## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## âś” ggplot2 3.3.6 âś” purrr 0.3.4
## âś” tibble 3.1.8 âś” dplyr 1.0.10
## âś” tidyr 1.2.1 âś” stringr 1.4.1
## âś” readr 2.1.3 âś” forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## âś– dplyr::filter() masks stats::filter()
## âś– dplyr::lag() masks stats::lag()
who_src = read.csv('who.csv', header = TRUE)
head(who_src)
## Country LifeExp InfantSurvival Under5Survival TBFree PropMD
## 1 Afghanistan 42 0.835 0.743 0.99769 0.000228841
## 2 Albania 71 0.985 0.983 0.99974 0.001143127
## 3 Algeria 71 0.967 0.962 0.99944 0.001060478
## 4 Andorra 82 0.997 0.996 0.99983 0.003297297
## 5 Angola 41 0.846 0.740 0.99656 0.000070400
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991 0.000142857
## PropRN PersExp GovtExp TotExp
## 1 0.000572294 20 92 112
## 2 0.004614439 169 3128 3297
## 3 0.002091362 108 5184 5292
## 4 0.003500000 2589 169725 172314
## 5 0.001146162 36 1620 1656
## 6 0.002773810 503 12543 13046
plot(who_src$TotExp, who_src$LifeExp, xlab='TotalExpenditure', ylab='LifeExpectancy', main='scatterplot')
(who_src_lm <- lm(LifeExp ~ TotExp,data = who_src))
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_src)
##
## Coefficients:
## (Intercept) TotExp
## 6.475e+01 6.297e-05
plot(who_src$TotExp, who_src$LifeExp, xlab='TotalExpenditure', ylab='LifeExpectancy', main='scatterplot')
abline(who_src_lm, col='red')
This doesn’t appear to be a good fit because not many observations fall
near the abline which suggests that there is not a good correlation
between life expectancy and total expenditures.
summary(who_src_lm)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_src)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
The median is high and the range is not consistent around the median. The residual standard error of 9.371 on 188 degrees of freedom seems high suggesting that even countries and their citizens that have a low total expenditure may still have a high life expectancy. This model does not support that thought.
LifeExp_2 = who_src$LifeExp^4.6
TotExp_2 = who_src$TotExp^0.06
plot(TotExp_2, LifeExp_2, xlab = 'TotalExpenditure', ylab='LifeExpentancy', main='scatterplot', col=1)
life_tot_lm <- lm(LifeExp_2 ~ TotExp_2)
abline(life_tot_lm, col=2)
(life_tot_lm)
##
## Call:
## lm(formula = LifeExp_2 ~ TotExp_2)
##
## Coefficients:
## (Intercept) TotExp_2
## -736527909 620060216
Raising the life expectancy and total expenditures makes this regression model a better fit. Notice how the observations now align more closely to the abline.
summary(life_tot_lm)
##
## Call:
## lm(formula = LifeExp_2 ~ TotExp_2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## TotExp_2 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
The R-squared of 0.7298 and the ddjusted R-squared of 0.7283 has increased significantly which means that the values explain 73% of the variance. The low p-value still suggests that there is not a correlation between the total expenditures and life expectancy in this model.
LifeExp_46 = -736527909 + 620060216 * 1.5
(LifeExp_15 = exp(log(LifeExp_46)/4.6))
## [1] 63.31153
LifeExp_46 = -736527909 + 620060216 * 2.5
(LifeExp_25 = exp(log(LifeExp_46)/4.6))
## [1] 86.50645
(prob4_lm <- lm(LifeExp ~ TotExp + PropMD + PropMD * TotExp,data = who_src))
##
## Call:
## lm(formula = LifeExp ~ TotExp + PropMD + PropMD * TotExp, data = who_src)
##
## Coefficients:
## (Intercept) TotExp PropMD TotExp:PropMD
## 6.277e+01 7.233e-05 1.497e+03 -6.026e-03
summary(prob4_lm)
##
## Call:
## lm(formula = LifeExp ~ TotExp + PropMD + PropMD * TotExp, data = who_src)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp:PropMD -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
(fcst_lfexp <- 62.8 + (.000072 * 14) + (1497 *.03) + (.006 * 14 * .03))
## [1] 107.7135
An increase in life expectancy to 108 years doesn’t seem possible even if the expenditures increases and you increase the number of doctors by 3%.