Time<-c(0.69,0.94,1.12,6.79,9.28,9.31,9.95,12.9,12.93,21.33,64.56,69.66,108.38,124.88,157.02,190.19,250.55,552.87,600,600)
Event<-c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0)
#length(Event)
dat<-data.frame(Time,Event)
head(dat)
library(weibulltools)
# converting to weibull data
dat2<-reliability_data(data = dat,x=Time,status = Event)
# rank regression
# first estimate the cumulative failure f(t)
dat2_cdf<-estimate_cdf(dat2, methods = "johnson")
head(dat2_cdf)
# Estimate weibull parameters
wf<-rank_regression(dat2_cdf, distribution="weibull")
# Probability plot
xwf<-plot_prob(dat2_cdf, distribution = "weibull", plot_method = "ggplot2",
title_main ="weibull Probability Plot", title_x = "Time hrs", title_y = "% failure rate")
plot_mod(xwf, x = wf, title_trace = "Rank Regression")
From the plot, the weibull distribution is a good fit for the model, however there is existence of one outlier at the beginning of the test when a unit failed at 0 hours time into the experiment. Overall its a good fit for the model
# maximum likelihood estimation parameters
maxl<-ml_estimation(dat2, distribution = "weibull")
# comparing estimations
wf
## Rank Regression
## Coefficients:
## mu sigma
## 4.419 1.763
maxl
## Maximum Likelihood Estimation
## Coefficients:
## mu sigma
## 4.602 1.975
The maximum likelihood parameters are larger when compared to weibull estimate parameters
plot_mod(xwf, x = maxl, title_trace = "Maximum Likelihood")
Because the shape factor \(\beta\), and the caharateristics life \(\alpha\) are close for both estimates, there is no difference in the plot