## Compare tidyLPA solutions:
##
## Model Classes AIC BIC Warnings
## 1 1 30498.94 30569.07
## 1 2 29364.03 29474.23 Warning
## 1 3 27869.20 28019.48 Warning
## 1 4 27376.16 27566.52 Warning
## 1 5 27525.76 27756.19 Warning
## 1 6 27740.53 28011.04 Warning
## 1 7 27608.85 27919.43 Warning
## 6 1 30540.94 30716.27
## 6 2 24950.01 25305.68
## 6 3 23293.70 23829.71
## 6 4 22600.31 23316.65
## 6 5 21698.96 22595.64
## 6 6 21573.02 22650.04
## 6 7 21059.33 22316.69
##
## Best model according to AIC is Model 6 with 7 classes.
## Best model according to BIC is Model 6 with 7 classes.
##
## An analytic hierarchy process, based on the fit indices AIC, AWE, BIC, CLC, and KIC (Akogul & Erisoglu, 2017), suggests the best solution is Model 6 with 7 classes.
y1 <- dat_tx_dim%>%
dplyr::select(dim1,dim2,dim3,dim4,dim5,dim6,dim7) %>%
single_imputation() %>%
poms() %>%
estimate_profiles(5,
variances = "varying",
covariances = "varying") %>%
plot_profiles()
y2 <- dat_tx_dim%>%
dplyr::select(dim1,dim2,dim3,dim4,dim5,dim6,dim7) %>%
single_imputation() %>%
poms() %>%
estimate_profiles(6,
variances = "varying",
covariances = "varying") %>%
plot_profiles()
y3 <- dat_tx_dim%>%
dplyr::select(dim1,dim2,dim3,dim4,dim5,dim6,dim7) %>%
single_imputation() %>%
poms() %>%
estimate_profiles(7,
variances = "varying",
covariances = "varying") %>%
plot_profiles()
the number of tracts in each class:
table(dat_tx_dim$class)
| V1 | V2 | V3 | V4 | V5 | |
|---|---|---|---|---|---|
| class | 1.000 | 2.000 | 3.000 | 4.000 | 5.000 |
| y00_04 | 215.914 | 144.269 | 649.192 | 767.340 | 272.751 |
| y05_09 | 236.402 | 104.686 | 804.090 | 1003.074 | 324.857 |
| y10_14 | 227.910 | 84.622 | 800.436 | 1089.680 | 397.443 |
| y15_19 | 256.365 | 94.167 | 1189.885 | 1206.537 | 477.021 |
| inc | 1.560 | 1.077 | 1.782 | 1.862 | 1.941 |
| pnhw00 | 0.160 | 0.111 | 0.198 | 0.327 | 0.229 |
| pnhw12 | 0.253 | 0.187 | 0.389 | 0.680 | 0.374 |
| pnhw19 | 0.214 | 0.170 | 0.361 | 0.637 | 0.354 |
| pnhb00 | 0.100 | 0.018 | 0.061 | 0.012 | 0.043 |
| pnhb12 | 0.281 | 0.043 | 0.183 | 0.032 | 0.098 |
| pnhb19 | 0.272 | 0.045 | 0.184 | 0.037 | 0.104 |
| phisp00 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 |
| phisp12 | 0.408 | 0.743 | 0.361 | 0.213 | 0.461 |
| phisp19 | 0.446 | 0.752 | 0.377 | 0.227 | 0.465 |
| mhhinc00 | 43717.719 | 33056.941 | 35458.037 | 74895.061 | 43888.396 |
| mhhinc12 | 49050.052 | 37983.088 | 45134.067 | 94622.835 | 50322.588 |
| mhhinc19 | 57641.305 | 46096.594 | 60454.882 | 113841.726 | 63079.668 |
| pedu00 | 0.208 | 0.139 | 0.264 | 0.533 | 0.282 |
| pedu12 | 0.204 | 0.137 | 0.331 | 0.587 | 0.298 |
| pedu19 | 0.228 | 0.162 | 0.378 | 0.629 | 0.339 |
| pop00 | 8.225 | 8.376 | 7.252 | 7.886 | 8.272 |
| pop12 | 8.466 | 8.391 | 6.565 | 8.300 | 8.265 |
| pop19 | 8.586 | 8.459 | 6.679 | 8.457 | 8.342 |
| dev01 | 0.621 | 0.955 | 0.721 | 0.652 | 0.987 |
| dev11 | 0.621 | 0.955 | 0.721 | 0.652 | 0.987 |
| dev19 | 0.621 | 0.955 | 0.721 | 0.652 | 0.987 |
| gq10 | 0.002 | 0.014 | 0.162 | 0.004 | 0.001 |
| gq19 | 0.002 | 0.014 | 0.162 | 0.004 | 0.001 |
| la10 | 0.814 | 0.714 | 0.760 | 0.803 | 0.554 |
| la19 | 0.764 | 0.671 | 0.736 | 0.752 | 0.489 |