:Typeofputter:Breakofputt:Slopeofputt 0.295994
## Residual
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> The length of putt & type of putter seem to be the only factors that have a significant effect on the golf performance. Furthermore, we also see that the ANOVA results the p values for both the above factors is 0.001572 & 0.036862 respectively, hence we reject the null hypothesis and confirm with our conclusions as well.
PART B:
Model Adequacy:
autoplot(Model)
Estimate the factor effects. Plot the effect estimates on a normal probability plot and select a tentative model.
Fit the model identified in part (a) and analyze the residuals. Is there any indication of model inadequacy?
Repeat the analysis from parts (a) and (b) using ln (y) as the response variable. Is there an indication that the transformation has been useful?
Fit a model in terms of the coded variables that can be used to predict the resistivity.
Reading the Data:
A<-rep(c(-1,1),8)
B<-rep(c(-1,-1,1,1),4)
C<-rep(c(rep(-1,4),rep(1,4)),2)
D<-c(rep(-1,8),rep(1,8))
Resistivity<-c(1.92,11.28,1.09,5.75,2.13,9.53,1.03,5.35,1.60,11.73,1.16,4.68,2.16,9.11,1.07,5.30)
Dat<-data.frame(A,B,C,D,Resistivity)
Dat
## A B C D Resistivity
## 1 -1 -1 -1 -1 1.92
## 2 1 -1 -1 -1 11.28
## 3 -1 1 -1 -1 1.09
## 4 1 1 -1 -1 5.75
## 5 -1 -1 1 -1 2.13
## 6 1 -1 1 -1 9.53
## 7 -1 1 1 -1 1.03
## 8 1 1 1 -1 5.35
## 9 -1 -1 -1 1 1.60
## 10 1 -1 -1 1 11.73
## 11 -1 1 -1 1 1.16
## 12 1 1 -1 1 4.68
## 13 -1 -1 1 1 2.16
## 14 1 -1 1 1 9.11
## 15 -1 1 1 1 1.07
## 16 1 1 1 1 5.30
PART A:
ModeL <- lm(Resistivity~A*B*C*D, data=Dat)
coef(ModeL)
## (Intercept) A B C D A:B
## 4.680625 3.160625 -1.501875 -0.220625 -0.079375 -1.069375
## A:C B:C A:D B:D C:D A:B:C
## -0.298125 0.229375 -0.056875 -0.046875 0.029375 0.344375
## A:B:D A:C:D B:C:D A:B:C:D
## -0.096875 -0.010625 0.094375 0.141875
Half Normal Plot:
library(DoE.base)
halfnormal(ModeL)
We see that the significant effects are A, B, A:, and A:B:C.
--> The model eqn is Resistivity = 4.680625 + (3.160625)A + (-1.501875)B + (-1.069375)AB + ErrorPART B:
Model Adequacy:
An <- as.fixed(A)
Bn <- as.fixed(B)
Dat1 <- data.frame(An,Bn,Resistivity)
Model <- aov(Resistivity~An*Bn, data=Dat1)
GAD::gad(Model)
## Analysis of Variance Table
##
## Response: Resistivity
## Df Sum Sq Mean Sq F value Pr(>F)
## An 1 159.833 159.833 333.088 4.049e-10 ***
## Bn 1 36.090 36.090 75.211 1.630e-06 ***
## An:Bn 1 18.297 18.297 38.130 4.763e-05 ***
## Residual 12 5.758 0.480
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
autoplot(Model)
PART C: (Transformation for Part a)
Lresistivity <- log(Resistivity)
Dat2<-data.frame(A,B,C,D,Resistivity)
Model <- lm(Resistivity~A*B*C*D, data=Dat2)
coef(Model)
## (Intercept) A B C D A:B
## 4.680625 3.160625 -1.501875 -0.220625 -0.079375 -1.069375
## A:C B:C A:D B:D C:D A:B:C
## -0.298125 0.229375 -0.056875 -0.046875 0.029375 0.344375
## A:B:D A:C:D B:C:D A:B:C:D
## -0.096875 -0.010625 0.094375 0.141875
Half Normal Plot:
halfnormal(Model)
Now, seeing for main effects
Ac <- as.fixed(A)
Bc <- as.fixed(B)
Dat3 <- data.frame(Ac,Bc,Lresistivity)
Model <- aov(Lresistivity~Ac+Bc, data=Dat3)
GAD::gad(Model)
## Analysis of Variance Table
##
## Response: Lresistivity
## Df Sum Sq Mean Sq F value Pr(>F)
## Ac 1 10.5721 10.5721 962.95 1.408e-13 ***
## Bc 1 1.5803 1.5803 143.94 2.095e-08 ***
## Residual 13 0.1427 0.0110
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
autoplot(Model)
Transformation for Part b:
Dat4 <- data.frame(An,Bn,Lresistivity)
Model <- aov(Lresistivity~An+Bn, data=Dat4)
GAD::gad(Model)
## Analysis of Variance Table
##
## Response: Lresistivity
## Df Sum Sq Mean Sq F value Pr(>F)
## An 1 10.5721 10.5721 962.95 1.408e-13 ***
## Bn 1 1.5803 1.5803 143.94 2.095e-08 ***
## Residual 13 0.1427 0.0110
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
autoplot(Model)
Dat5 <- data.frame(Lresistivity,A,B)
Model <- lm(Lresistivity~A+B, data=Dat5)
coef(Model)
## (Intercept) A B
## 1.1854171 0.8128703 -0.3142776
PART D:
--> log(Resistivity) = 1.1854171 + (0.8128703)A + (-0.3142776)B + Error.Reading the Data:
library(DoE.base)
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
E <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Obs <- c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
Data <- data.frame(A,B,C,D,E,Obs)
PART A:
Model <- lm(Obs~A*B*C*D*E,data = Data)
coef(Model)
## (Intercept) A B C D E
## 10.1803125 1.6159375 0.0434375 -0.0121875 2.9884375 2.1878125
## A:B A:C B:C A:D B:D C:D
## 1.2365625 -0.0015625 -0.1953125 1.6665625 -0.0134375 0.0034375
## A:E B:E C:E D:E A:B:C A:B:D
## 1.0271875 1.2834375 0.3015625 1.3896875 0.2503125 -0.3453125
## A:C:D B:C:D A:B:E A:C:E B:C:E A:D:E
## -0.0634375 0.3053125 1.1853125 -0.2590625 0.1709375 0.9015625
## B:D:E C:D:E A:B:C:D A:B:C:E A:B:D:E A:C:D:E
## -0.0396875 0.3959375 -0.0740625 -0.1846875 0.4071875 0.1278125
## B:C:D:E A:B:C:D:E
## -0.0746875 -0.3553125
halfnormal(Model)
summary(Model)
##
## Call:
## lm.default(formula = Obs ~ A * B * C * D * E, data = Data)
##
## Residuals:
## ALL 32 residuals are 0: no residual degrees of freedom!
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.180312 NaN NaN NaN
## A 1.615938 NaN NaN NaN
## B 0.043438 NaN NaN NaN
## C -0.012187 NaN NaN NaN
## D 2.988437 NaN NaN NaN
## E 2.187813 NaN NaN NaN
## A:B 1.236562 NaN NaN NaN
## A:C -0.001563 NaN NaN NaN
## B:C -0.195313 NaN NaN NaN
## A:D 1.666563 NaN NaN NaN
## B:D -0.013438 NaN NaN NaN
## C:D 0.003437 NaN NaN NaN
## A:E 1.027188 NaN NaN NaN
## B:E 1.283437 NaN NaN NaN
## C:E 0.301563 NaN NaN NaN
## D:E 1.389687 NaN NaN NaN
## A:B:C 0.250313 NaN NaN NaN
## A:B:D -0.345312 NaN NaN NaN
## A:C:D -0.063437 NaN NaN NaN
## B:C:D 0.305312 NaN NaN NaN
## A:B:E 1.185313 NaN NaN NaN
## A:C:E -0.259062 NaN NaN NaN
## B:C:E 0.170938 NaN NaN NaN
## A:D:E 0.901563 NaN NaN NaN
## B:D:E -0.039687 NaN NaN NaN
## C:D:E 0.395938 NaN NaN NaN
## A:B:C:D -0.074063 NaN NaN NaN
## A:B:C:E -0.184688 NaN NaN NaN
## A:B:D:E 0.407187 NaN NaN NaN
## A:C:D:E 0.127812 NaN NaN NaN
## B:C:D:E -0.074688 NaN NaN NaN
## A:B:C:D:E -0.355312 NaN NaN NaN
##
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 31 and 0 DF, p-value: NA
Model2 <- aov(Obs~A+B+D+E+A*B+A*D+A*E+B*E+D*E+A*B*E+A*D*E,data = Data)
summary(Model2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 83.56 83.56 51.362 6.10e-07 ***
## B 1 0.06 0.06 0.037 0.849178
## D 1 285.78 285.78 175.664 2.30e-11 ***
## E 1 153.17 153.17 94.149 5.24e-09 ***
## A:B 1 48.93 48.93 30.076 2.28e-05 ***
## A:D 1 88.88 88.88 54.631 3.87e-07 ***
## A:E 1 33.76 33.76 20.754 0.000192 ***
## B:E 1 52.71 52.71 32.400 1.43e-05 ***
## D:E 1 61.80 61.80 37.986 5.07e-06 ***
## A:B:E 1 44.96 44.96 27.635 3.82e-05 ***
## A:D:E 1 26.01 26.01 15.988 0.000706 ***
## Residuals 20 32.54 1.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
--> Half normal plot displays factors A,D,E,A:D,D:E,B:E,A:B,A:E,A:B:E,A:D:E as significant. ANOVA analysis also presents the factors A,D,E,AB,AD,AE,BE,DE,ABE,ADE as significant.
PART B:
autoplot(Model2)
PART C:
A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
E <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Obs <- c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
Data <- data.frame(A,B,D,E,Obs)
Model <- lm(Obs~A*B*D*E,data = Data)
coef(Model)
## (Intercept) A B D E A:B
## 10.1803125 1.6159375 0.0434375 2.9884375 2.1878125 1.2365625
## A:D B:D A:E B:E D:E A:B:D
## 1.6665625 -0.0134375 1.0271875 1.2834375 1.3896875 -0.3453125
## A:B:E A:D:E B:D:E A:B:D:E
## 1.1853125 0.9015625 -0.0396875 0.4071875
halfnormal(Model)
summary(Model)
##
## Call:
## lm.default(formula = Obs ~ A * B * D * E, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4750 -0.5637 0.0000 0.5637 1.4750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.18031 0.21360 47.661 < 2e-16 ***
## A 1.61594 0.21360 7.565 1.14e-06 ***
## B 0.04344 0.21360 0.203 0.841418
## D 2.98844 0.21360 13.991 2.16e-10 ***
## E 2.18781 0.21360 10.243 1.97e-08 ***
## A:B 1.23656 0.21360 5.789 2.77e-05 ***
## A:D 1.66656 0.21360 7.802 7.66e-07 ***
## B:D -0.01344 0.21360 -0.063 0.950618
## A:E 1.02719 0.21360 4.809 0.000193 ***
## B:E 1.28344 0.21360 6.009 1.82e-05 ***
## D:E 1.38969 0.21360 6.506 7.24e-06 ***
## A:B:D -0.34531 0.21360 -1.617 0.125501
## A:B:E 1.18531 0.21360 5.549 4.40e-05 ***
## A:D:E 0.90156 0.21360 4.221 0.000650 ***
## B:D:E -0.03969 0.21360 -0.186 0.854935
## A:B:D:E 0.40719 0.21360 1.906 0.074735 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.208 on 16 degrees of freedom
## Multiple R-squared: 0.9744, Adjusted R-squared: 0.9504
## F-statistic: 40.58 on 15 and 16 DF, p-value: 7.07e-10
Model2 <- aov(Obs~A+B+D+E+A*B+A*D+A*E+B*E+D*E+A*B*E+A*D*E,data = Data)
summary(Model2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 83.56 83.56 51.362 6.10e-07 ***
## B 1 0.06 0.06 0.037 0.849178
## D 1 285.78 285.78 175.664 2.30e-11 ***
## E 1 153.17 153.17 94.149 5.24e-09 ***
## A:B 1 48.93 48.93 30.076 2.28e-05 ***
## A:D 1 88.88 88.88 54.631 3.87e-07 ***
## A:E 1 33.76 33.76 20.754 0.000192 ***
## B:E 1 52.71 52.71 32.400 1.43e-05 ***
## D:E 1 61.80 61.80 37.986 5.07e-06 ***
## A:B:E 1 44.96 44.96 27.635 3.82e-05 ***
## A:D:E 1 26.01 26.01 15.988 0.000706 ***
## Residuals 20 32.54 1.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
autoplot(Model2)
PART D:
--> y = 10.1809375 + (1.6153125)A + (0.0428125)B + (2.9890625)D + (2.1884375)E + Error.We can see that the coefficients are positive in all the factors, hence they will maximize the predicted response.