library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
library(GAD)
## Loading required package: matrixStats
## 
## Attaching package: 'matrixStats'
## The following object is masked from 'package:dplyr':
## 
##     count
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
library(DoE.base)
## Warning: package 'DoE.base' was built under R version 4.2.2
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths

6.8)

cm <- rep(c(-1,-1,1,1),6)
time <- c(rep(-1,12),rep(1,12))
growth <- c(21,22,25,26,23,28,24,25,20,26,29,27,37,39,31,34,38,38,29,33,35,36,30,35)

Model Equation :

\(y_{ijk}\) = \(\alpha_{i}\) + \(\beta_{j}\) + \(\alpha\beta_{ij}\) + \(\epsilon_{ijk}\)

Hypothesis :

Medium Effect :

\(H_{0}\) : \(\alpha_{i}\) = 0 \(\forall\) i ,

\(H_{a}\) : \(\alpha_{i}\) \(\neq\) 0 \(\exists\) i ,

Time Effect :

\(H_{0}\) : \(\beta_{j}\) = 0 \(\forall\) j ,

\(H_{a}\) : \(\beta_{j}\) \(\neq\) 0 \(\exists\) j ,

Interaction Effect :

\(H_{0}\) : \(\alpha\beta_{ij}\) = 0 \(\forall\) i, j ,

\(H_{a}\) : \(\alpha\beta_{ij}\) \(\neq\) \(\exists\) i, j ,

Manipulating Data and Running AOV

cm <- as.fixed(cm)
time <- as.fixed(time)
dat6.8 <- data.frame(growth,cm,time)
model6.8 <- aov(growth ~ time + cm + time*cm)
GAD::gad(model6.8)
## Analysis of Variance Table
## 
## Response: growth
##          Df Sum Sq Mean Sq  F value    Pr(>F)    
## time      1 590.04  590.04 115.5057 9.291e-10 ***
## cm        1   9.38    9.38   1.8352 0.1906172    
## time:cm   1  92.04   92.04  18.0179 0.0003969 ***
## Residual 20 102.17    5.11                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the variance analysis table we can observe that the p value of the interaction is less than the threshold \(\alpha\) = 0.05. So, we reject the null hypothesis and the interaction is significant.

interaction.plot(time,cm,growth)

plot(model6.8)

From the plots we can observe that the interaction is normally distributed and the variance also looks similar. So, we can conclude that the model is adequate.

6.12)

library(DoE.base)
af <- rep(c(-1,1,-1,1),4)
dt <- rep(c(-1,-1,1,1),4)
thickness <- c(14.037,13.880,14.821,14.888,16.165,13.860,14.757,14.921,13.972,14.032,14.843,14.415,13.907,13.914,14.878,14.932)
af <- as.factor(af)
dt <- as.factor(dt)
data6.12 <- data.frame(af,dt,thickness)

a)

One <- c(14.037,16.165,13.972,13.907)
af <- c(13.88,13.86,14.032,13.914)
dt <- c(14.821,14.757,14.843,14.878)
inter <- c(14.888,14.921,14.415,14.932)
S1 <- sum(One)
SA <- sum(af)
SB <- sum(dt)
SAB <- sum(inter)
effectaf <- (2*(SA+SAB-S1-SB)/(4*4))
effectdt <- (2*(SB+SAB-S1-SA)/(4*4))
effectinter <- (2*(SA+SB-S1-SAB)/(4*4))
effectaf
## [1] -0.31725
effectdt
## [1] 0.586
effectinter
## [1] -0.2815

b)

model6.12 <- aov(thickness ~ af*dt, data = data6.12)
summary(model6.12)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## af           1  0.403  0.4026   1.262 0.2833  
## dt           1  1.374  1.3736   4.305 0.0602 .
## af:dt        1  0.317  0.3170   0.994 0.3386  
## Residuals   12  3.828  0.3190                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the results we can conclude that the interaction between factors is insignificant. So, we remove the interaction and test the main effects.

model6.12 <- aov(thickness ~ af + dt, data = data6.12)
summary(model6.12)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## af           1  0.403  0.4026   1.263 0.2815  
## dt           1  1.374  1.3736   4.308 0.0584 .
## Residuals   13  4.145  0.3189                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the anova analysis, we can conclude that the main effects are significant.

c)

model <- lm(thickness ~ af*dt, data = data6.12)
coef(model6.12)
## (Intercept)         af1         dt1 
##    14.37950    -0.31725     0.58600
summary(model6.12)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## af           1  0.403  0.4026   1.263 0.2815  
## dt           1  1.374  1.3736   4.308 0.0584 .
## Residuals   13  4.145  0.3189                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

d)

plot(model6.12)

By plotting the residuals, we can see the that the model is inadequate.

e)

We can perform a boxcox transformation on the data and then perform anova analysis on transformed data.

6.21)

FA <- rep(rep(c(-1,1),8),7)
FB <- rep(rep(c(1,1,-1,-1),4),7)
FC <- rep(rep(c(rep(1,4),rep(-1,4)),2),7)
FD <- rep(c(rep(1,8),rep(-1,8)),7)
R1 <- c(10.0,0.0,4.0,0.0,0.0,5.0,6.5,16.5,4.5,19.5,15.0,41.5,8.0,21.5,0.0,18.0)
R2 <- c(18.0,16.5,6.0,10.0,0.0,20.5,18.5,4.5,18.0,18.0,16.0,39.0,4.5,10.5,0.0,5.0)
R3 <- c(14.0,4.5,1.0,34.0,18.5,18.0,7.5,0.0,14.5,16.0,8.5,6.5,6.5,6.5,0.0,7.0)
R4 <- c(12.5,17.5,14.5,11.0,19.5,20.0,6.0,23.5,10.0,5.5,0.0,3.5,10.0,0.0,4.5,10.0)
R5 <- c(19.0,20.5,12.0,25.5,16.0,29.5,0.0,8.0,0.0,10.0,0.5,7.0,13.0,15.5,1.0,32.5)
R6 <- c(16.0,17.5,14.0,21.5,15.0,19.0,10.0,8.0,17.5,7.0,9.0,8.5,41.0,24.0,4.0,18.5)
R7 <- c(18.5,33.0,5.0,0.0,11.0,10.0,0.0,8.0,6.0,36.0,3.0,36.0,14.0,16.0,6.5,8.0)
Obs6.21 <- c(R1,R2,R3,R4,R5,R6,R7)

a)

dat6.21 <- data.frame(FA,FB,FC,FD,Obs6.21)
model6.21 <- lm(Obs6.21 ~ FA*FB*FC*FD,data=dat6.21)
halfnormal(model6.21)
## Warning in halfnormal.lm(model6.21): halfnormal not recommended for models with
## more residual df than model df
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] FA  e74 e92 FB  e53

From the above plot clearly factors A and B are significant.

b)

model6.21 <- aov(Obs6.21 ~ FA*FB,data=dat6.21)
plot(model6.21)

## hat values (leverages) are all = 0.03571429
##  and there are no factor predictors; no plot no. 5

6.36)

FacA <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
FacB <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
FacC <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
FacD <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
resistivity <- c(1.92,11.28,1.09,5.75,2.13,9.53,1.03,5.35,1.60,11.73,1.16,4.68,2.16,9.11,1.07,5.30)
dat6.36 <- data.frame(FacA,FacB,FacC,FacD,resistivity)

a)

model6.36 <- lm(resistivity ~ FacA*FacB*FacC*FacD,data = dat6.36)
coef(model6.36)
##         (Intercept)                FacA                FacB                FacC 
##            4.680625            3.160625           -1.501875           -0.220625 
##                FacD           FacA:FacB           FacA:FacC           FacB:FacC 
##           -0.079375           -1.069375           -0.298125            0.229375 
##           FacA:FacD           FacB:FacD           FacC:FacD      FacA:FacB:FacC 
##           -0.056875           -0.046875            0.029375            0.344375 
##      FacA:FacB:FacD      FacA:FacC:FacD      FacB:FacC:FacD FacA:FacB:FacC:FacD 
##           -0.096875           -0.010625            0.094375            0.141875
halfnormal(model6.36)
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] FacA           FacB           FacA:FacB      FacA:FacB:FacC

summary(model6.36)
## 
## Call:
## lm.default(formula = resistivity ~ FacA * FacB * FacC * FacD, 
##     data = dat6.36)
## 
## Residuals:
## ALL 16 residuals are 0: no residual degrees of freedom!
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)          4.68062        NaN     NaN      NaN
## FacA                 3.16062        NaN     NaN      NaN
## FacB                -1.50187        NaN     NaN      NaN
## FacC                -0.22062        NaN     NaN      NaN
## FacD                -0.07937        NaN     NaN      NaN
## FacA:FacB           -1.06938        NaN     NaN      NaN
## FacA:FacC           -0.29812        NaN     NaN      NaN
## FacB:FacC            0.22937        NaN     NaN      NaN
## FacA:FacD           -0.05687        NaN     NaN      NaN
## FacB:FacD           -0.04688        NaN     NaN      NaN
## FacC:FacD            0.02937        NaN     NaN      NaN
## FacA:FacB:FacC       0.34437        NaN     NaN      NaN
## FacA:FacB:FacD      -0.09688        NaN     NaN      NaN
## FacA:FacC:FacD      -0.01063        NaN     NaN      NaN
## FacB:FacC:FacD       0.09438        NaN     NaN      NaN
## FacA:FacB:FacC:FacD  0.14188        NaN     NaN      NaN
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 15 and 0 DF,  p-value: NA

From the half normal plot we can find that factors A, B, AB are significant. we will consider the tenative model.

\(Y_{ijk}\) = 4.680625 + 3.160625\(\alpha_{i}\) - 1.501875\(\beta_{j}\) - 1.069375\(\alpha\beta_{ij}\) + \(\epsilon_{ijkl}\)

b)

model6.36.2 <- aov(resistivity ~ FacA + FacB + FacC + FacA*FacB + FacA*FacB*FacC,data = dat6.36)
summary(model6.36.2)
##                Df Sum Sq Mean Sq  F value   Pr(>F)    
## FacA            1 159.83  159.83 1563.061 1.84e-10 ***
## FacB            1  36.09   36.09  352.937 6.66e-08 ***
## FacC            1   0.78    0.78    7.616  0.02468 *  
## FacA:FacB       1  18.30   18.30  178.933 9.33e-07 ***
## FacA:FacC       1   1.42    1.42   13.907  0.00579 ** 
## FacB:FacC       1   0.84    0.84    8.232  0.02085 *  
## FacA:FacB:FacC  1   1.90    1.90   18.556  0.00259 ** 
## Residuals       8   0.82    0.10                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model6.36.2)

## hat values (leverages) are all = 0.5
##  and there are no factor predictors; no plot no. 5

By observing the plots above we can observe that the model is inadequate.

The anova done later shows that all factors and interactions are significant at \(\alpha\) = 0.05.

c)

logresistivity <- log(resistivity)
dat6.36log <- data.frame(FacA,FacB,FacC,FacD,logresistivity)
model6.36log <- lm(logresistivity ~ FacA*FacB*FacC*FacD,data = dat6.36log)
coef(model6.36log)
##         (Intercept)                FacA                FacB                FacC 
##         1.185417116         0.812870345        -0.314277554        -0.006408558 
##                FacD           FacA:FacB           FacA:FacC           FacB:FacC 
##        -0.018077390        -0.024684570        -0.039723700        -0.004225796 
##           FacA:FacD           FacB:FacD           FacC:FacD      FacA:FacB:FacC 
##        -0.009578245         0.003708723         0.017780432         0.063434408 
##      FacA:FacB:FacD      FacA:FacC:FacD      FacB:FacC:FacD FacA:FacB:FacC:FacD 
##        -0.029875960        -0.003740235         0.003765760         0.031322043
halfnormal(model6.36log)
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] FacA           FacB           FacA:FacB:FacC

summary(model6.36log)
## 
## Call:
## lm.default(formula = logresistivity ~ FacA * FacB * FacC * FacD, 
##     data = dat6.36log)
## 
## Residuals:
## ALL 16 residuals are 0: no residual degrees of freedom!
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)          1.185417        NaN     NaN      NaN
## FacA                 0.812870        NaN     NaN      NaN
## FacB                -0.314278        NaN     NaN      NaN
## FacC                -0.006409        NaN     NaN      NaN
## FacD                -0.018077        NaN     NaN      NaN
## FacA:FacB           -0.024685        NaN     NaN      NaN
## FacA:FacC           -0.039724        NaN     NaN      NaN
## FacB:FacC           -0.004226        NaN     NaN      NaN
## FacA:FacD           -0.009578        NaN     NaN      NaN
## FacB:FacD            0.003709        NaN     NaN      NaN
## FacC:FacD            0.017780        NaN     NaN      NaN
## FacA:FacB:FacC       0.063434        NaN     NaN      NaN
## FacA:FacB:FacD      -0.029876        NaN     NaN      NaN
## FacA:FacC:FacD      -0.003740        NaN     NaN      NaN
## FacB:FacC:FacD       0.003766        NaN     NaN      NaN
## FacA:FacB:FacC:FacD  0.031322        NaN     NaN      NaN
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 15 and 0 DF,  p-value: NA

After the log transformation we can observe that the half normal plot only characterizes factors A, B and ABC as significant. ANOVA analysis also presents factors A, B and ABC as significant.

model6.36log1 <- aov(logresistivity ~ FacA + FacB + FacC + FacA*FacB*FacC,data = dat6.36log)
summary(model6.36log1)
##                Df Sum Sq Mean Sq  F value   Pr(>F)    
## FacA            1 10.572  10.572 1994.556 6.98e-11 ***
## FacB            1  1.580   1.580  298.147 1.29e-07 ***
## FacC            1  0.001   0.001    0.124  0.73386    
## FacA:FacB       1  0.010   0.010    1.839  0.21207    
## FacA:FacC       1  0.025   0.025    4.763  0.06063 .  
## FacB:FacC       1  0.000   0.000    0.054  0.82223    
## FacA:FacB:FacC  1  0.064   0.064   12.147  0.00826 ** 
## Residuals       8  0.042   0.005                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(model6.36log1)

## hat values (leverages) are all = 0.5
##  and there are no factor predictors; no plot no. 5

After the log transformation, we can observe that data is almost falling in a straight line .It hasn't improved considerable but variance has been stabilized to some extent and thus we can conclude that transformation has been useful.

d)

\(Y_{ijkl}\) = 1.185417 + 0.812870345\(\alpha_{i}\) - 0.314277554\(\beta_{j}\) + \(\epsilon_{ijkl}\)

6.39)

A <- rep(c(-1,1),16)
B <- rep(c(-1,-1,1,1),8)
C <- rep(c(-1,-1,-1,-1,1,1,1,1),4)
D <- rep(c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1),2)
E <- c(rep(-1,16),rep(1,16))
y <- c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
dat6.39 <- data.frame(A,B,C,D,E,y)

a)

model6.39 <- lm(y ~ A*B*C*D*E,data = dat6.39)
halfnormal(model6.39)
## 
## Significant effects (alpha=0.05, Lenth method):
##  [1] D     E     A:D   A     D:E   B:E   A:B   A:B:E A:E   A:D:E

coef(model6.39)
## (Intercept)           A           B           C           D           E 
##  10.1803125   1.6159375   0.0434375  -0.0121875   2.9884375   2.1878125 
##         A:B         A:C         B:C         A:D         B:D         C:D 
##   1.2365625  -0.0015625  -0.1953125   1.6665625  -0.0134375   0.0034375 
##         A:E         B:E         C:E         D:E       A:B:C       A:B:D 
##   1.0271875   1.2834375   0.3015625   1.3896875   0.2503125  -0.3453125 
##       A:C:D       B:C:D       A:B:E       A:C:E       B:C:E       A:D:E 
##  -0.0634375   0.3053125   1.1853125  -0.2590625   0.1709375   0.9015625 
##       B:D:E       C:D:E     A:B:C:D     A:B:C:E     A:B:D:E     A:C:D:E 
##  -0.0396875   0.3959375  -0.0740625  -0.1846875   0.4071875   0.1278125 
##     B:C:D:E   A:B:C:D:E 
##  -0.0746875  -0.3553125
dat6.39 <- data.frame(A,B,D,E,y)
model6.39.2 <- aov(y ~ A + B + D + E + A*B + B*E + D*E + A*D + A*E + A*B*E + A*D*E,data = dat6.39)

From half normal plot the factors A, D, E, A:D, D:E, B:E, A:B, A:E, A:B:E, A:D:E as significant. ANOVA analysis also presents the factors A, D, E, AB, AD, AE, BE, DE, ABE, ADE as significant.

b)

plot(model6.39.2)

## hat values (leverages) are all = 0.375
##  and there are no factor predictors; no plot no. 5

From the Normal and Residual plot we can conclude that the model is inadequate. The data though satisfies the normality it fails as variance is spread wide.

c)

model6.39.3 <- aov(y ~ A*B*D*E,data = dat6.39)
halfnormal(model6.39.3)
## 
## Significant effects (alpha=0.05, Lenth method):
##  [1] D     E     A:D   A     D:E   B:E   A:B   A:B:E A:E   A:D:E e10

coef(model6.39.3)
## (Intercept)           A           B           D           E         A:B 
##  10.1803125   1.6159375   0.0434375   2.9884375   2.1878125   1.2365625 
##         A:D         B:D         A:E         B:E         D:E       A:B:D 
##   1.6665625  -0.0134375   1.0271875   1.2834375   1.3896875  -0.3453125 
##       A:B:E       A:D:E       B:D:E     A:B:D:E 
##   1.1853125   0.9015625  -0.0396875   0.4071875
summary(model6.39.3)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## A            1  83.56   83.56  57.233 1.14e-06 ***
## B            1   0.06    0.06   0.041 0.841418    
## D            1 285.78  285.78 195.742 2.16e-10 ***
## E            1 153.17  153.17 104.910 1.97e-08 ***
## A:B          1  48.93   48.93  33.514 2.77e-05 ***
## A:D          1  88.88   88.88  60.875 7.66e-07 ***
## B:D          1   0.01    0.01   0.004 0.950618    
## A:E          1  33.76   33.76  23.126 0.000193 ***
## B:E          1  52.71   52.71  36.103 1.82e-05 ***
## D:E          1  61.80   61.80  42.328 7.24e-06 ***
## A:B:D        1   3.82    3.82   2.613 0.125501    
## A:B:E        1  44.96   44.96  30.794 4.40e-05 ***
## A:D:E        1  26.01   26.01  17.815 0.000650 ***
## B:D:E        1   0.05    0.05   0.035 0.854935    
## A:B:D:E      1   5.31    5.31   3.634 0.074735 .  
## Residuals   16  23.36    1.46                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model6.39log5 <- lm(y ~ A + B + D + E, data = dat6.39)
coef(model6.39log5)
## (Intercept)           A           B           D           E 
##  10.1803125   1.6159375   0.0434375   2.9884375   2.1878125

Factor C was insignificant hence it is droped and did analysis again but got similar results in part a.

d)

\(Y_{ijkl}\) = 10.1803125 + 1.6159375\(\alpha_{i}\) + 0.0434375\(\beta_{j}\) + 2.9884375\(\gamma_{k}\) + 2.1878125\(\delta_{l}\) + \(\epsilon_{ijkl}\)

From the above model equation we can maximize the predicted response.