Problem 6.8

A bacteriologist is interested in the effects of two different culture media and two different times on the growth of a particular virus. He or she performs six replicates of a 22 design, making the runs in random order. Analyze the bacterial growth data that follow and draw appropriate conclusions. Analyze the residuals and comment on the model’s adequacy.

Entering the data

Time<-c(rep(12,12),rep(18,12))
Medium<-c(rep(c(1,1,2,2),6))
Observations<-c(21,22,25,26,23,28,24,25,20,26,29,27,37,39,31,34,38,38,29,33,35,36,30,35)
dat1<-cbind(Time,Medium,Observations)
dat1<-as.data.frame(dat1)
dat1$Time<-as.factor(dat1$Time)
dat1$Medium<-as.factor(dat1$Medium)

Analyzing

model1<-aov(Observations~Medium*Time,data = dat1)
summary(model1)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Medium       1    9.4     9.4   1.835 0.190617    
## Time         1  590.0   590.0 115.506 9.29e-10 ***
## Medium:Time  1   92.0    92.0  18.018 0.000397 ***
## Residuals   20  102.2     5.1                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model Equation \(Yi,j,k = μ + αi + βj + αβi,j + ϵi,j,k\)

Let us consider alpha of 0.05

From the results we clearly see that the p value of the interaction between medium and time is less than alpha so they are significant.

plot(model1)

From the residuals vs fitted graph we also see that our data does not have constant variance, but our q q plot shows that the data appears to be in a straight line. Hence our model is inadequate.

Problem 6.12

An article in the AT&T Technical Journal (March/April 1986,Vol. 65, pp. 39–50) describes the application of two-level factorial designs to integrated circuit manufacturing. A basic processing step is to grow an epitaxial layer on polished silicon wafers. The wafers mounted on a susceptor are positioned inside a bell jar, and chemical vapors are introduced. The susceptor is rotated, and heat is applied until the epitaxial layer is thick enough. An experiment was run using two factors: arsenic flow rate (A) and deposition time (B). Four replicates were run, and the epitaxial layer thickness was measured ( m). The data are shown in Table P6.1.

Entering the data

A<-c(rep(-1,4),rep(1,4),rep(-1,4),rep(1,4))
B<-c(rep(-1,8),rep(1,8))
Observations<-c(14.037,16.165,13.972,13.907,13.880,13.860,14.032,13.914,14.821,14.757,14.843,14.878,14.888,14.921,14.415,14.932)
dat2<-cbind(A,B,Observations)
dat2<-as.data.frame(dat2)
dat2$A<-as.factor(dat2$A)
dat2$B<-as.factor(dat2$B)

Analyzing

Model Equation \(Yi,j,k = μ + αi + βj + αβi,j + ϵi,j,k\)

model2<-aov(Observations~A*B)

PART A: Estimate the factor effects.

One<-c(14.037,16.165,13.972,13.907)
A<-c(13.88,13.86,14.032,13.914)
B<-c(14.821,14.757,14.843,14.878)
AB<-c(14.888,14.921,14.415,14.932)
S1<-sum(One)
SA<-sum(A)
SB<-sum(B)
SAB<-sum(AB)
EffectA<-(2*(SA+SAB-S1-SB)/(4*4))
EffectB<-(2*(SB+SAB-S1-SA)/(4*4))
EffectAB<-(2*(SA+SB-S1-SAB)/(4*4))
EffectA
## [1] -0.31725
EffectB
## [1] 0.586
EffectAB
## [1] -0.2815

Effect A = -0.31725

Effect B = 0.586

Effect AB = -0.2815

PART B: Conduct an analysis of variance. Which factors are important?

summary(model2)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## A            1  0.403  0.4026   1.262 0.2833  
## B            1  1.374  1.3736   4.305 0.0602 .
## A:B          1  0.317  0.3170   0.994 0.3386  
## Residuals   12  3.828  0.3190                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For an alpha of 0.05 we see that none of the factors are important because the p value is greater than alpha assumed.

We will try removing interaction effect and testing for main effects.

model21<-aov(Observations~A+B,data = dat2)
summary(model21)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## A            1  0.403  0.4026   1.263 0.2815  
## B            1  1.374  1.3736   4.308 0.0584 .
## Residuals   13  4.145  0.3189                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We clearly see that our main effects are also insignificant.

PART C: Write down a regression equation that could be used to predict epitaxial layer thickness over the region of arsenic flow rate and deposition time used in this experiment.

model23<-lm(Observations~A*B,data = dat2)
coef(model23)
## (Intercept)          A1          B1       A1:B1 
##    14.52025    -0.59875     0.30450     0.56300

\(Yi,j,k = 14.52025 - 0.59875αi + 0.30450βj + 0.56300αβγi,j + ϵi,j,k\)

PART D: Analyze the residuals. Are there any residuals that should cause concern?

plot(model2)

## hat values (leverages) are all = 0.25
##  and there are no factor predictors; no plot no. 5

From the residuals vs fitted graph we can see that there is an outlier.

PART E: Discuss how you might deal with the potential outlier found in part (d).

We can just ignore the outlier and do the analysis again.

Problem 6.21

Data Entry:

Dist<-c(10,18,14,12.5,19,16,18.5,0,16.5,4.5,17.5,20.5,17.5,33,4,6,1,14.5,12,14,5,0,10,34,11,25.5,21.5,0,0,0,18.5,19.5,16,15,11,5,20.5,18,20,29.5,19,10,6.5,18.5,7.5,6,0,10,0,16.5,4.5,0,23.5,8,8,8,4.5,18,14.5,10,0,17.5,6,19.5,18,16,5.5,10,7,36,15,16,8.5,0,0.5,9,3,41.5,39,6.5,3.5,7,8.5,36,8,4.5,6.5,10,13,41,14,21.5,10.5,6.5,0,15.5,24,16,0,0,0,4.5,1,4,6.5,18,5,7,10,32.5,18.5,8)
FA <- c(-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1)
FB <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
FC <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
FD <- c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
FA <- as.factor(FA)
FB <- as.factor(FB)
FC <- as.factor(FC)
FD <- as.factor(FD)
dat621 <- data.frame(FA,FB,FC,FD,Dist)

Part A

Analyze the data from this experiment. Which factors significantly affect putting performance?

Model621<- aov(Dist~FA*FB*FC*FD,data = dat621)
summary(Model621)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## FA           1    917   917.1  10.588 0.00157 **
## FB           1    388   388.1   4.481 0.03686 * 
## FC           1    145   145.1   1.676 0.19862   
## FD           1      1     1.4   0.016 0.89928   
## FA:FB        1    219   218.7   2.525 0.11538   
## FA:FC        1     12    11.9   0.137 0.71178   
## FB:FC        1    115   115.0   1.328 0.25205   
## FA:FD        1     94    93.8   1.083 0.30066   
## FB:FD        1     56    56.4   0.651 0.42159   
## FC:FD        1      2     1.6   0.019 0.89127   
## FA:FB:FC     1      7     7.3   0.084 0.77294   
## FA:FB:FD     1    113   113.0   1.305 0.25623   
## FA:FC:FD     1     39    39.5   0.456 0.50121   
## FB:FC:FD     1     34    33.8   0.390 0.53386   
## FA:FB:FC:FD  1     96    95.6   1.104 0.29599   
## Residuals   96   8316    86.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comment: At a significance level 0f 0.05, only main effects of factors A & B, aka length of putt and type of putter significantly affect putting performance.

Part B

Analyze the residuals from this experiment. Are there any indications of model inadequacy?

plot(Model621)

From the residual vs fitted graph we see that the data does not have constant variance and from the q q plot we also see that the data is not normal.

Problem 6.36

Resistivity on a silicon wafer is influenced by several factors. The results of a 24 factorial experiment performed during a critical processing step is shown in Table P6.10.

Entering the data:

library(DoE.base)
## Warning: package 'DoE.base' was built under R version 4.2.2
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths
F_A <- c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
F_B <- c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)
F_C <- c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
F_D <- c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
Obs <- c(1.92,11.28,1.09,5.75,2.13,9.53,1.03,5.35,1.6,11.73,1.16,4.68,2.16,9.11,1.07,5.3)
dat636 <- data.frame(F_A,F_B,F_C,F_D,Obs)

Part A

Estimate the factor effects. Plot the effect estimates on a normal probability plot and select a tentative model.

Model636 <- lm(Obs~F_A*F_B*F_C*F_D,data = dat636)
coef(Model636)
##     (Intercept)             F_A             F_B             F_C             F_D 
##        4.680625        3.160625       -1.501875       -0.220625       -0.079375 
##         F_A:F_B         F_A:F_C         F_B:F_C         F_A:F_D         F_B:F_D 
##       -1.069375       -0.298125        0.229375       -0.056875       -0.046875 
##         F_C:F_D     F_A:F_B:F_C     F_A:F_B:F_D     F_A:F_C:F_D     F_B:F_C:F_D 
##        0.029375        0.344375       -0.096875       -0.010625        0.094375 
## F_A:F_B:F_C:F_D 
##        0.141875
halfnormal(Model636)
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] F_A         F_B         F_A:F_B     F_A:F_B:F_C

summary(Model636)
## 
## Call:
## lm.default(formula = Obs ~ F_A * F_B * F_C * F_D, data = dat636)
## 
## Residuals:
## ALL 16 residuals are 0: no residual degrees of freedom!
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)      4.68062        NaN     NaN      NaN
## F_A              3.16062        NaN     NaN      NaN
## F_B             -1.50187        NaN     NaN      NaN
## F_C             -0.22062        NaN     NaN      NaN
## F_D             -0.07937        NaN     NaN      NaN
## F_A:F_B         -1.06938        NaN     NaN      NaN
## F_A:F_C         -0.29812        NaN     NaN      NaN
## F_B:F_C          0.22937        NaN     NaN      NaN
## F_A:F_D         -0.05687        NaN     NaN      NaN
## F_B:F_D         -0.04688        NaN     NaN      NaN
## F_C:F_D          0.02937        NaN     NaN      NaN
## F_A:F_B:F_C      0.34437        NaN     NaN      NaN
## F_A:F_B:F_D     -0.09688        NaN     NaN      NaN
## F_A:F_C:F_D     -0.01063        NaN     NaN      NaN
## F_B:F_C:F_D      0.09438        NaN     NaN      NaN
## F_A:F_B:F_C:F_D  0.14188        NaN     NaN      NaN
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 15 and 0 DF,  p-value: NA

Comment: Factor effects are visible in summary of the model. From the half normal plot of the model we can observe that Factors A,B,AB are significant. We’ll ignore the interaction effect ABC since it doesn’t differ considerably from the distribution. Therefore, we’ll select a tentative model comprising of these main and interaction effects and we’ll drop the rest from our model.

Yi,j,k = 4.680625 + 3.160625αi - 1.501875βj - 1.069375αβi,j + ϵi,j,k

Part B

Fit the model identified in part (a) and analyze the residuals. Is there any indication of model inadequacy?

Model636_2 <- aov(Obs~F_A+F_B+F_C+F_A*F_B+F_A*F_B*F_C,data = dat636)
summary(Model636_2)
##             Df Sum Sq Mean Sq  F value   Pr(>F)    
## F_A          1 159.83  159.83 1563.061 1.84e-10 ***
## F_B          1  36.09   36.09  352.937 6.66e-08 ***
## F_C          1   0.78    0.78    7.616  0.02468 *  
## F_A:F_B      1  18.30   18.30  178.933 9.33e-07 ***
## F_A:F_C      1   1.42    1.42   13.907  0.00579 ** 
## F_B:F_C      1   0.84    0.84    8.232  0.02085 *  
## F_A:F_B:F_C  1   1.90    1.90   18.556  0.00259 ** 
## Residuals    8   0.82    0.10                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Model636_2)

## hat values (leverages) are all = 0.5
##  and there are no factor predictors; no plot no. 5

From the Analysis we see that all the factors and the interactions are significant at alpha of 0.05.

From the residuals vs fitted graph we see that there is no constant variance and from the q q plot we see that the data is also not normally distributed.

Question 6.39

An article in Quality and Reliability Engineering International (2010, Vol. 26, pp. 223–233) presents a 25 factorial design. The experiment is shown in Table P6.12.

Data Entry:

Yeild<-c(8.11,5.56,5.77,5.82,9.17,7.8,3.23,5.69,8.82,14.23,9.2,8.94,8.68,11.49,6.25,9.12,7.93,5,7.47,12,9.86,3.65,6.4,11.61,12.43,17.55,8.87,25.38,13.06,18.85,11.78,26.05)
FactorA<-rep(c(-1,1),16)
FactorB<-rep(c(-1,-1,1,1),8)
FactorC<-rep(c(-1,-1,-1,-1,1,1,1,1),4)
FactorD<-c(rep(-1,8),rep(1,8),rep(-1,8),rep(1,8))
FactorE<-c(rep(-1,16),rep(1,16))

Part A:

library(DoE.base)
dat639<-data.frame(Yeild,FactorA,FactorB,FactorC,FactorD,FactorE)
model639<-lm(Yeild~FactorA*FactorB*FactorC*FactorD*FactorE,data=dat639)
coef(model639)
##                             (Intercept)                                 FactorA 
##                              10.1803125                               1.6159375 
##                                 FactorB                                 FactorC 
##                               0.0434375                              -0.0121875 
##                                 FactorD                                 FactorE 
##                               2.9884375                               2.1878125 
##                         FactorA:FactorB                         FactorA:FactorC 
##                               1.2365625                              -0.0015625 
##                         FactorB:FactorC                         FactorA:FactorD 
##                              -0.1953125                               1.6665625 
##                         FactorB:FactorD                         FactorC:FactorD 
##                              -0.0134375                               0.0034375 
##                         FactorA:FactorE                         FactorB:FactorE 
##                               1.0271875                               1.2834375 
##                         FactorC:FactorE                         FactorD:FactorE 
##                               0.3015625                               1.3896875 
##                 FactorA:FactorB:FactorC                 FactorA:FactorB:FactorD 
##                               0.2503125                              -0.3453125 
##                 FactorA:FactorC:FactorD                 FactorB:FactorC:FactorD 
##                              -0.0634375                               0.3053125 
##                 FactorA:FactorB:FactorE                 FactorA:FactorC:FactorE 
##                               1.1853125                              -0.2590625 
##                 FactorB:FactorC:FactorE                 FactorA:FactorD:FactorE 
##                               0.1709375                               0.9015625 
##                 FactorB:FactorD:FactorE                 FactorC:FactorD:FactorE 
##                              -0.0396875                               0.3959375 
##         FactorA:FactorB:FactorC:FactorD         FactorA:FactorB:FactorC:FactorE 
##                              -0.0740625                              -0.1846875 
##         FactorA:FactorB:FactorD:FactorE         FactorA:FactorC:FactorD:FactorE 
##                               0.4071875                               0.1278125 
##         FactorB:FactorC:FactorD:FactorE FactorA:FactorB:FactorC:FactorD:FactorE 
##                              -0.0746875                              -0.3553125
halfnormal(model639)
## 
## Significant effects (alpha=0.05, Lenth method):
##  [1] FactorD                 FactorE                 FactorA:FactorD         
## 
##  [4] FactorA                 FactorD:FactorE         FactorB:FactorE         
## 
##  [7] FactorA:FactorB         FactorA:FactorB:FactorE FactorA:FactorE         
## 
## [10] FactorA:FactorD:FactorE

summary(model639)
## 
## Call:
## lm.default(formula = Yeild ~ FactorA * FactorB * FactorC * FactorD * 
##     FactorE, data = dat639)
## 
## Residuals:
## ALL 32 residuals are 0: no residual degrees of freedom!
## 
## Coefficients:
##                                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             10.180312        NaN     NaN      NaN
## FactorA                                  1.615938        NaN     NaN      NaN
## FactorB                                  0.043438        NaN     NaN      NaN
## FactorC                                 -0.012187        NaN     NaN      NaN
## FactorD                                  2.988437        NaN     NaN      NaN
## FactorE                                  2.187813        NaN     NaN      NaN
## FactorA:FactorB                          1.236562        NaN     NaN      NaN
## FactorA:FactorC                         -0.001563        NaN     NaN      NaN
## FactorB:FactorC                         -0.195313        NaN     NaN      NaN
## FactorA:FactorD                          1.666563        NaN     NaN      NaN
## FactorB:FactorD                         -0.013438        NaN     NaN      NaN
## FactorC:FactorD                          0.003437        NaN     NaN      NaN
## FactorA:FactorE                          1.027188        NaN     NaN      NaN
## FactorB:FactorE                          1.283437        NaN     NaN      NaN
## FactorC:FactorE                          0.301563        NaN     NaN      NaN
## FactorD:FactorE                          1.389687        NaN     NaN      NaN
## FactorA:FactorB:FactorC                  0.250313        NaN     NaN      NaN
## FactorA:FactorB:FactorD                 -0.345312        NaN     NaN      NaN
## FactorA:FactorC:FactorD                 -0.063437        NaN     NaN      NaN
## FactorB:FactorC:FactorD                  0.305312        NaN     NaN      NaN
## FactorA:FactorB:FactorE                  1.185313        NaN     NaN      NaN
## FactorA:FactorC:FactorE                 -0.259062        NaN     NaN      NaN
## FactorB:FactorC:FactorE                  0.170938        NaN     NaN      NaN
## FactorA:FactorD:FactorE                  0.901563        NaN     NaN      NaN
## FactorB:FactorD:FactorE                 -0.039687        NaN     NaN      NaN
## FactorC:FactorD:FactorE                  0.395938        NaN     NaN      NaN
## FactorA:FactorB:FactorC:FactorD         -0.074063        NaN     NaN      NaN
## FactorA:FactorB:FactorC:FactorE         -0.184688        NaN     NaN      NaN
## FactorA:FactorB:FactorD:FactorE          0.407187        NaN     NaN      NaN
## FactorA:FactorC:FactorD:FactorE          0.127812        NaN     NaN      NaN
## FactorB:FactorC:FactorD:FactorE         -0.074688        NaN     NaN      NaN
## FactorA:FactorB:FactorC:FactorD:FactorE -0.355312        NaN     NaN      NaN
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 31 and 0 DF,  p-value: NA
Model639_1 <- aov(Yeild~FactorA+FactorB+FactorD+FactorE+FactorA*FactorB+FactorA*FactorD+FactorA*FactorE+FactorB*FactorE+FactorD*FactorE+FactorA*FactorB*FactorE+FactorA*FactorD*FactorE,data = dat639)
summary(Model639_1)
##                         Df Sum Sq Mean Sq F value   Pr(>F)    
## FactorA                  1  83.56   83.56  51.362 6.10e-07 ***
## FactorB                  1   0.06    0.06   0.037 0.849178    
## FactorD                  1 285.78  285.78 175.664 2.30e-11 ***
## FactorE                  1 153.17  153.17  94.149 5.24e-09 ***
## FactorA:FactorB          1  48.93   48.93  30.076 2.28e-05 ***
## FactorA:FactorD          1  88.88   88.88  54.631 3.87e-07 ***
## FactorA:FactorE          1  33.76   33.76  20.754 0.000192 ***
## FactorB:FactorE          1  52.71   52.71  32.400 1.43e-05 ***
## FactorD:FactorE          1  61.80   61.80  37.986 5.07e-06 ***
## FactorA:FactorB:FactorE  1  44.96   44.96  27.635 3.82e-05 ***
## FactorA:FactorD:FactorE  1  26.01   26.01  15.988 0.000706 ***
## Residuals               20  32.54    1.63                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comment: Half normal plot displays factors A,D,E,A:D,D:E,B:E,A:B,A:E,A:B:E,A:D:E as significant. ANOVA analysis also presents the factors A,D,E,AB,AD,AE,BE,DE,ABE,ADE as significant.

Part B

Analyze the residuals from this experiment. Are there any indications of model inadequacy or violations of the assumptions?

plot(Model639_1)

## hat values (leverages) are all = 0.375
##  and there are no factor predictors; no plot no. 5

Comment: Looking at the “Normal Q-Q” & “Residuals vs Fitted” plots we can conclude that the model is inadequate. Though the data satisfies the normality assumption, there’s a wide spread in variance of data.

Part C

One of the factors from this experiment does not seem to be important. If you drop this factor, what type of design remains? Analyze the data using the full factorial model for only the four active factors. Compare your results with those obtained in part (a).

dat639_2<-data.frame(Yeild,FactorA,FactorB,FactorD,FactorE)
model639_2<-lm(Yeild~FactorA*FactorB*FactorD*FactorE,data=dat639_2)
coef(model639_2)
##                     (Intercept)                         FactorA 
##                      10.1803125                       1.6159375 
##                         FactorB                         FactorD 
##                       0.0434375                       2.9884375 
##                         FactorE                 FactorA:FactorB 
##                       2.1878125                       1.2365625 
##                 FactorA:FactorD                 FactorB:FactorD 
##                       1.6665625                      -0.0134375 
##                 FactorA:FactorE                 FactorB:FactorE 
##                       1.0271875                       1.2834375 
##                 FactorD:FactorE         FactorA:FactorB:FactorD 
##                       1.3896875                      -0.3453125 
##         FactorA:FactorB:FactorE         FactorA:FactorD:FactorE 
##                       1.1853125                       0.9015625 
##         FactorB:FactorD:FactorE FactorA:FactorB:FactorD:FactorE 
##                      -0.0396875                       0.4071875
halfnormal(model639_2)
## 
## Significant effects (alpha=0.05, Lenth method):
##  [1] FactorD                 FactorE                 FactorA:FactorD         
## 
##  [4] FactorA                 FactorD:FactorE         FactorB:FactorE         
## 
##  [7] FactorA:FactorB         FactorA:FactorB:FactorE FactorA:FactorE         
## 
## [10] FactorA:FactorD:FactorE e10

summary(model639_2)
## 
## Call:
## lm.default(formula = Yeild ~ FactorA * FactorB * FactorD * FactorE, 
##     data = dat639_2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4750 -0.5637  0.0000  0.5637  1.4750 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     10.18031    0.21360  47.661  < 2e-16 ***
## FactorA                          1.61594    0.21360   7.565 1.14e-06 ***
## FactorB                          0.04344    0.21360   0.203 0.841418    
## FactorD                          2.98844    0.21360  13.991 2.16e-10 ***
## FactorE                          2.18781    0.21360  10.243 1.97e-08 ***
## FactorA:FactorB                  1.23656    0.21360   5.789 2.77e-05 ***
## FactorA:FactorD                  1.66656    0.21360   7.802 7.66e-07 ***
## FactorB:FactorD                 -0.01344    0.21360  -0.063 0.950618    
## FactorA:FactorE                  1.02719    0.21360   4.809 0.000193 ***
## FactorB:FactorE                  1.28344    0.21360   6.009 1.82e-05 ***
## FactorD:FactorE                  1.38969    0.21360   6.506 7.24e-06 ***
## FactorA:FactorB:FactorD         -0.34531    0.21360  -1.617 0.125501    
## FactorA:FactorB:FactorE          1.18531    0.21360   5.549 4.40e-05 ***
## FactorA:FactorD:FactorE          0.90156    0.21360   4.221 0.000650 ***
## FactorB:FactorD:FactorE         -0.03969    0.21360  -0.186 0.854935    
## FactorA:FactorB:FactorD:FactorE  0.40719    0.21360   1.906 0.074735 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.208 on 16 degrees of freedom
## Multiple R-squared:  0.9744, Adjusted R-squared:  0.9504 
## F-statistic: 40.58 on 15 and 16 DF,  p-value: 7.07e-10
Model_3<- aov(Yeild~FactorA+FactorB+FactorD+FactorE+FactorA*FactorB+FactorA*FactorD+FactorA*FactorE+FactorB*FactorE+FactorD*FactorE+FactorA*FactorB*FactorE+FactorA*FactorD*FactorE,data = dat639_2)
summary(Model_3)
##                         Df Sum Sq Mean Sq F value   Pr(>F)    
## FactorA                  1  83.56   83.56  51.362 6.10e-07 ***
## FactorB                  1   0.06    0.06   0.037 0.849178    
## FactorD                  1 285.78  285.78 175.664 2.30e-11 ***
## FactorE                  1 153.17  153.17  94.149 5.24e-09 ***
## FactorA:FactorB          1  48.93   48.93  30.076 2.28e-05 ***
## FactorA:FactorD          1  88.88   88.88  54.631 3.87e-07 ***
## FactorA:FactorE          1  33.76   33.76  20.754 0.000192 ***
## FactorB:FactorE          1  52.71   52.71  32.400 1.43e-05 ***
## FactorD:FactorE          1  61.80   61.80  37.986 5.07e-06 ***
## FactorA:FactorB:FactorE  1  44.96   44.96  27.635 3.82e-05 ***
## FactorA:FactorD:FactorE  1  26.01   26.01  15.988 0.000706 ***
## Residuals               20  32.54    1.63                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(Model_3)

## hat values (leverages) are all = 0.375
##  and there are no factor predictors; no plot no. 5

Comment: Since factor C was insignificant and thus didn’t seem important, so dropped it. Even after dropping factor C and analyzing the data with four active factors still the results are same as in part A. ANOVA analysis in this case too presents the factors A,D,E,AB,AD,AE,BE,DE,ABE,ADE as significant.

Part D

Find settings of the active factors that maximize the predicted response.

Based on the transformed data:

Denoting factors A,B,D,E with alpha,beta,gamma & delta.

Yi,j,k,l = 10.1803125 + 1.6159375αi + 0.0434375βj + 2.9884375γk+ 2.1878125δl + ϵi,j,k,l

Since in the equation all the factors have positive coefficients, thus they must be at +1 level (high) to produce max response.