time<-c(rep(c(-1), 12),rep(c(1), 12) )
clt_med<-c(rep(c(rep(-1, 2), rep(1, 2)), 6))
obs<-c(21, 22, 25, 26, 23, 28, 24, 25, 20, 26, 29, 27, 37, 39, 31, 34, 38, 38, 29, 33, 35, 36, 30, 35)
dat<-cbind.data.frame(time, clt_med, obs)
Hypothesis: Null Hypothesis(\(H_o\)), Alternate Hypothesis(\(H_a\)).
\(H_o: \alpha_i = 0\) \(H_a: \alpha_i \neq 0\)
\(H_o: \beta_j = 0\) \(H_a: \beta_j \neq 0\)
\(H_o: \alpha\beta_{ij} = 0\) \(H_a: \alpha\beta_{ij} \neq 0\)
aov.model <- aov(obs ~ time + clt_med + time * clt_med, data = dat)
summary(aov.model)
## Df Sum Sq Mean Sq F value Pr(>F)
## time 1 590.0 590.0 115.506 9.29e-10 ***
## clt_med 1 9.4 9.4 1.835 0.190617
## time:clt_med 1 92.0 92.0 18.018 0.000397 ***
## Residuals 20 102.2 5.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(aov.model)
time<-c(rep(c(-1), 12),rep(c(1), 12) )
clt_med<-c(rep(c(rep(-1, 2), rep(1, 2)), 6))
obs<-c(21, 22, 25, 26, 23, 28, 24, 25, 20, 26, 29, 27, 37, 39, 31, 34, 38, 38, 29, 33, 35, 36, 30, 35)
dat<-cbind.data.frame(time, clt_med, obs)
aov.model <- aov(obs ~ time + clt_med + time * clt_med, data = dat)
summary(aov.model)
plot(aov.model)
obs2<-
matrix(c(14.037, 16.165, 13.972, 13.907, 14.037, 16.165, 13.972, 13.907, 14.821,
14.757, 14.843, 14.878, 14.888, 14.921, 14.415, 14.932)
,byrow=T,ncol=4)
A <- rep(c(-1,1),2)
B <- rep(c(-1,-1,1,1),1)
AB <-A*B
Total <- apply(obs2,1,sum)
cbind(A, B, AB, obs2, Total)
## A B AB Total
## [1,] -1 -1 1 14.037 16.165 13.972 13.907 58.081
## [2,] 1 -1 -1 14.037 16.165 13.972 13.907 58.081
## [3,] -1 1 -1 14.821 14.757 14.843 14.878 59.299
## [4,] 1 1 1 14.888 14.921 14.415 14.932 59.156
(a) Estimate the factor effects.
n <- 3
Effects <- t(Total) %*% cbind(A,B,AB)/(2*n)
Summary <- rbind( cbind(A,B,AB),Effects )
Summary
## A B AB
## [1,] -1.00000000 -1.0000000 1.00000000
## [2,] 1.00000000 -1.0000000 -1.00000000
## [3,] -1.00000000 1.0000000 -1.00000000
## [4,] 1.00000000 1.0000000 1.00000000
## [5,] -0.02383333 0.3821667 -0.02383333
Hypothesis: Null Hypothesis(\(H_o\)), Alternate Hypothesis(\(H_a\)).
\(H_o: \alpha_i = 0\) \(H_a: \alpha_i \neq 0\)
\(H_o: \beta_j = 0\) \(H_a: \beta_j \neq 0\)
\(H_o: \alpha\beta_{ij} = 0\) \(H_a: \alpha\beta_{ij} \neq 0\)
(b) Conduct an analysis of variance. Which factors are important?
(c) Write down a regression equation that could be used to predict epitaxial layer thickness over the region of arsenic flow rate and deposition time used in this experiment.
obs2_vec <- c(t(obs2))
Af <- rep(as.factor(A),rep(4,4))
Bf <- rep(as.factor(B),rep(4,4))
options(contrasts=c("contr.sum","contr.poly"))
obs2_lm <- lm(obs2_vec ~ Af*Bf)
summary(obs2_lm)
##
## Call:
## lm(formula = obs2_vec ~ Af * Bf)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.61325 -0.49950 -0.03575 0.10725 1.64475
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.663563 0.196666 74.561 <2e-16 ***
## Af1 0.008938 0.196666 0.045 0.965
## Bf1 -0.143312 0.196666 -0.729 0.480
## Af1:Bf1 -0.008937 0.196666 -0.045 0.965
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7867 on 12 degrees of freedom
## Multiple R-squared: 0.04269, Adjusted R-squared: -0.1966
## F-statistic: 0.1784 on 3 and 12 DF, p-value: 0.909
anova(obs2_lm)
## Analysis of Variance Table
##
## Response: obs2_vec
## Df Sum Sq Mean Sq F value Pr(>F)
## Af 1 0.0013 0.00128 0.0021 0.9645
## Bf 1 0.3286 0.32862 0.5310 0.4802
## Af:Bf 1 0.0013 0.00128 0.0021 0.9645
## Residuals 12 7.4261 0.61884
plot(obs2_lm)
Lt_of_pt<-c(rep(c(-1, 1), 8))
Ty_of_ptr<-c(rep(c(-1, -1, 1, 1), 4))
Br_of_pt<-c(rep(c(rep(-1,4), rep(1, 4)), 2))
Slp_of_pt<-c(rep(-1, 8), rep(1, 8))
obs3<-c(10.0, 18.0, 14.0, 12.5, 19.0, 16.0, 18.5, 0.0, 16.5, 4.5, 17.5, 20.5, 17.5, 33.0,
4.0, 6.0, 1.0, 14.5, 12.0, 14.0, 5.0, 0.0, 10.0, 34.0, 11.0, 25.5, 21.5, 0.0,
0.0, 0.0, 18.5, 19.5, 16.0, 15.0, 11.0, 5.0, 20.5, 18.0, 20.0, 29.5, 19.0, 10.0,
6.5, 18.5, 7.5, 6.0, 0.0, 10.0, 0.0, 16.5, 4.5, 0.0, 23.5, 8.0, 8.0, 8.0,
4.5, 18.0, 14.5, 10.0, 0.0, 17.5, 6.0, 19.5, 18.0, 16.0, 5.5, 10.0, 7.0, 36.0,
15.0, 16.0, 8.5, 0.0, 0.5, 9.0, 3.0, 41.5, 39.0, 6.5, 3.5, 7.0, 8.5, 36.0,
8.0, 4.5, 6.5, 10.0, 13.0, 41.0, 14.0, 21.5, 10.5, 6.5, 0.0, 15.5, 24.0, 16.0,
0.0, 0.0, 0.0, 4.5, 1.0, 4.0, 6.5, 18.0, 5.0, 7.0, 10.0, 32.5, 18.5, 8.0)
Lt_of_pt<- rep(as.factor(Lt_of_pt),rep(7,16))
Ty_of_ptr <- rep(as.factor(Ty_of_ptr),rep(7,16))
Br_of_pt<- rep(as.factor(Br_of_pt),rep(7,16))
Slp_of_pt<- rep(as.factor(Slp_of_pt),rep(7,16))
Hypothesis: Null Hypothesis(\(H_o\)), Alternate Hypothesis(\(H_a\)).
\(H_o: \alpha_i = 0\) \(H_a: \alpha_i \neq 0\)
\(H_o: \beta_j = 0\) \(H_a: \beta_j \neq 0\)
\(H_o: \gamma_k = 0\) \(H_a: \gamma_k \neq 0\)
\(H_o: \delta_l = 0\) \(H_a: \delta_l \neq 0\)
\(H_o: \alpha\beta_{ij} = 0\) \(H_a: \alpha\beta_{ij} \neq 0\)
\(H_o: \alpha\gamma_{ik} = 0\) \(H_a: \alpha\gamma_{ik} \neq 0\)
\(H_o: \beta\gamma_{jk} = 0\) \(H_a: \beta\gamma_{jk} \neq 0\)
\(H_o: \alpha\delta_{il} = 0\) \(H_a: \alpha\delta_{il} \neq 0\)
\(H_o: \beta\delta_{jl} = 0\) \(H_a: \beta\delta_{jl} \neq 0\)
\(H_o: \gamma\delta_{kl} = 0\) \(H_a: \gamma\delta_{kl} \neq 0\)
\(H_o: \alpha\beta\gamma\delta_{ijkl} = 0\) \(H_a: \alpha\beta\gamma\delta_{ijkl} \neq 0\)
obs3_lm <- lm(obs3 ~ Lt_of_pt*Ty_of_ptr*Br_of_pt*Slp_of_pt)
summary(obs3_lm)
##
## Call:
## lm(formula = obs3 ~ Lt_of_pt * Ty_of_ptr * Br_of_pt * Slp_of_pt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.786 -6.036 -0.250 4.250 27.143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.2991 0.8794 13.985 < 2e-16
## Lt_of_pt1 -2.8616 0.8794 -3.254 0.00157
## Ty_of_ptr1 1.8616 0.8794 2.117 0.03686
## Br_of_pt1 1.1384 0.8794 1.294 0.19862
## Slp_of_pt1 0.1116 0.8794 0.127 0.89928
## Lt_of_pt1:Ty_of_ptr1 1.3973 0.8794 1.589 0.11538
## Lt_of_pt1:Br_of_pt1 -0.3259 0.8794 -0.371 0.71178
## Ty_of_ptr1:Br_of_pt1 -1.0134 0.8794 -1.152 0.25205
## Lt_of_pt1:Slp_of_pt1 0.9152 0.8794 1.041 0.30066
## Ty_of_ptr1:Slp_of_pt1 0.7098 0.8794 0.807 0.42159
## Br_of_pt1:Slp_of_pt1 -0.1205 0.8794 -0.137 0.89127
## Lt_of_pt1:Ty_of_ptr1:Br_of_pt1 0.2545 0.8794 0.289 0.77294
## Lt_of_pt1:Ty_of_ptr1:Slp_of_pt1 -1.0045 0.8794 -1.142 0.25623
## Lt_of_pt1:Br_of_pt1:Slp_of_pt1 0.5938 0.8794 0.675 0.50121
## Ty_of_ptr1:Br_of_pt1:Slp_of_pt1 0.5491 0.8794 0.624 0.53386
## Lt_of_pt1:Ty_of_ptr1:Br_of_pt1:Slp_of_pt1 0.9241 0.8794 1.051 0.29599
##
## (Intercept) ***
## Lt_of_pt1 **
## Ty_of_ptr1 *
## Br_of_pt1
## Slp_of_pt1
## Lt_of_pt1:Ty_of_ptr1
## Lt_of_pt1:Br_of_pt1
## Ty_of_ptr1:Br_of_pt1
## Lt_of_pt1:Slp_of_pt1
## Ty_of_ptr1:Slp_of_pt1
## Br_of_pt1:Slp_of_pt1
## Lt_of_pt1:Ty_of_ptr1:Br_of_pt1
## Lt_of_pt1:Ty_of_ptr1:Slp_of_pt1
## Lt_of_pt1:Br_of_pt1:Slp_of_pt1
## Ty_of_ptr1:Br_of_pt1:Slp_of_pt1
## Lt_of_pt1:Ty_of_ptr1:Br_of_pt1:Slp_of_pt1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.307 on 96 degrees of freedom
## Multiple R-squared: 0.2121, Adjusted R-squared: 0.08898
## F-statistic: 1.723 on 15 and 96 DF, p-value: 0.0589
anova(obs3_lm)
## Analysis of Variance Table
##
## Response: obs3
## Df Sum Sq Mean Sq F value Pr(>F)
## Lt_of_pt 1 917.1 917.15 10.5878 0.001572 **
## Ty_of_ptr 1 388.1 388.15 4.4809 0.036862 *
## Br_of_pt 1 145.1 145.15 1.6756 0.198615
## Slp_of_pt 1 1.4 1.40 0.0161 0.899280
## Lt_of_pt:Ty_of_ptr 1 218.7 218.68 2.5245 0.115377
## Lt_of_pt:Br_of_pt 1 11.9 11.90 0.1373 0.711776
## Ty_of_ptr:Br_of_pt 1 115.0 115.02 1.3278 0.252054
## Lt_of_pt:Slp_of_pt 1 93.8 93.81 1.0829 0.300658
## Ty_of_ptr:Slp_of_pt 1 56.4 56.43 0.6515 0.421588
## Br_of_pt:Slp_of_pt 1 1.6 1.63 0.0188 0.891271
## Lt_of_pt:Ty_of_ptr:Br_of_pt 1 7.3 7.25 0.0837 0.772939
## Lt_of_pt:Ty_of_ptr:Slp_of_pt 1 113.0 113.00 1.3045 0.256228
## Lt_of_pt:Br_of_pt:Slp_of_pt 1 39.5 39.48 0.4558 0.501207
## Ty_of_ptr:Br_of_pt:Slp_of_pt 1 33.8 33.77 0.3899 0.533858
## Lt_of_pt:Ty_of_ptr:Br_of_pt:Slp_of_pt 1 95.6 95.65 1.1042 0.295994
## Residuals 96 8315.8 86.62
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(obs3_lm)
A <-c(rep(c(-1, 1), 8))
B <-rep(c(-1,-1,1,1),4)
C <-rep(c(-1,-1,-1,-1,1,1,1,1),2)
D <- rep(c(rep(-1,8), rep(1,8)))
observations4 <-c(1.92,11.28,1.09,5.75,2.13,9.53,1.03,5.35,
1.60,11.73,1.16,4.68,2.16,9.11,1.07,5.30)
library(DoE.base)
model1<-aov(observations4 ~ A*B*C*D)
halfnormal(model1)
model2<-aov(observations4 ~ A+B+A*B+A*B*C)
summary(model2)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 159.83 159.83 1563.061 1.84e-10 ***
## B 1 36.09 36.09 352.937 6.66e-08 ***
## C 1 0.78 0.78 7.616 0.02468 *
## A:B 1 18.30 18.30 178.933 9.33e-07 ***
## A:C 1 1.42 1.42 13.907 0.00579 **
## B:C 1 0.84 0.84 8.232 0.02085 *
## A:B:C 1 1.90 1.90 18.556 0.00259 **
## Residuals 8 0.82 0.10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model2)
obs4_ln<-log(observations4)
library(DoE.base)
model3<-aov(obs4_ln ~ A*B*C*D)
halfnormal(model3)
##
## Significant effects (alpha=0.05, Lenth method):
## [1] A B A:B:C
model4<-aov(obs4_ln ~ A+B+A*B*C)
summary(model4)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 10.572 10.572 1994.556 6.98e-11 ***
## B 1 1.580 1.580 298.147 1.29e-07 ***
## C 1 0.001 0.001 0.124 0.73386
## A:B 1 0.010 0.010 1.839 0.21207
## A:C 1 0.025 0.025 4.763 0.06063 .
## B:C 1 0.000 0.000 0.054 0.82223
## A:B:C 1 0.064 0.064 12.147 0.00826 **
## Residuals 8 0.042 0.005
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model4)
#### Non - Transformed data...
mod_lm<-lm(observations4 ~ A*B*C)
summary(mod_lm)
##
## Call:
## lm.default(formula = observations4 ~ A * B * C)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.53500 -0.06625 0.00000 0.06625 0.53500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.68062 0.07994 58.549 8.04e-12 ***
## A 3.16062 0.07994 39.536 1.84e-10 ***
## B -1.50187 0.07994 -18.787 6.66e-08 ***
## C -0.22062 0.07994 -2.760 0.02468 *
## A:B -1.06937 0.07994 -13.377 9.33e-07 ***
## A:C -0.29812 0.07994 -3.729 0.00579 **
## B:C 0.22937 0.07994 2.869 0.02085 *
## A:B:C 0.34437 0.07994 4.308 0.00259 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3198 on 8 degrees of freedom
## Multiple R-squared: 0.9963, Adjusted R-squared: 0.993
## F-statistic: 306.2 on 7 and 8 DF, p-value: 4.454e-09
#### Transformed data...
mod2_lm<-lm(obs4_ln ~ A*B*C)
summary(mod2_lm)
##
## Call:
## lm.default(formula = obs4_ln ~ A * B * C)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1030 -0.0203 0.0000 0.0203 0.1030
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.185417 0.018201 65.129 3.44e-12 ***
## A 0.812870 0.018201 44.660 6.98e-11 ***
## B -0.314278 0.018201 -17.267 1.29e-07 ***
## C -0.006409 0.018201 -0.352 0.73386
## A:B -0.024685 0.018201 -1.356 0.21207
## A:C -0.039724 0.018201 -2.182 0.06063 .
## B:C -0.004226 0.018201 -0.232 0.82223
## A:B:C 0.063434 0.018201 3.485 0.00826 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0728 on 8 degrees of freedom
## Multiple R-squared: 0.9966, Adjusted R-squared: 0.9935
## F-statistic: 330.2 on 7 and 8 DF, p-value: 3.296e-09
A <-c(rep(c(-1, 1), 16))
B <-rep(c(-1,-1,1,1),8)
C <-rep(c(-1,-1,-1,-1,1,1,1,1),4)
D <-c(rep(c(rep(-1,8), rep(1,8)),2))
E <-rep(c(rep(-1,16), rep(1,16)))
observations5<-c(8.11, 5.56, 5.77, 5.82,9.17,7.8,3.23,5.69,8.82,14.23,
9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,
6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
library(DoE.base)
model5<-aov(observations5 ~ A*B*C*D*E)
summary(model5)
## Df Sum Sq Mean Sq
## A 1 83.56 83.56
## B 1 0.06 0.06
## C 1 0.00 0.00
## D 1 285.78 285.78
## E 1 153.17 153.17
## A:B 1 48.93 48.93
## A:C 1 0.00 0.00
## B:C 1 1.22 1.22
## A:D 1 88.88 88.88
## B:D 1 0.01 0.01
## C:D 1 0.00 0.00
## A:E 1 33.76 33.76
## B:E 1 52.71 52.71
## C:E 1 2.91 2.91
## D:E 1 61.80 61.80
## A:B:C 1 2.01 2.01
## A:B:D 1 3.82 3.82
## A:C:D 1 0.13 0.13
## B:C:D 1 2.98 2.98
## A:B:E 1 44.96 44.96
## A:C:E 1 2.15 2.15
## B:C:E 1 0.94 0.94
## A:D:E 1 26.01 26.01
## B:D:E 1 0.05 0.05
## C:D:E 1 5.02 5.02
## A:B:C:D 1 0.18 0.18
## A:B:C:E 1 1.09 1.09
## A:B:D:E 1 5.31 5.31
## A:C:D:E 1 0.52 0.52
## B:C:D:E 1 0.18 0.18
## A:B:C:D:E 1 4.04 4.04
halfnormal(model5)
model6<-aov(observations5 ~ A + D + E + A*B + A*D + A*E + B*E + D*E + A*B*E + A*D*E)
summary(model6)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 83.56 83.56 51.362 6.10e-07 ***
## D 1 285.78 285.78 175.664 2.30e-11 ***
## E 1 153.17 153.17 94.149 5.24e-09 ***
## B 1 0.06 0.06 0.037 0.849178
## A:B 1 48.93 48.93 30.076 2.28e-05 ***
## A:D 1 88.88 88.88 54.631 3.87e-07 ***
## A:E 1 33.76 33.76 20.754 0.000192 ***
## E:B 1 52.71 52.71 32.400 1.43e-05 ***
## D:E 1 61.80 61.80 37.986 5.07e-06 ***
## A:E:B 1 44.96 44.96 27.635 3.82e-05 ***
## A:D:E 1 26.01 26.01 15.988 0.000706 ***
## Residuals 20 32.54 1.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model6)
model7<-aov(observations5 ~ A*B*D*E)
summary(model7)
## Df Sum Sq Mean Sq F value Pr(>F)
## A 1 83.56 83.56 57.233 1.14e-06 ***
## B 1 0.06 0.06 0.041 0.841418
## D 1 285.78 285.78 195.742 2.16e-10 ***
## E 1 153.17 153.17 104.910 1.97e-08 ***
## A:B 1 48.93 48.93 33.514 2.77e-05 ***
## A:D 1 88.88 88.88 60.875 7.66e-07 ***
## B:D 1 0.01 0.01 0.004 0.950618
## A:E 1 33.76 33.76 23.126 0.000193 ***
## B:E 1 52.71 52.71 36.103 1.82e-05 ***
## D:E 1 61.80 61.80 42.328 7.24e-06 ***
## A:B:D 1 3.82 3.82 2.613 0.125501
## A:B:E 1 44.96 44.96 30.794 4.40e-05 ***
## A:D:E 1 26.01 26.01 17.815 0.000650 ***
## B:D:E 1 0.05 0.05 0.035 0.854935
## A:B:D:E 1 5.31 5.31 3.634 0.074735 .
## Residuals 16 23.36 1.46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model5_lm<-lm(observations5 ~ A + D + E + A*B + A*D + A*E + B*E + D*E + A*B*E + A*D*E)
summary(model5_lm)
##
## Call:
## lm.default(formula = observations5 ~ A + D + E + A * B + A *
## D + A * E + B * E + D * E + A * B * E + A * D * E)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.04875 -0.67375 -0.00687 0.65281 2.25375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.18031 0.22548 45.150 < 2e-16 ***
## A 1.61594 0.22548 7.167 6.10e-07 ***
## D 2.98844 0.22548 13.254 2.30e-11 ***
## E 2.18781 0.22548 9.703 5.24e-09 ***
## B 0.04344 0.22548 0.193 0.849178
## A:B 1.23656 0.22548 5.484 2.28e-05 ***
## A:D 1.66656 0.22548 7.391 3.87e-07 ***
## A:E 1.02719 0.22548 4.556 0.000192 ***
## E:B 1.28344 0.22548 5.692 1.43e-05 ***
## D:E 1.38969 0.22548 6.163 5.07e-06 ***
## A:E:B 1.18531 0.22548 5.257 3.82e-05 ***
## A:D:E 0.90156 0.22548 3.998 0.000706 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.275 on 20 degrees of freedom
## Multiple R-squared: 0.9643, Adjusted R-squared: 0.9447
## F-statistic: 49.15 on 11 and 20 DF, p-value: 5.069e-12
Comments: We could see from p-value = 0.000397, The interaction of Time and Cultural Medium significantly differ at level of significance = 0.05, i.e, We reject null hypothesis \(H_o: \alpha\beta_{ij} = 0\).