Problem 3.

Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of ˆpm1. The x-axis should display ˆpm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.

p=seq(0, 1, 0.01)
gini.index=2 * p * (1 - p)
class.error=1 - pmax(p, 1 - p)
cross.entropy=- (p * log(p) + (1 - p) * log(1 - p))
par(bg = "papayawhip")
matplot(p, cbind(gini.index, class.error, cross.entropy), pch=c(15,17,19) ,ylab = "gini.index, class.error, cross.entropy",col = c("green" , "yellow", "red"), type = 'b')
legend('bottom', inset=.01, legend = c('gini.index', 'class.error', 'cross.entropy'), col = c("green" , "yellow", "red"), pch=c(15,17,19))

Problem 8.

In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.

(a) Split the data set into a training set and a test set.

library(ISLR2)
attach(Carseats)
set.seed(1)

train = sample(dim(Carseats)[1], dim(Carseats)[1]/2)
Carseats.train = Carseats[train, ]
Carseats.test = Carseats[-train, ]

(b) Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?

library(tree)
tree.carseats = tree(Sales ~ ., data = Carseats.train)
summary(tree.carseats)
## 
## Regression tree:
## tree(formula = Sales ~ ., data = Carseats.train)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Age"         "Advertising" "CompPrice"  
## [6] "US"         
## Number of terminal nodes:  18 
## Residual mean deviance:  2.167 = 394.3 / 182 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -3.88200 -0.88200 -0.08712  0.00000  0.89590  4.09900
plot(tree.carseats)
text(tree.carseats, pretty = 0)

pred.carseats = predict(tree.carseats, Carseats.test)
mean((Carseats.test$Sales - pred.carseats)^2)
## [1] 4.922039

The MSE is 4.92.

(c) Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?

cv.carseats = cv.tree(tree.carseats, FUN = prune.tree)
par(mfrow = c(1, 2))
plot(cv.carseats$size, cv.carseats$dev, type = "b")
plot(cv.carseats$k, cv.carseats$dev, type = "b")

pruned.carseats = prune.tree(tree.carseats, best = 9)
par(mfrow = c(1, 1))
plot(pruned.carseats)
text(pruned.carseats, pretty = 0)

pred.pruned = predict(pruned.carseats, Carseats.test)
mean((Carseats.test$Sales - pred.pruned)^2)
## [1] 4.918134

The MSE stayed relatively the same.

(d) Use the bagging approach in order to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important.

library(randomForest)
bag.carseats = randomForest(Sales ~ ., data = Carseats.train, mtry = 10, ntree = 500, 
    importance = T)
bag.pred = predict(bag.carseats, Carseats.test)
mean((Carseats.test$Sales - bag.pred)^2)
## [1] 2.657296
importance(bag.carseats)
##                 %IncMSE IncNodePurity
## CompPrice   23.07909904    171.185734
## Income       2.82081527     94.079825
## Advertising 11.43295625     99.098941
## Population  -3.92119532     59.818905
## Price       54.24314632    505.887016
## ShelveLoc   46.26912996    361.962753
## Age         14.24992212    159.740422
## Education   -0.07662320     46.738585
## Urban        0.08530119      8.453749
## US           4.34349223     15.157608

Bagging improves the MSE to 2.66. The most important variables are Price, ShelveLoc, and CompPrice.

(e) Use random forests to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important. Describe the effect of m, the number of variables considered at each split, on the error rate obtained.

rf.carseats = randomForest(Sales ~ ., data = Carseats.train, mtry = 5, ntree = 500, 
    importance = T)
rf.pred = predict(rf.carseats, Carseats.test)
mean((Carseats.test$Sales - rf.pred)^2)
## [1] 2.701665
importance(rf.carseats)
##                %IncMSE IncNodePurity
## CompPrice   19.8160444     162.73603
## Income       2.8940268     106.96093
## Advertising 11.6799573     106.30923
## Population  -1.6998805      79.04937
## Price       46.3454015     448.33554
## ShelveLoc   40.4412189     334.33610
## Age         12.5440659     169.06125
## Education    1.0762096      55.87510
## Urban        0.5703583      13.21963
## US           5.8799999      25.59797

Random Forest increases the MSE to 2.70. The MSE changes dependent on changes in m. The most important factors are still Price, ShelveLoc, and CompPrice.

(f) Now analyze the data using BART, and report your results.

This errored out for me - I can’t determine the necessary adjustment.

library(BART)
x<-Carseats[,1:12]
y<-Carseats[, “medv”]
xtrain<-x[train, ]
ytrain<-y[train]
xtest<-x[-train, ]
ytest<-y[-train]
set.seed(1)
bartfit<-gbart(xtrain,ytrain,x.test=xtest

The test error would be computed with:
yhat.bart <- bartfit$yhat.test.mean
mean (( ytest - yhat.bart)^2)
Then, I could compare the MSE to boosting and random forests.

Problem 9.

This problem involves the OJ data set which is part of the ISLR2 package.

(a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.

attach(OJ)
set.seed(1)
train_sampleOJ=sample(dim(OJ)[1], 800)
oj.train=OJ[train_sampleOJ, ]
oj.test=OJ[-train_sampleOJ, ]

(b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?

oj.tree = tree(Purchase ~ ., data = oj.train)
summary(oj.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = oj.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800

The training error rate is 0.1588 and there are 9 terminal nodes.

(c) Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.

oj.tree
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1073.00 CH ( 0.60625 0.39375 )  
##    2) LoyalCH < 0.5036 365  441.60 MM ( 0.29315 0.70685 )  
##      4) LoyalCH < 0.280875 177  140.50 MM ( 0.13559 0.86441 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 118  116.40 MM ( 0.19492 0.80508 ) *
##      5) LoyalCH > 0.280875 188  258.00 MM ( 0.44149 0.55851 )  
##       10) PriceDiff < 0.05 79   84.79 MM ( 0.22785 0.77215 )  
##         20) SpecialCH < 0.5 64   51.98 MM ( 0.14062 0.85938 ) *
##         21) SpecialCH > 0.5 15   20.19 CH ( 0.60000 0.40000 ) *
##       11) PriceDiff > 0.05 109  147.00 CH ( 0.59633 0.40367 ) *
##    3) LoyalCH > 0.5036 435  337.90 CH ( 0.86897 0.13103 )  
##      6) LoyalCH < 0.764572 174  201.00 CH ( 0.73563 0.26437 )  
##       12) ListPriceDiff < 0.235 72   99.81 MM ( 0.50000 0.50000 )  
##         24) PctDiscMM < 0.196196 55   73.14 CH ( 0.61818 0.38182 ) *
##         25) PctDiscMM > 0.196196 17   12.32 MM ( 0.11765 0.88235 ) *
##       13) ListPriceDiff > 0.235 102   65.43 CH ( 0.90196 0.09804 ) *
##      7) LoyalCH > 0.764572 261   91.20 CH ( 0.95785 0.04215 ) *

Node 24, PctDiscMM, is a terminal node with a 0.196196 split, 55 observations, and a yprob of (0.61818 0.38182).

(d) Create a plot of the tree, and interpret the results.

plot(oj.tree)
text(oj.tree, pretty = 0)

(e) Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?

pred.oj = predict(oj.tree, oj.test, type = "class")
table(oj.test$Purchase, pred.oj)
##     pred.oj
##       CH  MM
##   CH 160   8
##   MM  38  64
pred.unprune = predict(oj.tree, oj.test, type = "class")
misclass.unprune = sum(oj.test$Purchase !=pred.unprune)
misclass.unprune/length(pred.unprune)
## [1] 0.1703704

The MSE is 0.17.

(f) Apply the cv.tree() function to the training set in order to determine the optimal tree size.

oj.cv = cv.tree(oj.tree, FUN = prune.tree)
oj.cv
## $size
## [1] 9 8 7 6 5 4 3 2 1
## 
## $dev
## [1]  685.6493  698.8799  702.8083  702.8083  714.1093  725.4734  780.2099
## [8]  790.0301 1074.2062
## 
## $k
## [1]      -Inf  12.62207  13.94616  14.35384  26.21539  35.74964  43.07317
## [8]  45.67120 293.15784
## 
## $method
## [1] "deviance"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"

(g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.

plot(oj.cv$size, oj.cv$dev, type = "b", xlab = "Tree size", ylab = "Deviance")

(h) Which tree size corresponds to the lowest cross-validated classification error rate?

A tree size of 9 appears to correspond to the lowest cross-validated classification error rate.

(i) Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.

prune.oj = prune.misclass(oj.tree, best = 9)
plot(prune.oj)
text(prune.oj, pretty = 0)

(j) Compare the training error rates between the pruned and unpruned trees. Which is higher?

summary(oj.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = oj.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800
summary(prune.oj)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = oj.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800

Both the pruned and unpruned trees have the same training MSE rates of 0.1588.

(k) Compare the test error rates between the pruned and unpruned trees. Which is higher?

prune.pred = predict(prune.oj, oj.test, type = "class")
table(prune.pred, oj.test$Purchase)
##           
## prune.pred  CH  MM
##         CH 160  38
##         MM   8  64
1 - (160 + 64) / 270
## [1] 0.1703704

The pruned tree has a higher test MSE of .1704.