Baseline Characteristics
mh_vax_co_sub %>%
dplyr::select(age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, max_ch, anxiety_2, depression_2, act_tob, drug_use, etoh_use, RPL_THEMES, RPL_4, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4) -> baseline
baseline %>% tbl_summary(label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", RPL_4 ~ "SVI Quartiles", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", act_tob ~ "Active Tobacco Use", drug_use ~ "Drug Abuse", etoh_use ~ "Alcohol Abuse", max_ch ~ "Charlson Comorbidity Index"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)")
| Characteristic |
N = 15,245 |
| Age |
49 (19) |
| Gender |
|
| Â Â Â Â Male |
6,973 (46%) |
| Â Â Â Â Female |
8,272 (54%) |
| Race |
|
| Â Â Â Â White |
13,230 (87%) |
| Â Â Â Â Black |
946 (6.2%) |
| Â Â Â Â Other |
638 (4.2%) |
| Â Â Â Â Asian |
375 (2.5%) |
| Â Â Â Â Native |
56 (0.4%) |
| Ethnicity |
|
| Â Â Â Â NonHispanic |
14,401 (98%) |
| Â Â Â Â UNKNOWN |
0 (0%) |
| Â Â Â Â CHOOSE NOT TO DISCLOSE |
0 (0%) |
| Â Â Â Â Hispanic |
302 (2.1%) |
| Â Â Â Â (Missing) |
542 |
| Preferred Language |
|
| Â Â Â Â English |
15,081 (99%) |
| Â Â Â Â Other |
164 (1.1%) |
| Any Religious Affiliation |
|
| Â Â Â Â Yes |
8,211 (57%) |
| Â Â Â Â No |
6,085 (43%) |
| Â Â Â Â PATIENT REFUSED |
0 (0%) |
| Â Â Â Â UNKNOWN |
0 (0%) |
| Â Â Â Â (Missing) |
949 |
| Marital Status |
|
| Â Â Â Â Married |
6,198 (41%) |
| Â Â Â Â Unknown |
3,236 (21%) |
| Â Â Â Â Unmarried |
4,997 (33%) |
| Â Â Â Â DivorcedSeparated |
507 (3.3%) |
| Â Â Â Â Widow |
307 (2.0%) |
| Charlson Comorbidity Index |
3.3 (4.9) |
| Â Â Â Â (Missing) |
446 |
| Anxiety |
2,811 (18%) |
| Depression |
2,606 (17%) |
| Active Tobacco Use |
|
| Â Â Â Â No |
12,612 (87%) |
| Â Â Â Â Yes |
1,890 (13%) |
| Â Â Â Â NOT ASKED |
0 (0%) |
| Â Â Â Â (Missing) |
743 |
| Drug Abuse |
581 (3.8%) |
| Â Â Â Â (Missing) |
41 |
| Alcohol Abuse |
233 (1.5%) |
| Â Â Â Â (Missing) |
41 |
| Total SVI |
0.37 (0.26) |
| Â Â Â Â (Missing) |
288 |
| SVI Quartiles |
|
| Â Â Â Â First |
5,843 (39%) |
| Â Â Â Â Second |
4,506 (30%) |
| Â Â Â Â Third |
3,063 (20%) |
| Â Â Â Â Fourth |
1,545 (10%) |
| Â Â Â Â (Missing) |
288 |
| Soceioeconomic Status |
0.35 (0.26) |
| Â Â Â Â (Missing) |
338 |
| Household Composition |
0.40 (0.27) |
| Â Â Â Â (Missing) |
287 |
| Minority Status and Language |
0.48 (0.29) |
| Â Â Â Â (Missing) |
279 |
| Housing and Transportation |
0.44 (0.29) |
| Â Â Â Â (Missing) |
310 |
Baseline Characteristics by SVI
baseline %>%
tbl_summary(by = RPL_4,
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", RPL_4 ~ "SVI Quartiles", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", act_tob ~ "Active Tobacco Use", drug_use ~ "Drug Abuse", etoh_use ~ "Alcohol Abuse", max_ch ~ "Charlson Comorbidity Index"),
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)") %>% add_p()
288 observations missing `RPL_4` have been removed. To include these observations, use `forcats::fct_explicit_na()` on `RPL_4` column before passing to `tbl_summary()`.
There was an error in 'add_p()/add_difference()' for variable 'relig_affil', p-value omitted:
Error in stats::fisher.test(structure(c(2L, NA, 1L, NA, 1L, 2L, 2L, 1L, : FEXACT error 6. LDKEY=534 is too small for this problem,
(ii := key2[itp=940] = 42828805, ldstp=16020)
Try increasing the size of the workspace and possibly 'mult'
There was an error in 'add_p()/add_difference()' for variable 'act_tob', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, : FEXACT error 6. LDKEY=533 is too small for this problem,
(ii := key2[itp=674] = 21415546, ldstp=15990)
Try increasing the size of the workspace and possibly 'mult'
| Characteristic |
First, N = 5,843 |
Second, N = 4,506 |
Third, N = 3,063 |
Fourth, N = 1,545 |
p-value |
| Age |
49 (20) |
50 (19) |
50 (19) |
48 (19) |
0.007 |
| Gender |
|
|
|
|
<0.001 |
| Â Â Â Â Male |
2,761 (47%) |
2,053 (46%) |
1,305 (43%) |
692 (45%) |
|
| Â Â Â Â Female |
3,082 (53%) |
2,453 (54%) |
1,758 (57%) |
853 (55%) |
|
| Race |
|
|
|
|
<0.001 |
| Â Â Â Â White |
5,301 (91%) |
3,969 (88%) |
2,627 (86%) |
1,093 (71%) |
|
| Â Â Â Â Black |
139 (2.4%) |
204 (4.5%) |
239 (7.8%) |
345 (22%) |
|
| Â Â Â Â Other |
236 (4.0%) |
167 (3.7%) |
122 (4.0%) |
93 (6.0%) |
|
| Â Â Â Â Asian |
153 (2.6%) |
142 (3.2%) |
65 (2.1%) |
7 (0.5%) |
|
| Â Â Â Â Native |
14 (0.2%) |
24 (0.5%) |
10 (0.3%) |
7 (0.5%) |
|
| Ethnicity |
|
|
|
|
0.007 |
| Â Â Â Â NonHispanic |
5,525 (98%) |
4,274 (98%) |
2,897 (98%) |
1,441 (97%) |
|
| Â Â Â Â UNKNOWN |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Â Â Â Â CHOOSE NOT TO DISCLOSE |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Â Â Â Â Hispanic |
100 (1.8%) |
87 (2.0%) |
60 (2.0%) |
49 (3.3%) |
|
| Â Â Â Â (Missing) |
218 |
145 |
106 |
55 |
|
| Preferred Language |
|
|
|
|
<0.001 |
| Â Â Â Â English |
5,809 (99%) |
4,454 (99%) |
3,019 (99%) |
1,513 (98%) |
|
| Â Â Â Â Other |
34 (0.6%) |
52 (1.2%) |
44 (1.4%) |
32 (2.1%) |
|
| Any Religious Affiliation |
|
|
|
|
|
| Â Â Â Â Yes |
3,238 (59%) |
2,403 (57%) |
1,657 (58%) |
779 (55%) |
|
| Â Â Â Â No |
2,286 (41%) |
1,816 (43%) |
1,205 (42%) |
643 (45%) |
|
| Â Â Â Â PATIENT REFUSED |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Â Â Â Â UNKNOWN |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Â Â Â Â (Missing) |
319 |
287 |
201 |
123 |
|
| Marital Status |
|
|
|
|
<0.001 |
| Â Â Â Â Married |
2,700 (46%) |
1,857 (41%) |
1,115 (36%) |
444 (29%) |
|
| Â Â Â Â Unknown |
1,137 (19%) |
946 (21%) |
705 (23%) |
389 (25%) |
|
| Â Â Â Â Unmarried |
1,763 (30%) |
1,434 (32%) |
1,041 (34%) |
620 (40%) |
|
| Â Â Â Â DivorcedSeparated |
133 (2.3%) |
168 (3.7%) |
128 (4.2%) |
72 (4.7%) |
|
| Â Â Â Â Widow |
110 (1.9%) |
101 (2.2%) |
74 (2.4%) |
20 (1.3%) |
|
| Charlson Comorbidity Index |
3.2 (4.9) |
3.4 (5.1) |
3.4 (4.9) |
3.3 (4.8) |
0.020 |
| Â Â Â Â (Missing) |
137 |
131 |
99 |
62 |
|
| Anxiety |
1,109 (19%) |
864 (19%) |
538 (18%) |
268 (17%) |
0.2 |
| Depression |
938 (16%) |
805 (18%) |
539 (18%) |
297 (19%) |
0.009 |
| Active Tobacco Use |
|
|
|
|
|
| Â Â Â Â No |
5,137 (91%) |
3,719 (87%) |
2,394 (83%) |
1,121 (78%) |
|
| Â Â Â Â Yes |
480 (8.5%) |
570 (13%) |
506 (17%) |
309 (22%) |
|
| Â Â Â Â NOT ASKED |
0 (0%) |
0 (0%) |
0 (0%) |
0 (0%) |
|
| Â Â Â Â (Missing) |
226 |
217 |
163 |
115 |
|
| Drug Abuse |
238 (4.1%) |
170 (3.8%) |
103 (3.4%) |
59 (3.8%) |
0.4 |
| Â Â Â Â (Missing) |
11 |
11 |
16 |
1 |
|
| Alcohol Abuse |
79 (1.4%) |
73 (1.6%) |
50 (1.6%) |
29 (1.9%) |
0.4 |
| Â Â Â Â (Missing) |
11 |
11 |
16 |
1 |
|
| Total SVI |
0.12 (0.07) |
0.37 (0.07) |
0.61 (0.07) |
0.86 (0.07) |
<0.001 |
| Soceioeconomic Status |
0.13 (0.11) |
0.34 (0.16) |
0.56 (0.15) |
0.78 (0.11) |
<0.001 |
| Â Â Â Â (Missing) |
51 |
0 |
0 |
0 |
|
| Household Composition |
0.21 (0.14) |
0.38 (0.22) |
0.58 (0.24) |
0.76 (0.19) |
<0.001 |
| Minority Status and Language |
0.41 (0.27) |
0.47 (0.29) |
0.52 (0.28) |
0.66 (0.25) |
<0.001 |
| Housing and Transportation |
0.19 (0.16) |
0.49 (0.20) |
0.64 (0.21) |
0.81 (0.17) |
<0.001 |
| Â Â Â Â (Missing) |
22 |
0 |
0 |
0 |
|
Bivariate Analysis
Tobacco Use
tbl_uv_tobac <-
tbl_uvregression(
mh_vax_co_sub[c("act_tob", "age_yrs", "gender", "race_5", "ethnic_3", "lang_3", "relig_affil", "mstat_5", "max_ch", "anxiety_2", "depression_2", "RPL_THEMES", "RPL_THEME1", "RPL_THEME2", "RPL_THEME3", "RPL_THEME4")],
method = glm,
y = act_tob,
method.args = list(family = binomial),
exponentiate = TRUE,
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index"))
print(tbl_uv_tobac, method = render)
`...` must be empty.
✖ Problematic argument:
• method = render
| Characteristic |
N |
OR |
95% CI |
p-value |
| Age |
14,502 |
1.00 |
0.99, 1.00 |
<0.001 |
| Gender |
14,502 |
|
|
|
| Â Â Â Â Male |
|
— |
— |
|
| Â Â Â Â Female |
|
1.01 |
0.91, 1.11 |
0.9 |
| Race |
14,502 |
|
|
|
| Â Â Â Â White |
|
— |
— |
|
| Â Â Â Â Black |
|
1.41 |
1.17, 1.69 |
<0.001 |
| Â Â Â Â Other |
|
0.92 |
0.71, 1.17 |
0.5 |
| Â Â Â Â Asian |
|
0.19 |
0.10, 0.34 |
<0.001 |
| Â Â Â Â Native |
|
0.99 |
0.41, 2.06 |
>0.9 |
| Ethnicity |
14,036 |
|
|
|
| Â Â Â Â NonHispanic |
|
— |
— |
|
| Â Â Â Â Hispanic |
|
0.82 |
0.55, 1.16 |
0.3 |
| Preferred Language |
14,502 |
|
|
|
| Â Â Â Â English |
|
— |
— |
|
| Â Â Â Â Other |
|
0.61 |
0.33, 1.04 |
0.092 |
| Any Religious Affiliation |
13,668 |
|
|
|
| Â Â Â Â Yes |
|
— |
— |
|
| Â Â Â Â No |
|
1.25 |
1.13, 1.38 |
<0.001 |
| Marital Status |
14,502 |
|
|
|
| Â Â Â Â Married |
|
— |
— |
|
| Â Â Â Â Unknown |
|
1.34 |
1.17, 1.53 |
<0.001 |
| Â Â Â Â Unmarried |
|
1.70 |
1.51, 1.91 |
<0.001 |
| Â Â Â Â DivorcedSeparated |
|
3.16 |
2.53, 3.93 |
<0.001 |
| Â Â Â Â Widow |
|
1.32 |
0.91, 1.86 |
0.12 |
| Charlson Comorbidity Index |
14,302 |
0.99 |
0.97, 1.00 |
0.004 |
| Anxiety |
14,502 |
1.36 |
1.21, 1.52 |
<0.001 |
| Depression |
14,502 |
1.46 |
1.30, 1.64 |
<0.001 |
| Total SVI |
14,236 |
4.37 |
3.63, 5.25 |
<0.001 |
| Soceioeconomic Status |
14,188 |
5.46 |
4.53, 6.57 |
<0.001 |
| Household Composition |
14,237 |
3.35 |
2.80, 4.01 |
<0.001 |
| Minority Status and Language |
14,244 |
0.87 |
0.73, 1.03 |
0.11 |
| Housing and Transportation |
14,214 |
2.24 |
1.89, 2.65 |
<0.001 |
NULL
Drug Abuse
tbl_uv_drug <-
tbl_uvregression(
mh_vax_co_sub[c("drug_use", "age_yrs", "gender", "race_5", "ethnic_3", "lang_3", "relig_affil", "mstat_5", "max_ch", "anxiety_2", "depression_2", "RPL_THEMES", "RPL_THEME1", "RPL_THEME2", "RPL_THEME3", "RPL_THEME4")],
method = glm,
y = drug_use,
method.args = list(family = binomial),
exponentiate = TRUE,
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index"))
print(tbl_uv_drug, method = render)
`...` must be empty.
✖ Problematic argument:
• method = render
| Characteristic |
N |
OR |
95% CI |
p-value |
| Age |
15,204 |
1.00 |
1.0, 1.00 |
0.6 |
| Gender |
15,204 |
|
|
|
| Â Â Â Â Male |
|
— |
— |
|
| Â Â Â Â Female |
|
0.87 |
0.73, 1.02 |
0.089 |
| Race |
15,204 |
|
|
|
| Â Â Â Â White |
|
— |
— |
|
| Â Â Â Â Black |
|
0.81 |
0.54, 1.15 |
0.3 |
| Â Â Â Â Other |
|
0.97 |
0.62, 1.44 |
0.9 |
| Â Â Â Â Asian |
|
0.82 |
0.43, 1.40 |
0.5 |
| Â Â Â Â Native |
|
0.45 |
0.03, 2.04 |
0.4 |
| Ethnicity |
14,664 |
|
|
|
| Â Â Â Â NonHispanic |
|
— |
— |
|
| Â Â Â Â Hispanic |
|
0.86 |
0.43, 1.55 |
0.7 |
| Preferred Language |
15,204 |
|
|
|
| Â Â Â Â English |
|
— |
— |
|
| Â Â Â Â Other |
|
0.97 |
0.38, 2.01 |
>0.9 |
| Any Religious Affiliation |
14,261 |
|
|
|
| Â Â Â Â Yes |
|
— |
— |
|
| Â Â Â Â No |
|
1.06 |
0.89, 1.26 |
0.5 |
| Marital Status |
15,204 |
|
|
|
| Â Â Â Â Married |
|
— |
— |
|
| Â Â Â Â Unknown |
|
0.81 |
0.64, 1.02 |
0.072 |
| Â Â Â Â Unmarried |
|
0.96 |
0.80, 1.17 |
0.7 |
| Â Â Â Â DivorcedSeparated |
|
0.91 |
0.55, 1.43 |
0.7 |
| Â Â Â Â Widow |
|
0.31 |
0.10, 0.73 |
0.021 |
| Charlson Comorbidity Index |
14,767 |
1.00 |
0.98, 1.02 |
0.8 |
| Anxiety |
15,204 |
0.85 |
0.67, 1.06 |
0.15 |
| Depression |
15,204 |
0.81 |
0.64, 1.02 |
0.083 |
| Total SVI |
14,918 |
0.79 |
0.57, 1.09 |
0.2 |
| Soceioeconomic Status |
14,868 |
0.87 |
0.62, 1.21 |
0.4 |
| Household Composition |
14,919 |
0.88 |
0.64, 1.21 |
0.4 |
| Minority Status and Language |
14,927 |
0.88 |
0.66, 1.18 |
0.4 |
| Housing and Transportation |
14,896 |
0.80 |
0.59, 1.07 |
0.13 |
NULL
Alcohol Abuse
tbl_uv_etoh <-
tbl_uvregression(
mh_vax_co_sub[c("etoh_use", "age_yrs", "gender", "race_5", "ethnic_3", "lang_3", "relig_affil", "mstat_5", "max_ch", "anxiety_2", "depression_2", "RPL_THEMES", "RPL_THEME1", "RPL_THEME2", "RPL_THEME3", "RPL_THEME4")],
method = glm,
y = etoh_use,
method.args = list(family = binomial),
exponentiate = TRUE,
label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", relig_affil ~ "Any Religious Affiliation", mstat_5 ~ "Marital Status", RPL_THEMES ~ "Total SVI", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index"))
print(tbl_uv_etoh, method = render)
`...` must be empty.
✖ Problematic argument:
• method = render
| Characteristic |
N |
OR |
95% CI |
p-value |
| Age |
15,204 |
1.00 |
0.99, 1.00 |
0.2 |
| Gender |
15,204 |
|
|
|
| Â Â Â Â Male |
|
— |
— |
|
| Â Â Â Â Female |
|
0.86 |
0.67, 1.12 |
0.3 |
| Race |
15,204 |
|
|
|
| Â Â Â Â White |
|
— |
— |
|
| Â Â Â Â Black |
|
1.49 |
0.91, 2.31 |
0.094 |
| Â Â Â Â Other |
|
1.89 |
1.10, 3.04 |
0.013 |
| Â Â Â Â Asian |
|
1.12 |
0.44, 2.33 |
0.8 |
| Â Â Â Â Native |
|
1.25 |
0.07, 5.73 |
0.8 |
| Ethnicity |
14,664 |
|
|
|
| Â Â Â Â NonHispanic |
|
— |
— |
|
| Â Â Â Â Hispanic |
|
2.03 |
0.96, 3.76 |
0.041 |
| Preferred Language |
15,204 |
|
|
|
| Â Â Â Â English |
|
— |
— |
|
| Â Â Â Â Other |
|
1.22 |
0.30, 3.23 |
0.7 |
| Any Religious Affiliation |
14,261 |
|
|
|
| Â Â Â Â Yes |
|
— |
— |
|
| Â Â Â Â No |
|
0.89 |
0.68, 1.17 |
0.4 |
| Marital Status |
15,204 |
|
|
|
| Â Â Â Â Married |
|
— |
— |
|
| Â Â Â Â Unknown |
|
0.99 |
0.69, 1.41 |
>0.9 |
| Â Â Â Â Unmarried |
|
1.20 |
0.89, 1.62 |
0.2 |
| Â Â Â Â DivorcedSeparated |
|
0.82 |
0.32, 1.73 |
0.6 |
| Â Â Â Â Widow |
|
1.37 |
0.53, 2.90 |
0.5 |
| Charlson Comorbidity Index |
14,767 |
1.01 |
0.98, 1.04 |
0.4 |
| Anxiety |
15,204 |
1.34 |
0.98, 1.81 |
0.063 |
| Depression |
15,204 |
1.29 |
0.93, 1.76 |
0.11 |
| Total SVI |
14,918 |
1.51 |
0.92, 2.47 |
0.10 |
| Soceioeconomic Status |
14,868 |
1.25 |
0.75, 2.06 |
0.4 |
| Household Composition |
14,919 |
1.40 |
0.86, 2.25 |
0.2 |
| Minority Status and Language |
14,927 |
1.32 |
0.84, 2.09 |
0.2 |
| Housing and Transportation |
14,896 |
1.26 |
0.80, 1.98 |
0.3 |
NULL
Active Tobacco: Multivariable Models
Active tobacco + RPL_THEMES
tobac1 <- glm(act_tob ~ age_yrs + gender + race_5 + ethnic_3 + lang_3 + mstat_5 + relig_affil +
max_ch + anxiety_2 + depression_2 + RPL_THEMES,
family = "binomial",
data = mh_vax_co_sub)
summary(tobac1)
Call:
glm(formula = act_tob ~ age_yrs + gender + race_5 + ethnic_3 +
lang_3 + mstat_5 + relig_affil + max_ch + anxiety_2 + depression_2 +
RPL_THEMES, family = "binomial", data = mh_vax_co_sub)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1546 -0.5596 -0.4644 -0.3785 3.1348
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.7344071 0.1224732 -22.327 < 2e-16 ***
age_yrs -0.0005484 0.0017937 -0.306 0.759820
genderFemale -0.1039828 0.0550894 -1.888 0.059089 .
race_5Black -0.0406304 0.1028452 -0.395 0.692796
race_5Other -0.0036124 0.1668531 -0.022 0.982727
race_5Asian -2.0908763 0.4535819 -4.610 4.03e-06 ***
race_5Native -0.5664562 0.5287427 -1.071 0.284022
ethnic_3Hispanic -0.3128105 0.2135729 -1.465 0.143015
lang_3Other -0.3013680 0.3468955 -0.869 0.384980
mstat_5Unknown 0.1496898 0.0781349 1.916 0.055392 .
mstat_5Unmarried 0.3995811 0.0720074 5.549 2.87e-08 ***
mstat_5DivorcedSeparated 0.9865255 0.1216488 8.110 5.08e-16 ***
mstat_5Widow 0.3490334 0.1922636 1.815 0.069464 .
relig_affilNo 0.1694701 0.0552203 3.069 0.002148 **
max_ch -0.0117714 0.0062699 -1.877 0.060457 .
anxiety_2 0.2386917 0.0719469 3.318 0.000908 ***
depression_2 0.2701222 0.0730716 3.697 0.000218 ***
RPL_THEMES 1.3922157 0.1041556 13.367 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 9892.5 on 12927 degrees of freedom
Residual deviance: 9462.0 on 12910 degrees of freedom
(2317 observations deleted due to missingness)
AIC: 9498
Number of Fisher Scoring iterations: 6
broom::glance(tobac1)
broom::tidy(tobac1, exponentiate = TRUE)
tbl_regression(tobac1, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", RPL_THEMES ~ "Total SVI", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index", mstat_5 ~ "Marital Status", relig_affil ~ "Any Religious Affiliation"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
1.00, 1.00 |
0.8 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.90 |
0.81, 1.00 |
0.059 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.96 |
0.78, 1.17 |
0.7 |
| Â Â Â Â Other |
1.00 |
0.71, 1.37 |
>0.9 |
| Â Â Â Â Asian |
0.12 |
0.04, 0.27 |
<0.001 |
| Â Â Â Â Native |
0.57 |
0.17, 1.42 |
0.3 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
0.73 |
0.47, 1.09 |
0.14 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.74 |
0.35, 1.39 |
0.4 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
1.16 |
1.00, 1.35 |
0.055 |
| Â Â Â Â Unmarried |
1.49 |
1.30, 1.72 |
<0.001 |
| Â Â Â Â DivorcedSeparated |
2.68 |
2.11, 3.39 |
<0.001 |
| Â Â Â Â Widow |
1.42 |
0.96, 2.04 |
0.069 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
1.18 |
1.06, 1.32 |
0.002 |
| Charlson Comorbidity Index |
0.99 |
0.98, 1.00 |
0.060 |
| Anxiety |
1.27 |
1.10, 1.46 |
<0.001 |
| Depression |
1.31 |
1.13, 1.51 |
<0.001 |
| Total SVI |
4.02 |
3.28, 4.94 |
<0.001 |
## Model performance
model_performance(tobac1)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
9497.991 | 9632.400 | 0.035 | 0.328 | 0.856 | 0.366 | -Inf | 2.191e-04 | 0.784
performance::check_model(tobac1, panel = TRUE)

## Margins
cplot(tobac1, "RPL_THEMES", what = "prediction", main = "Percent Likelihood of Tobacco Use Given SVI")

Active tobacco + RPL_4
tobac1 <- glm(act_tob ~ age_yrs + gender + race_5 + ethnic_3 + lang_3 + mstat_5 + relig_affil +
max_ch + anxiety_2 + depression_2 + RPL_4,
family = "binomial",
data = mh_vax_co_sub)
summary(tobac1)
Call:
glm(formula = act_tob ~ age_yrs + gender + race_5 + ethnic_3 +
lang_3 + mstat_5 + relig_affil + max_ch + anxiety_2 + depression_2 +
RPL_4, family = "binomial", data = mh_vax_co_sub)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0978 -0.5652 -0.4657 -0.3707 3.1279
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6242252 0.1224909 -21.424 < 2e-16 ***
age_yrs -0.0004855 0.0017919 -0.271 0.786448
genderFemale -0.1044869 0.0550697 -1.897 0.057781 .
race_5Black 0.0080401 0.1028158 0.078 0.937670
race_5Other 0.0110039 0.1667656 0.066 0.947390
race_5Asian -2.1170466 0.4535899 -4.667 3.05e-06 ***
race_5Native -0.5642900 0.5290969 -1.067 0.286191
ethnic_3Hispanic -0.3036124 0.2131589 -1.424 0.154346
lang_3Other -0.2789519 0.3464783 -0.805 0.420758
mstat_5Unknown 0.1572696 0.0780365 2.015 0.043870 *
mstat_5Unmarried 0.4061081 0.0719519 5.644 1.66e-08 ***
mstat_5DivorcedSeparated 0.9972110 0.1214716 8.209 2.22e-16 ***
mstat_5Widow 0.3527038 0.1921977 1.835 0.066489 .
relig_affilNo 0.1675057 0.0551936 3.035 0.002406 **
max_ch -0.0121584 0.0062673 -1.940 0.052384 .
anxiety_2 0.2376703 0.0718769 3.307 0.000944 ***
depression_2 0.2734764 0.0729932 3.747 0.000179 ***
RPL_4Second 0.4772741 0.0697810 6.840 7.94e-12 ***
RPL_4Third 0.7296290 0.0739834 9.862 < 2e-16 ***
RPL_4Fourth 1.0288209 0.0881562 11.670 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 9892.5 on 12927 degrees of freedom
Residual deviance: 9470.9 on 12908 degrees of freedom
(2317 observations deleted due to missingness)
AIC: 9510.9
Number of Fisher Scoring iterations: 6
broom::glance(tobac1)
broom::tidy(tobac1, exponentiate = TRUE)
tbl_regression(tobac1, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", RPL_4 ~ "SVI Quartile", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index", mstat_5 ~ "Marital Status", relig_affil ~ "Any Religious Affiliation"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
1.00, 1.00 |
0.8 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.90 |
0.81, 1.00 |
0.058 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
1.01 |
0.82, 1.23 |
>0.9 |
| Â Â Â Â Other |
1.01 |
0.72, 1.39 |
>0.9 |
| Â Â Â Â Asian |
0.12 |
0.04, 0.26 |
<0.001 |
| Â Â Â Â Native |
0.57 |
0.17, 1.43 |
0.3 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
0.74 |
0.48, 1.10 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.76 |
0.36, 1.42 |
0.4 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
1.17 |
1.00, 1.36 |
0.044 |
| Â Â Â Â Unmarried |
1.50 |
1.30, 1.73 |
<0.001 |
| Â Â Â Â DivorcedSeparated |
2.71 |
2.13, 3.43 |
<0.001 |
| Â Â Â Â Widow |
1.42 |
0.96, 2.05 |
0.066 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
1.18 |
1.06, 1.32 |
0.002 |
| Charlson Comorbidity Index |
0.99 |
0.98, 1.00 |
0.052 |
| Anxiety |
1.27 |
1.10, 1.46 |
<0.001 |
| Depression |
1.31 |
1.14, 1.52 |
<0.001 |
| SVI Quartile |
|
|
|
| Â Â Â Â First |
— |
— |
|
| Â Â Â Â Second |
1.61 |
1.41, 1.85 |
<0.001 |
| Â Â Â Â Third |
2.07 |
1.79, 2.40 |
<0.001 |
| Â Â Â Â Fourth |
2.80 |
2.35, 3.32 |
<0.001 |
## Model performance
model_performance(tobac1)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
9510.850 | 9660.194 | 0.034 | 0.329 | 0.857 | 0.366 | -Inf | 2.644e-04 | 0.784
performance::check_model(tobac1, panel = TRUE)

## Margins
cplot(tobac1, "RPL_4", what = "prediction", main = "Percent Likelihood of Tobacco Use Given SVI Quartile")

Active Tobacco + All Themes
tobac3 <- glm(act_tob ~ age_yrs + gender + race_5 + ethnic_3 + lang_3 + mstat_5 + relig_affil +
max_ch + anxiety_2 + depression_2 + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 +
RPL_THEME4,
family = "binomial",
data = mh_vax_co_sub)
summary(tobac3)
Call:
glm(formula = act_tob ~ age_yrs + gender + race_5 + ethnic_3 +
lang_3 + mstat_5 + relig_affil + max_ch + anxiety_2 + depression_2 +
RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, family = "binomial",
data = mh_vax_co_sub)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1657 -0.5615 -0.4551 -0.3672 3.0537
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6939773 0.1336030 -20.164 < 2e-16 ***
age_yrs -0.0007259 0.0018060 -0.402 0.687743
genderFemale -0.1042769 0.0553267 -1.885 0.059464 .
race_5Black -0.0396828 0.1056774 -0.376 0.707282
race_5Other 0.0247467 0.1682359 0.147 0.883057
race_5Asian -1.9135268 0.4549148 -4.206 2.60e-05 ***
race_5Native -0.5922414 0.5305655 -1.116 0.264317
ethnic_3Hispanic -0.2905460 0.2144564 -1.355 0.175481
lang_3Other -0.3229906 0.3500543 -0.923 0.356170
mstat_5Unknown 0.1358057 0.0784008 1.732 0.083238 .
mstat_5Unmarried 0.3972267 0.0724874 5.480 4.25e-08 ***
mstat_5DivorcedSeparated 0.9814360 0.1221755 8.033 9.51e-16 ***
mstat_5Widow 0.3626886 0.1929289 1.880 0.060121 .
relig_affilNo 0.1611219 0.0555181 2.902 0.003706 **
max_ch -0.0116566 0.0062858 -1.854 0.063676 .
anxiety_2 0.2538062 0.0722915 3.511 0.000447 ***
depression_2 0.2605652 0.0733944 3.550 0.000385 ***
RPL_THEME1 1.5729772 0.1516096 10.375 < 2e-16 ***
RPL_THEME2 0.1598526 0.1303013 1.227 0.219901
RPL_THEME3 -0.2359623 0.0997179 -2.366 0.017967 *
RPL_THEME4 -0.0584157 0.1115246 -0.524 0.600423
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 9858.5 on 12859 degrees of freedom
Residual deviance: 9364.7 on 12839 degrees of freedom
(2385 observations deleted due to missingness)
AIC: 9406.7
Number of Fisher Scoring iterations: 6
broom::glance(tobac3)
broom::tidy(tobac3, exponentiate = TRUE)
tbl_regression(tobac3, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index", mstat_5 ~ "Marital Status", relig_affil ~ "Any Religious Affiliation", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
1.00, 1.00 |
0.7 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.90 |
0.81, 1.00 |
0.059 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.96 |
0.78, 1.18 |
0.7 |
| Â Â Â Â Other |
1.03 |
0.73, 1.41 |
0.9 |
| Â Â Â Â Asian |
0.15 |
0.05, 0.32 |
<0.001 |
| Â Â Â Â Native |
0.55 |
0.16, 1.39 |
0.3 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
0.75 |
0.48, 1.12 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.72 |
0.34, 1.37 |
0.4 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Unknown |
1.15 |
0.98, 1.34 |
0.083 |
| Â Â Â Â Unmarried |
1.49 |
1.29, 1.72 |
<0.001 |
| Â Â Â Â DivorcedSeparated |
2.67 |
2.09, 3.38 |
<0.001 |
| Â Â Â Â Widow |
1.44 |
0.97, 2.07 |
0.060 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
1.17 |
1.05, 1.31 |
0.004 |
| Charlson Comorbidity Index |
0.99 |
0.98, 1.00 |
0.064 |
| Anxiety |
1.29 |
1.12, 1.48 |
<0.001 |
| Depression |
1.30 |
1.12, 1.50 |
<0.001 |
| Soceioeconomic Status |
4.82 |
3.58, 6.49 |
<0.001 |
| Household Composition |
1.17 |
0.91, 1.52 |
0.2 |
| Minority Status and Language |
0.79 |
0.65, 0.96 |
0.018 |
| Housing and Transportation |
0.94 |
0.76, 1.17 |
0.6 |
## Model performance
model_performance(tobac3)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
9406.734 | 9563.433 | 0.040 | 0.328 | 0.854 | 0.364 | -Inf | 2.976e-04 | 0.785
performance::check_model(tobac3, panel = TRUE)

## Margins
cplot(tobac3, "RPL_THEME1", what = "prediction", main = "Percent Likelihood of Tobacco Use Given THEME1")

cplot(tobac3, "RPL_THEME2", what = "prediction", main = "Percent Likelihood of Tobacco Use Given THEME2")

cplot(tobac3, "RPL_THEME3", what = "prediction", main = "Percent Likelihood of Tobacco Use Given THEME3")

cplot(tobac3, "RPL_THEME4", what = "prediction", main = "Percent Likelihood of Tobacco Use Given THEME4")

Drug Use: Multivariable Models
Drug Use + RPL_THEMES
# removing mstat_5 and relig_affil because of missing data and made no difference in bivariate models
drug1 <- glm(drug_use ~ age_yrs + gender + race_5 + ethnic_3 + lang_3 +
max_ch + anxiety_2 + depression_2 + RPL_THEMES,
family = "binomial",
data = mh_vax_co_sub)
summary(drug1)
Call:
glm(formula = drug_use ~ age_yrs + gender + race_5 + ethnic_3 +
lang_3 + max_ch + anxiety_2 + depression_2 + RPL_THEMES,
family = "binomial", data = mh_vax_co_sub)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.3411 -0.2902 -0.2792 -0.2611 2.7816
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.004854 0.146927 -20.451 <2e-16 ***
age_yrs -0.001767 0.002591 -0.682 0.495
genderFemale -0.064396 0.090098 -0.715 0.475
race_5Black -0.180515 0.206165 -0.876 0.381
race_5Other 0.021861 0.267822 0.082 0.935
race_5Asian -0.276892 0.317107 -0.873 0.383
race_5Native -0.655670 1.011507 -0.648 0.517
ethnic_3Hispanic -0.128914 0.344136 -0.375 0.708
lang_3Other 0.222463 0.436085 0.510 0.610
max_ch 0.008666 0.010003 0.866 0.386
anxiety_2 -0.140645 0.134423 -1.046 0.295
depression_2 -0.190106 0.140475 -1.353 0.176
RPL_THEMES -0.197675 0.179580 -1.101 0.271
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 4491.7 on 14013 degrees of freedom
Residual deviance: 4480.8 on 14001 degrees of freedom
(1231 observations deleted due to missingness)
AIC: 4506.8
Number of Fisher Scoring iterations: 6
broom::glance(drug1)
broom::tidy(drug1, exponentiate = TRUE)
tbl_regression(drug1, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", RPL_THEMES ~ "Total SVI", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
0.99, 1.00 |
0.5 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.94 |
0.79, 1.12 |
0.5 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.83 |
0.55, 1.23 |
0.4 |
| Â Â Â Â Other |
1.02 |
0.58, 1.68 |
>0.9 |
| Â Â Â Â Asian |
0.76 |
0.38, 1.34 |
0.4 |
| Â Â Â Â Native |
0.52 |
0.03, 2.38 |
0.5 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
0.88 |
0.42, 1.64 |
0.7 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
1.25 |
0.48, 2.71 |
0.6 |
| Charlson Comorbidity Index |
1.01 |
0.99, 1.03 |
0.4 |
| Anxiety |
0.87 |
0.66, 1.12 |
0.3 |
| Depression |
0.83 |
0.62, 1.08 |
0.2 |
| Total SVI |
0.82 |
0.58, 1.16 |
0.3 |
## Model performance
model_performance(drug1)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
4506.821 | 4604.943 | 7.427e-04 | 0.190 | 0.566 | 0.160 | -20.094 | 3.328e-04 | 0.928
performance::check_model(drug1, panel = TRUE)

## Margins
cplot(drug1, "RPL_THEMES", what = "prediction", main = "Percent Likelihood of Drug Use Given SVI")

Drug Use + SVI Quartiles
# removing mstat_5 and relig_affil because of missing data and made no difference in bivariate models
drug2 <- glm(drug_use ~ age_yrs + gender + race_5 + ethnic_3 + lang_3 +
max_ch + anxiety_2 + depression_2 + RPL_4,
family = "binomial",
data = mh_vax_co_sub)
summary(drug2)
Call:
glm(formula = drug_use ~ age_yrs + gender + race_5 + ethnic_3 +
lang_3 + max_ch + anxiety_2 + depression_2 + RPL_4, family = "binomial",
data = mh_vax_co_sub)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.3515 -0.2923 -0.2782 -0.2598 2.7837
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.016296 0.143057 -21.085 <2e-16 ***
age_yrs -0.001717 0.002591 -0.662 0.5077
genderFemale -0.061716 0.090134 -0.685 0.4935
race_5Black -0.220622 0.207305 -1.064 0.2872
race_5Other 0.011359 0.267880 0.042 0.9662
race_5Asian -0.265612 0.317023 -0.838 0.4021
race_5Native -0.660386 1.011580 -0.653 0.5139
ethnic_3Hispanic -0.134459 0.344073 -0.391 0.6960
lang_3Other 0.213916 0.436021 0.491 0.6237
max_ch 0.008653 0.010003 0.865 0.3870
anxiety_2 -0.140693 0.134437 -1.047 0.2953
depression_2 -0.192232 0.140493 -1.368 0.1712
RPL_4Second -0.069438 0.106448 -0.652 0.5142
RPL_4Third -0.208384 0.126407 -1.649 0.0992 .
RPL_4Fourth -0.008374 0.158522 -0.053 0.9579
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 4491.7 on 14013 degrees of freedom
Residual deviance: 4479.1 on 13999 degrees of freedom
(1231 observations deleted due to missingness)
AIC: 4509.1
Number of Fisher Scoring iterations: 6
broom::glance(drug2)
broom::tidy(drug2, exponentiate = TRUE)
tbl_regression(drug2, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", RPL_4 ~ "SVI Quartile", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
0.99, 1.00 |
0.5 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.94 |
0.79, 1.12 |
0.5 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.80 |
0.52, 1.18 |
0.3 |
| Â Â Â Â Other |
1.01 |
0.58, 1.66 |
>0.9 |
| Â Â Â Â Asian |
0.77 |
0.39, 1.36 |
0.4 |
| Â Â Â Â Native |
0.52 |
0.03, 2.37 |
0.5 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
0.87 |
0.42, 1.63 |
0.7 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
1.24 |
0.47, 2.69 |
0.6 |
| Charlson Comorbidity Index |
1.01 |
0.99, 1.03 |
0.4 |
| Anxiety |
0.87 |
0.66, 1.12 |
0.3 |
| Depression |
0.83 |
0.62, 1.08 |
0.2 |
| SVI Quartile |
|
|
|
| Â Â Â Â First |
— |
— |
|
| Â Â Â Â Second |
0.93 |
0.76, 1.15 |
0.5 |
| Â Â Â Â Third |
0.81 |
0.63, 1.04 |
0.10 |
| Â Â Â Â Fourth |
0.99 |
0.72, 1.34 |
>0.9 |
## Model performance
model_performance(drug2)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
4509.075 | 4622.292 | 8.632e-04 | 0.190 | 0.566 | 0.160 | -20.095 | 3.812e-04 | 0.928
performance::check_model(drug2, panel = TRUE)

## Margins
cplot(drug2, "RPL_4", what = "prediction", main = "Percent Likelihood of Drug Use Given SVI")

Drug Use + All Themes
drug3 <- glm(act_tob ~ age_yrs + gender + race_5 + ethnic_3 + lang_3 +
max_ch + anxiety_2 + depression_2 + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 +
RPL_THEME4,
family = "binomial",
data = mh_vax_co_sub)
summary(drug3)
Call:
glm(formula = act_tob ~ age_yrs + gender + race_5 + ethnic_3 +
lang_3 + max_ch + anxiety_2 + depression_2 + RPL_THEME1 +
RPL_THEME2 + RPL_THEME3 + RPL_THEME4, family = "binomial",
data = mh_vax_co_sub)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0331 -0.5682 -0.4646 -0.3895 2.9316
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.291944 0.103316 -22.184 < 2e-16 ***
age_yrs -0.003936 0.001538 -2.559 0.010507 *
genderFemale -0.066116 0.052934 -1.249 0.211659
race_5Black -0.030714 0.102028 -0.301 0.763387
race_5Other -0.006250 0.159810 -0.039 0.968806
race_5Asian -1.562477 0.362496 -4.310 1.63e-05 ***
race_5Native -0.703962 0.528518 -1.332 0.182876
ethnic_3Hispanic -0.251818 0.203988 -1.234 0.217026
lang_3Other -0.284355 0.320410 -0.887 0.374826
max_ch -0.014111 0.006115 -2.307 0.021031 *
anxiety_2 0.244696 0.070314 3.480 0.000501 ***
depression_2 0.275414 0.071388 3.858 0.000114 ***
RPL_THEME1 1.610667 0.145762 11.050 < 2e-16 ***
RPL_THEME2 0.193119 0.125365 1.540 0.123451
RPL_THEME3 -0.220446 0.096098 -2.294 0.021792 *
RPL_THEME4 -0.025414 0.107348 -0.237 0.812853
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 10497 on 13540 degrees of freedom
Residual deviance: 10074 on 13525 degrees of freedom
(1704 observations deleted due to missingness)
AIC: 10106
Number of Fisher Scoring iterations: 6
broom::glance(drug3)
broom::tidy(drug3, exponentiate = TRUE)
tbl_regression(drug3, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
0.99, 1.00 |
0.011 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.94 |
0.84, 1.04 |
0.2 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.97 |
0.79, 1.18 |
0.8 |
| Â Â Â Â Other |
0.99 |
0.72, 1.35 |
>0.9 |
| Â Â Â Â Asian |
0.21 |
0.09, 0.40 |
<0.001 |
| Â Â Â Â Native |
0.49 |
0.15, 1.24 |
0.2 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
0.78 |
0.51, 1.14 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.75 |
0.38, 1.36 |
0.4 |
| Charlson Comorbidity Index |
0.99 |
0.97, 1.00 |
0.021 |
| Anxiety |
1.28 |
1.11, 1.46 |
<0.001 |
| Depression |
1.32 |
1.14, 1.51 |
<0.001 |
| Soceioeconomic Status |
5.01 |
3.76, 6.66 |
<0.001 |
| Household Composition |
1.21 |
0.95, 1.55 |
0.12 |
| Minority Status and Language |
0.80 |
0.66, 0.97 |
0.022 |
| Housing and Transportation |
0.97 |
0.79, 1.20 |
0.8 |
## Model performance
model_performance(drug3)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
--------------------------------------------------------------------------------------------------
10106.174 | 10226.389 | 0.032 | 0.332 | 0.863 | 0.372 | -Inf | 2.283e-04 | 0.780
performance::check_model(drug3, panel = TRUE)

## Margins
cplot(drug3, "RPL_THEME1", what = "prediction", main = "Percent Likelihood of Drug Use Given THEME1")

cplot(drug3, "RPL_THEME2", what = "prediction", main = "Percent Likelihood of Drug Use Given THEME2")

cplot(drug3, "RPL_THEME3", what = "prediction", main = "Percent Likelihood of Drug Use Given THEME3")

cplot(drug3, "RPL_THEME4", what = "prediction", main = "Percent Likelihood of Drug Use Given THEME4")

Sensitivity analysis including mstat and relig_affil
drug4 <- glm(act_tob ~ age_yrs + gender + race_5 + ethnic_3 + lang_3 + mstat_5 + relig_affil +
max_ch + anxiety_2 + depression_2 + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 +
RPL_THEME4,
family = "binomial",
data = mh_vax_co_sub)
summary(drug4)
Call:
glm(formula = act_tob ~ age_yrs + gender + race_5 + ethnic_3 +
lang_3 + mstat_5 + relig_affil + max_ch + anxiety_2 + depression_2 +
RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, family = "binomial",
data = mh_vax_co_sub)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1657 -0.5615 -0.4551 -0.3672 3.0537
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6939773 0.1336030 -20.164 < 2e-16 ***
age_yrs -0.0007259 0.0018060 -0.402 0.687743
genderFemale -0.1042769 0.0553267 -1.885 0.059464 .
race_5Black -0.0396828 0.1056774 -0.376 0.707282
race_5Other 0.0247467 0.1682359 0.147 0.883057
race_5Asian -1.9135268 0.4549148 -4.206 2.60e-05 ***
race_5Native -0.5922414 0.5305655 -1.116 0.264317
ethnic_3Hispanic -0.2905460 0.2144564 -1.355 0.175481
lang_3Other -0.3229906 0.3500543 -0.923 0.356170
mstat_5Unknown 0.1358057 0.0784008 1.732 0.083238 .
mstat_5Unmarried 0.3972267 0.0724874 5.480 4.25e-08 ***
mstat_5DivorcedSeparated 0.9814360 0.1221755 8.033 9.51e-16 ***
mstat_5Widow 0.3626886 0.1929289 1.880 0.060121 .
relig_affilNo 0.1611219 0.0555181 2.902 0.003706 **
max_ch -0.0116566 0.0062858 -1.854 0.063676 .
anxiety_2 0.2538062 0.0722915 3.511 0.000447 ***
depression_2 0.2605652 0.0733944 3.550 0.000385 ***
RPL_THEME1 1.5729772 0.1516096 10.375 < 2e-16 ***
RPL_THEME2 0.1598526 0.1303013 1.227 0.219901
RPL_THEME3 -0.2359623 0.0997179 -2.366 0.017967 *
RPL_THEME4 -0.0584157 0.1115246 -0.524 0.600423
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 9858.5 on 12859 degrees of freedom
Residual deviance: 9364.7 on 12839 degrees of freedom
(2385 observations deleted due to missingness)
AIC: 9406.7
Number of Fisher Scoring iterations: 6
broom::glance(drug4)
broom::tidy(drug4, exponentiate = TRUE)
tbl_regression(drug4, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation", mstat_5 ~ "Marital Status", relig_affil ~ "Any Religious Affiliation"), exponentiate = TRUE)
Alcohol Use: Multivariable Models
Alcohol Use + RPL_THEMES
# removing mstat_5 and relig_affil because of missing data and made no difference in bivariate models
etoh1 <- glm(etoh_use ~ age_yrs + gender + race_5 + ethnic_3 + lang_3 +
max_ch + anxiety_2 + depression_2 + RPL_THEMES,
family = "binomial",
data = mh_vax_co_sub)
summary(etoh1)
Call:
glm(formula = etoh_use ~ age_yrs + gender + race_5 + ethnic_3 +
lang_3 + max_ch + anxiety_2 + depression_2 + RPL_THEMES,
family = "binomial", data = mh_vax_co_sub)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.3517 -0.1836 -0.1712 -0.1610 3.0320
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.183902 0.229944 -18.195 <2e-16 ***
age_yrs -0.002896 0.004029 -0.719 0.4723
genderFemale -0.172049 0.138884 -1.239 0.2154
race_5Black 0.286781 0.259450 1.105 0.2690
race_5Other 0.547041 0.326378 1.676 0.0937 .
race_5Asian -0.001881 0.464481 -0.004 0.9968
race_5Native 0.206969 1.014974 0.204 0.8384
ethnic_3Hispanic 0.456308 0.385932 1.182 0.2371
lang_3Other 0.081106 0.614681 0.132 0.8950
max_ch 0.012970 0.015098 0.859 0.3903
anxiety_2 0.219257 0.185959 1.179 0.2384
depression_2 0.122055 0.192606 0.634 0.5263
RPL_THEMES 0.247149 0.268586 0.920 0.3575
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2247.8 on 14013 degrees of freedom
Residual deviance: 2233.6 on 14001 degrees of freedom
(1231 observations deleted due to missingness)
AIC: 2259.6
Number of Fisher Scoring iterations: 7
broom::glance(etoh1)
broom::tidy(etoh1, exponentiate = TRUE)
tbl_regression(etoh1, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", RPL_THEMES ~ "Total SVI", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
0.99, 1.00 |
0.5 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.84 |
0.64, 1.11 |
0.2 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
1.33 |
0.78, 2.16 |
0.3 |
| Â Â Â Â Other |
1.73 |
0.87, 3.15 |
0.094 |
| Â Â Â Â Asian |
1.00 |
0.35, 2.24 |
>0.9 |
| Â Â Â Â Native |
1.23 |
0.07, 5.69 |
0.8 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.58 |
0.69, 3.19 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
1.08 |
0.26, 3.10 |
0.9 |
| Charlson Comorbidity Index |
1.01 |
0.98, 1.04 |
0.4 |
| Anxiety |
1.25 |
0.86, 1.78 |
0.2 |
| Depression |
1.13 |
0.77, 1.64 |
0.5 |
| Total SVI |
1.28 |
0.75, 2.16 |
0.4 |
## Model performance
model_performance(etoh1)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
2259.605 | 2357.726 | 0.001 | 0.124 | 0.399 | 0.080 | -3.400 | 0.007 | 0.969
performance::check_model(etoh1, panel = TRUE)

## Margins
cplot(etoh1, "RPL_THEMES", what = "prediction", main = "Percent Likelihood of Alcohol Use Given SVI")

Alcohol Use + SVI Quartile
# removing mstat_5 and relig_affil because of missing data and made no difference in bivariate models
etoh2 <- glm(etoh_use ~ age_yrs + gender + race_5 + ethnic_3 + lang_3 +
max_ch + anxiety_2 + depression_2 + RPL_4,
family = "binomial",
data = mh_vax_co_sub)
summary(etoh2)
Call:
glm(formula = etoh_use ~ age_yrs + gender + race_5 + ethnic_3 +
lang_3 + max_ch + anxiety_2 + depression_2 + RPL_4, family = "binomial",
data = mh_vax_co_sub)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.3575 -0.1842 -0.1709 -0.1607 3.0452
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.205070 0.226567 -18.560 <2e-16 ***
age_yrs -0.002904 0.004030 -0.721 0.4712
genderFemale -0.173568 0.138932 -1.249 0.2116
race_5Black 0.308603 0.259976 1.187 0.2352
race_5Other 0.555829 0.326510 1.702 0.0887 .
race_5Asian -0.014895 0.464620 -0.032 0.9744
race_5Native 0.197112 1.015225 0.194 0.8461
ethnic_3Hispanic 0.457925 0.386058 1.186 0.2356
lang_3Other 0.081995 0.614505 0.133 0.8939
max_ch 0.012755 0.015101 0.845 0.3983
anxiety_2 0.219555 0.185920 1.181 0.2376
depression_2 0.121837 0.192571 0.633 0.5269
RPL_4Second 0.183931 0.167931 1.095 0.2734
RPL_4Third 0.195687 0.187682 1.043 0.2971
RPL_4Fourth 0.157627 0.242250 0.651 0.5153
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2247.8 on 14013 degrees of freedom
Residual deviance: 2232.8 on 13999 degrees of freedom
(1231 observations deleted due to missingness)
AIC: 2262.8
Number of Fisher Scoring iterations: 7
broom::glance(etoh2)
broom::tidy(etoh2, exponentiate = TRUE)
tbl_regression(etoh2, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", RPL_4 ~ "SVI Quartile", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
0.99, 1.00 |
0.5 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.84 |
0.64, 1.10 |
0.2 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
1.36 |
0.79, 2.21 |
0.2 |
| Â Â Â Â Other |
1.74 |
0.88, 3.18 |
0.089 |
| Â Â Â Â Asian |
0.99 |
0.34, 2.21 |
>0.9 |
| Â Â Â Â Native |
1.22 |
0.07, 5.64 |
0.8 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.58 |
0.70, 3.20 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
1.09 |
0.26, 3.10 |
0.9 |
| Charlson Comorbidity Index |
1.01 |
0.98, 1.04 |
0.4 |
| Anxiety |
1.25 |
0.86, 1.78 |
0.2 |
| Depression |
1.13 |
0.77, 1.63 |
0.5 |
| SVI Quartile |
|
|
|
| Â Â Â Â First |
— |
— |
|
| Â Â Â Â Second |
1.20 |
0.86, 1.67 |
0.3 |
| Â Â Â Â Third |
1.22 |
0.84, 1.75 |
0.3 |
| Â Â Â Â Fourth |
1.17 |
0.71, 1.85 |
0.5 |
## Model performance
model_performance(etoh2)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
2262.801 | 2376.018 | 0.001 | 0.124 | 0.399 | 0.080 | -3.400 | 0.007 | 0.969
performance::check_model(etoh2, panel = TRUE)

## Margins
cplot(etoh2, "RPL_4", what = "prediction", main = "Percent Likelihood of Alcohol Use Given SVI Quartile")

Alcohol Use + All Themes
# removing mstat_5 and relig_affil because of missing data and made no difference in bivariate models
etoh3 <- glm(etoh_use ~ age_yrs + gender + race_5 + ethnic_3 + lang_3 +
max_ch + anxiety_2 + depression_2 + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 +
RPL_THEME4,
family = "binomial",
data = mh_vax_co_sub)
summary(etoh3)
Call:
glm(formula = etoh_use ~ age_yrs + gender + race_5 + ethnic_3 +
lang_3 + max_ch + anxiety_2 + depression_2 + RPL_THEME1 +
RPL_THEME2 + RPL_THEME3 + RPL_THEME4, family = "binomial",
data = mh_vax_co_sub)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.3711 -0.1850 -0.1710 -0.1596 3.0536
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.339313 0.272864 -15.903 <2e-16 ***
age_yrs -0.002741 0.004043 -0.678 0.498
genderFemale -0.164875 0.139288 -1.184 0.237
race_5Black 0.291680 0.264839 1.101 0.271
race_5Other 0.553851 0.326629 1.696 0.090 .
race_5Asian -0.048297 0.471463 -0.102 0.918
race_5Native 0.251656 1.015239 0.248 0.804
ethnic_3Hispanic 0.469858 0.385656 1.218 0.223
lang_3Other 0.109349 0.618042 0.177 0.860
max_ch 0.011830 0.015189 0.779 0.436
anxiety_2 0.218766 0.186275 1.174 0.240
depression_2 0.135770 0.192854 0.704 0.481
RPL_THEME1 -0.338091 0.393710 -0.859 0.390
RPL_THEME2 0.480040 0.341512 1.406 0.160
RPL_THEME3 0.288674 0.254563 1.134 0.257
RPL_THEME4 0.053214 0.286859 0.186 0.853
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2237.3 on 13944 degrees of freedom
Residual deviance: 2221.1 on 13929 degrees of freedom
(1300 observations deleted due to missingness)
AIC: 2253.1
Number of Fisher Scoring iterations: 7
broom::glance(etoh3)
broom::tidy(etoh3, exponentiate = TRUE)
tbl_regression(etoh3, label = list(age_yrs ~ "Age", gender~ "Gender", race_5 ~ "Race", ethnic_3 ~ "Ethnicity", lang_3 ~ "Preferred Language", anxiety_2 ~"Anxiety", depression_2 ~ "Depression", max_ch ~ "Charlson Comorbidity Index", RPL_THEME1 ~ "Soceioeconomic Status", RPL_THEME2 ~ "Household Composition", RPL_THEME3 ~ "Minority Status and Language", RPL_THEME4 ~ "Housing and Transportation"), exponentiate = TRUE)
| Characteristic |
OR |
95% CI |
p-value |
| Age |
1.00 |
0.99, 1.01 |
0.5 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
0.85 |
0.65, 1.11 |
0.2 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
1.34 |
0.77, 2.19 |
0.3 |
| Â Â Â Â Other |
1.74 |
0.88, 3.17 |
0.090 |
| Â Â Â Â Asian |
0.95 |
0.33, 2.17 |
>0.9 |
| Â Â Â Â Native |
1.29 |
0.07, 5.96 |
0.8 |
| Ethnicity |
|
|
|
| Â Â Â Â NonHispanic |
— |
— |
|
| Â Â Â Â Hispanic |
1.60 |
0.70, 3.24 |
0.2 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
1.12 |
0.26, 3.22 |
0.9 |
| Charlson Comorbidity Index |
1.01 |
0.98, 1.04 |
0.4 |
| Anxiety |
1.24 |
0.86, 1.78 |
0.2 |
| Depression |
1.15 |
0.78, 1.66 |
0.5 |
| Soceioeconomic Status |
0.71 |
0.33, 1.53 |
0.4 |
| Household Composition |
1.62 |
0.83, 3.17 |
0.2 |
| Minority Status and Language |
1.33 |
0.81, 2.20 |
0.3 |
| Housing and Transportation |
1.05 |
0.60, 1.85 |
0.9 |
## Model performance
model_performance(etoh3)
# Indices of model performance
AIC | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
------------------------------------------------------------------------------------------------
2253.083 | 2373.769 | 0.002 | 0.124 | 0.399 | 0.080 | -3.386 | 0.007 | 0.969
performance::check_model(etoh3, panel = TRUE)

## Margins
cplot(etoh3, "RPL_THEME1", what = "prediction", main = "Percent Likelihood of Alcohol Use Given THEME1")

cplot(etoh3, "RPL_THEME2", what = "prediction", main = "Percent Likelihood of Alcohol Use Given THEME2")

cplot(etoh3, "RPL_THEME3", what = "prediction", main = "Percent Likelihood of Alcohol Use Given THEME3")

cplot(etoh3, "RPL_THEME4", what = "prediction", main = "Percent Likelihood of Alcohol Use Given THEME4")

LS0tCnRpdGxlOiAiMjAyMi4xMS44IFN1YnN0YW5jZSBVc2UgSUJEIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIHRoZW1lczogcGFwZXIKICAgIHRvYzogeWVzCiAgICB0b2NfZmxvYXQ6IHllcwplZGl0b3Jfb3B0aW9uczoKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCmRhdGU6ICcyMDIyLTExLTgnCi0tLQoKIyBMb2FkIFBhY2thZ2VzIApgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoY29kZWJvb2tyKQpsaWJyYXJ5KHN1bW1hcnl0b29scykKbGlicmFyeShicm9vbSkKbGlicmFyeShwZXJmb3JtYW5jZSkKbGlicmFyeShndCkKbGlicmFyeShndHN1bW1hcnkpCmxpYnJhcnkoamFuaXRvcikKbGlicmFyeShmb3JjYXRzKQpsaWJyYXJ5KGhlcmUpCmxpYnJhcnkoeWFtbCkKbGlicmFyeShtYXJnaW5zKQpgYGAKCiMgSW1wb3J0IERhdGEgCmBgYHtyfQoKbG9hZCgifi9EZXNrdG9wL1ItQ29kZS9TRE9IX0FMTC9taF92YXhfY29fc3ViLnJkYSIpClZpZXcobWhfdmF4X2NvX3N1YikKCgpgYGAKCgojIEJhc2VsaW5lIENoYXJhY3RlcmlzdGljcyAKYGBge3J9Cm1oX3ZheF9jb19zdWIgJT4lIAogIGRwbHlyOjpzZWxlY3QoYWdlX3lycywgZ2VuZGVyLCByYWNlXzUsIGV0aG5pY18zLCBsYW5nXzMsIHJlbGlnX2FmZmlsLCBtc3RhdF81LCBtYXhfY2gsIGFueGlldHlfMiwgZGVwcmVzc2lvbl8yLCBhY3RfdG9iLCBkcnVnX3VzZSwgZXRvaF91c2UsIFJQTF9USEVNRVMsIFJQTF80LCBSUExfVEhFTUUxLCBSUExfVEhFTUUyLCBSUExfVEhFTUUzLCBSUExfVEhFTUU0KSAtPiBiYXNlbGluZQpiYXNlbGluZSAlPiUgdGJsX3N1bW1hcnkobGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJlZmVycmVkIExhbmd1YWdlIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIsIG1zdGF0XzUgfiAiTWFyaXRhbCBTdGF0dXMiLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIFJQTF9USEVNRTEgfiAiU29jZWlvZWNvbm9taWMgU3RhdHVzIiwgUlBMX1RIRU1FMiB+ICJIb3VzZWhvbGQgQ29tcG9zaXRpb24iLCBSUExfVEhFTUUzIH4gIk1pbm9yaXR5IFN0YXR1cyBhbmQgTGFuZ3VhZ2UiLCBSUExfVEhFTUU0IH4gIkhvdXNpbmcgYW5kIFRyYW5zcG9ydGF0aW9uIiwgUlBMXzQgfiAiU1ZJIFF1YXJ0aWxlcyIsIGFueGlldHlfMiB+IkFueGlldHkiLCBkZXByZXNzaW9uXzIgfiAiRGVwcmVzc2lvbiIsIGFjdF90b2IgfiAiQWN0aXZlIFRvYmFjY28gVXNlIiwgZHJ1Z191c2UgfiAiRHJ1ZyBBYnVzZSIsIGV0b2hfdXNlIH4gIkFsY29ob2wgQWJ1c2UiLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiKSwKICAgICAgICBzdGF0aXN0aWMgPSBsaXN0KGFsbF9jb250aW51b3VzKCkgfiAie21lYW59ICh7c2R9KSIpLAogICAgICAgIG1pc3NpbmdfdGV4dCA9ICIoTWlzc2luZykiKQpgYGAKIyBCYXNlbGluZSBDaGFyYWN0ZXJpc3RpY3MgYnkgU1ZJCmBgYHtyfQpiYXNlbGluZSAlPiUgCnRibF9zdW1tYXJ5KGJ5ID0gUlBMXzQsCiAgICAgICAgIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIHJhY2VfNSB+ICJSYWNlIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIlByZWZlcnJlZCBMYW5ndWFnZSIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIFJQTF80IH4gIlNWSSBRdWFydGlsZXMiLCBhbnhpZXR5XzIgfiJBbnhpZXR5IiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBhY3RfdG9iIH4gIkFjdGl2ZSBUb2JhY2NvIFVzZSIsIGRydWdfdXNlIH4gIkRydWcgQWJ1c2UiLCBldG9oX3VzZSB+ICJBbGNvaG9sIEFidXNlIiwgbWF4X2NoIH4gIkNoYXJsc29uIENvbW9yYmlkaXR5IEluZGV4IiksCiAgICAgICAgc3RhdGlzdGljID0gbGlzdChhbGxfY29udGludW91cygpIH4gInttZWFufSAoe3NkfSkiKSwKICAgICAgICBtaXNzaW5nX3RleHQgPSAiKE1pc3NpbmcpIikgJT4lIGFkZF9wKCkKYGBgCgojIEJpdmFyaWF0ZSBBbmFseXNpcyB7LnRhYnNldH0KCiMjIFRvYmFjY28gVXNlCmBgYHtyfQp0YmxfdXZfdG9iYWMgPC0KICB0YmxfdXZyZWdyZXNzaW9uKAogICAgbWhfdmF4X2NvX3N1YltjKCJhY3RfdG9iIiwgImFnZV95cnMiLCAiZ2VuZGVyIiwgInJhY2VfNSIsICJldGhuaWNfMyIsICJsYW5nXzMiLCAicmVsaWdfYWZmaWwiLCAibXN0YXRfNSIsICJtYXhfY2giLCAiYW54aWV0eV8yIiwgImRlcHJlc3Npb25fMiIsICJSUExfVEhFTUVTIiwgICJSUExfVEhFTUUxIiwgIlJQTF9USEVNRTIiLCAgIlJQTF9USEVNRTMiLCAiUlBMX1RIRU1FNCIpXSwKICAgIG1ldGhvZCA9IGdsbSwKICAgIHkgPSBhY3RfdG9iLAogICAgbWV0aG9kLmFyZ3MgPSBsaXN0KGZhbWlseSA9IGJpbm9taWFsKSwKICAgIGV4cG9uZW50aWF0ZSA9IFRSVUUsCiAgICBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCByZWxpZ19hZmZpbCB+ICJBbnkgUmVsaWdpb3VzIEFmZmlsaWF0aW9uIiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIFJQTF9USEVNRVMgfiAiVG90YWwgU1ZJIiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBhbnhpZXR5XzIgfiJBbnhpZXR5IiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiKSkKICAgIApwcmludCh0YmxfdXZfdG9iYWMsIG1ldGhvZCA9IHJlbmRlcikKYGBgCgoKIyMgRHJ1ZyBBYnVzZQpgYGB7cn0KdGJsX3V2X2RydWcgPC0KICB0YmxfdXZyZWdyZXNzaW9uKAogICAgbWhfdmF4X2NvX3N1YltjKCJkcnVnX3VzZSIsICJhZ2VfeXJzIiwgImdlbmRlciIsICJyYWNlXzUiLCAiZXRobmljXzMiLCAibGFuZ18zIiwgInJlbGlnX2FmZmlsIiwgIm1zdGF0XzUiLCAibWF4X2NoIiwgImFueGlldHlfMiIsICJkZXByZXNzaW9uXzIiLCAiUlBMX1RIRU1FUyIsICAiUlBMX1RIRU1FMSIsICJSUExfVEhFTUUyIiwgICJSUExfVEhFTUUzIiwgIlJQTF9USEVNRTQiKV0sCiAgICBtZXRob2QgPSBnbG0sCiAgICB5ID0gZHJ1Z191c2UsCiAgICBtZXRob2QuYXJncyA9IGxpc3QoZmFtaWx5ID0gYmlub21pYWwpLAogICAgZXhwb25lbnRpYXRlID0gVFJVRSwKICAgIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIHJhY2VfNSB+ICJSYWNlIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIlByZWZlcnJlZCBMYW5ndWFnZSIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIGFueGlldHlfMiB+IkFueGlldHkiLCBkZXByZXNzaW9uXzIgfiAiRGVwcmVzc2lvbiIsIG1heF9jaCB+ICJDaGFybHNvbiBDb21vcmJpZGl0eSBJbmRleCIpKQogICAgCnByaW50KHRibF91dl9kcnVnLCBtZXRob2QgPSByZW5kZXIpCmBgYAoKIyMgQWxjb2hvbCBBYnVzZQpgYGB7cn0KdGJsX3V2X2V0b2ggPC0KICB0YmxfdXZyZWdyZXNzaW9uKAogICAgbWhfdmF4X2NvX3N1YltjKCJldG9oX3VzZSIsICJhZ2VfeXJzIiwgImdlbmRlciIsICJyYWNlXzUiLCAiZXRobmljXzMiLCAibGFuZ18zIiwgInJlbGlnX2FmZmlsIiwgIm1zdGF0XzUiLCAibWF4X2NoIiwgImFueGlldHlfMiIsICJkZXByZXNzaW9uXzIiLCAiUlBMX1RIRU1FUyIsICAiUlBMX1RIRU1FMSIsICJSUExfVEhFTUUyIiwgICJSUExfVEhFTUUzIiwgIlJQTF9USEVNRTQiKV0sCiAgICBtZXRob2QgPSBnbG0sCiAgICB5ID0gZXRvaF91c2UsCiAgICBtZXRob2QuYXJncyA9IGxpc3QoZmFtaWx5ID0gYmlub21pYWwpLAogICAgZXhwb25lbnRpYXRlID0gVFJVRSwKICAgIGxhYmVsID0gbGlzdChhZ2VfeXJzIH4gIkFnZSIsIGdlbmRlcn4gIkdlbmRlciIsIHJhY2VfNSB+ICJSYWNlIiwgZXRobmljXzMgfiAiRXRobmljaXR5IiwgbGFuZ18zIH4gIlByZWZlcnJlZCBMYW5ndWFnZSIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIsIGFueGlldHlfMiB+IkFueGlldHkiLCBkZXByZXNzaW9uXzIgfiAiRGVwcmVzc2lvbiIsIG1heF9jaCB+ICJDaGFybHNvbiBDb21vcmJpZGl0eSBJbmRleCIpKQogICAgCnByaW50KHRibF91dl9ldG9oLCBtZXRob2QgPSByZW5kZXIpCmBgYAoKIyBBY3RpdmUgVG9iYWNjbzogTXVsdGl2YXJpYWJsZSBNb2RlbHMgey50YWJzZXR9CgojIyBBY3RpdmUgdG9iYWNjbyArIFJQTF9USEVNRVMgCmBgYHtyfQp0b2JhYzEgPC0gZ2xtKGFjdF90b2IgfiBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyBsYW5nXzMgKyBtc3RhdF81ICsgcmVsaWdfYWZmaWwgKyAKICAgICAgICAgICAgICAgIG1heF9jaCArIGFueGlldHlfMiArIGRlcHJlc3Npb25fMiArIFJQTF9USEVNRVMsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwKICAgICAgICAgICAgICBkYXRhID0gbWhfdmF4X2NvX3N1YikKc3VtbWFyeSh0b2JhYzEpCmJyb29tOjpnbGFuY2UodG9iYWMxKQpicm9vbTo6dGlkeSh0b2JhYzEsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKHRvYmFjMSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJlZmVycmVkIExhbmd1YWdlIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBhbnhpZXR5XzIgfiJBbnhpZXR5IiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIpLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyMgTW9kZWwgcGVyZm9ybWFuY2UKbW9kZWxfcGVyZm9ybWFuY2UodG9iYWMxKQpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwodG9iYWMxLCBwYW5lbCA9IFRSVUUpCgojIyBNYXJnaW5zCmNwbG90KHRvYmFjMSwgIlJQTF9USEVNRVMiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBUb2JhY2NvIFVzZSBHaXZlbiBTVkkiKQpgYGAKCiMjIEFjdGl2ZSB0b2JhY2NvICsgUlBMXzQKYGBge3J9CnRvYmFjMiA8LSBnbG0oYWN0X3RvYiB+IGFnZV95cnMgKyBnZW5kZXIgKyByYWNlXzUgKyBldGhuaWNfMyArIGxhbmdfMyArIG1zdGF0XzUgKyByZWxpZ19hZmZpbCArIAogICAgICAgICAgICAgICAgbWF4X2NoICsgYW54aWV0eV8yICsgZGVwcmVzc2lvbl8yICsgUlBMXzQsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwKICAgICAgICAgICAgICBkYXRhID0gbWhfdmF4X2NvX3N1YikKc3VtbWFyeSh0b2JhYzIpCmJyb29tOjpnbGFuY2UodG9iYWMyKQpicm9vbTo6dGlkeSh0b2JhYzIsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKHRvYmFjMiwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJlZmVycmVkIExhbmd1YWdlIiwgUlBMXzQgfiAiU1ZJIFF1YXJ0aWxlIiwgYW54aWV0eV8yIH4iQW54aWV0eSIsIGRlcHJlc3Npb25fMiB+ICJEZXByZXNzaW9uIiwgbWF4X2NoIH4gIkNoYXJsc29uIENvbW9yYmlkaXR5IEluZGV4IiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCiMjIE1vZGVsIHBlcmZvcm1hbmNlCm1vZGVsX3BlcmZvcm1hbmNlKHRvYmFjMikKcGVyZm9ybWFuY2U6OmNoZWNrX21vZGVsKHRvYmFjMiwgcGFuZWwgPSBUUlVFKQoKIyMgTWFyZ2lucwpjcGxvdCh0b2JhYzIsICJSUExfNCIsIHdoYXQgPSAicHJlZGljdGlvbiIsIG1haW4gPSAiUGVyY2VudCBMaWtlbGlob29kIG9mIFRvYmFjY28gVXNlIEdpdmVuIFNWSSBRdWFydGlsZSIpCmBgYAoKIyMgQWN0aXZlIFRvYmFjY28gKyBBbGwgVGhlbWVzIApgYGB7cn0KdG9iYWMzIDwtIGdsbShhY3RfdG9iIH4gYWdlX3lycyArIGdlbmRlciArIHJhY2VfNSArIGV0aG5pY18zICsgbGFuZ18zICsgbXN0YXRfNSArIHJlbGlnX2FmZmlsICsgCiAgICAgICAgICAgICAgICBtYXhfY2ggKyBhbnhpZXR5XzIgKyBkZXByZXNzaW9uXzIgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyAKICAgICAgICAgICAgICAgIFJQTF9USEVNRTQsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwKICAgICAgICAgICAgICBkYXRhID0gbWhfdmF4X2NvX3N1YikKc3VtbWFyeSh0b2JhYzMpCmJyb29tOjpnbGFuY2UodG9iYWMzKQpicm9vbTo6dGlkeSh0b2JhYzMsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKHRvYmFjMywgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJlZmVycmVkIExhbmd1YWdlIiwgYW54aWV0eV8yIH4iQW54aWV0eSIsIGRlcHJlc3Npb25fMiB+ICJEZXByZXNzaW9uIiwgbWF4X2NoIH4gIkNoYXJsc29uIENvbW9yYmlkaXR5IEluZGV4IiwgbXN0YXRfNSB+ICJNYXJpdGFsIFN0YXR1cyIsIHJlbGlnX2FmZmlsIH4gIkFueSBSZWxpZ2lvdXMgQWZmaWxpYXRpb24iLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIpLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyMgTW9kZWwgcGVyZm9ybWFuY2UKbW9kZWxfcGVyZm9ybWFuY2UodG9iYWMzKQpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwodG9iYWMzLCBwYW5lbCA9IFRSVUUpCgojIyBNYXJnaW5zCmNwbG90KHRvYmFjMywgIlJQTF9USEVNRTEiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBUb2JhY2NvIFVzZSBHaXZlbiBUSEVNRTEiKQpjcGxvdCh0b2JhYzMsICJSUExfVEhFTUUyIiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQZXJjZW50IExpa2VsaWhvb2Qgb2YgVG9iYWNjbyBVc2UgR2l2ZW4gVEhFTUUyIikKY3Bsb3QodG9iYWMzLCAiUlBMX1RIRU1FMyIsIHdoYXQgPSAicHJlZGljdGlvbiIsIG1haW4gPSAiUGVyY2VudCBMaWtlbGlob29kIG9mIFRvYmFjY28gVXNlIEdpdmVuIFRIRU1FMyIpCmNwbG90KHRvYmFjMywgIlJQTF9USEVNRTQiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBUb2JhY2NvIFVzZSBHaXZlbiBUSEVNRTQiKQpgYGAKCiMgRHJ1ZyBVc2U6IE11bHRpdmFyaWFibGUgTW9kZWxzIHsudGFic2V0fQoKIyMgRHJ1ZyBVc2UgKyBSUExfVEhFTUVTCmBgYHtyfQojIHJlbW92aW5nIG1zdGF0XzUgYW5kIHJlbGlnX2FmZmlsIGJlY2F1c2Ugb2YgbWlzc2luZyBkYXRhIGFuZCBtYWRlIG5vIGRpZmZlcmVuY2UgaW4gYml2YXJpYXRlIG1vZGVscyAKCmRydWcxIDwtIGdsbShkcnVnX3VzZSB+IGFnZV95cnMgKyBnZW5kZXIgKyByYWNlXzUgKyBldGhuaWNfMyArIGxhbmdfMyAgKyAKICAgICAgICAgICAgICAgIG1heF9jaCArIGFueGlldHlfMiArIGRlcHJlc3Npb25fMiArIFJQTF9USEVNRVMsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwKICAgICAgICAgICAgICBkYXRhID0gbWhfdmF4X2NvX3N1YikKc3VtbWFyeShkcnVnMSkKYnJvb206OmdsYW5jZShkcnVnMSkKYnJvb206OnRpZHkoZHJ1ZzEsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKGRydWcxLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCBSUExfVEhFTUVTIH4gIlRvdGFsIFNWSSIsIGFueGlldHlfMiB+IkFueGlldHkiLCBkZXByZXNzaW9uXzIgfiAiRGVwcmVzc2lvbiIsIG1heF9jaCB+ICJDaGFybHNvbiBDb21vcmJpZGl0eSBJbmRleCIpLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyMgTW9kZWwgcGVyZm9ybWFuY2UKbW9kZWxfcGVyZm9ybWFuY2UoZHJ1ZzEpCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChkcnVnMSwgcGFuZWwgPSBUUlVFKQoKIyMgTWFyZ2lucwpjcGxvdChkcnVnMSwgIlJQTF9USEVNRVMiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBEcnVnIFVzZSBHaXZlbiBTVkkiKQpgYGAKCiMjIERydWcgVXNlICsgU1ZJIFF1YXJ0aWxlcyAKYGBge3J9CiMgcmVtb3ZpbmcgbXN0YXRfNSBhbmQgcmVsaWdfYWZmaWwgYmVjYXVzZSBvZiBtaXNzaW5nIGRhdGEgYW5kIG1hZGUgbm8gZGlmZmVyZW5jZSBpbiBiaXZhcmlhdGUgbW9kZWxzIAoKZHJ1ZzIgPC0gZ2xtKGRydWdfdXNlIH4gYWdlX3lycyArIGdlbmRlciArIHJhY2VfNSArIGV0aG5pY18zICsgbGFuZ18zICArIAogICAgICAgICAgICAgICAgbWF4X2NoICsgYW54aWV0eV8yICsgZGVwcmVzc2lvbl8yICsgUlBMXzQsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwKICAgICAgICAgICAgICBkYXRhID0gbWhfdmF4X2NvX3N1YikKc3VtbWFyeShkcnVnMikKYnJvb206OmdsYW5jZShkcnVnMikKYnJvb206OnRpZHkoZHJ1ZzIsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKGRydWcyLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCBSUExfNCB+ICJTVkkgUXVhcnRpbGUiLCBhbnhpZXR5XzIgfiJBbnhpZXR5IiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCiMjIE1vZGVsIHBlcmZvcm1hbmNlCm1vZGVsX3BlcmZvcm1hbmNlKGRydWcyKQpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwoZHJ1ZzIsIHBhbmVsID0gVFJVRSkKCiMjIE1hcmdpbnMKY3Bsb3QoZHJ1ZzIsICJSUExfNCIsIHdoYXQgPSAicHJlZGljdGlvbiIsIG1haW4gPSAiUGVyY2VudCBMaWtlbGlob29kIG9mIERydWcgVXNlIEdpdmVuIFNWSSIpCmBgYAoKIyMgRHJ1ZyBVc2UgKyBBbGwgVGhlbWVzIApgYGB7cn0KCiMgcmVtb3ZpbmcgbXN0YXRfNSBhbmQgcmVsaWdfYWZmaWwgYmVjYXVzZSBvZiBtaXNzaW5nIGRhdGEgYW5kIG1hZGUgbm8gZGlmZmVyZW5jZSBpbiBiaXZhcmlhdGUgbW9kZWxzIAoKZHJ1ZzMgPC0gZ2xtKGFjdF90b2IgfiBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyBsYW5nXzMgICsgCiAgICAgICAgICAgICAgICBtYXhfY2ggKyBhbnhpZXR5XzIgKyBkZXByZXNzaW9uXzIgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyAKICAgICAgICAgICAgICAgIFJQTF9USEVNRTQsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwKICAgICAgICAgICAgICBkYXRhID0gbWhfdmF4X2NvX3N1YikKc3VtbWFyeShkcnVnMykKYnJvb206OmdsYW5jZShkcnVnMykKYnJvb206OnRpZHkoZHJ1ZzMsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKGRydWczLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCBhbnhpZXR5XzIgfiJBbnhpZXR5IiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIpLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyMgTW9kZWwgcGVyZm9ybWFuY2UKbW9kZWxfcGVyZm9ybWFuY2UoZHJ1ZzMpCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChkcnVnMywgcGFuZWwgPSBUUlVFKQoKIyMgTWFyZ2lucwpjcGxvdChkcnVnMywgIlJQTF9USEVNRTEiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBEcnVnIFVzZSBHaXZlbiBUSEVNRTEiKQpjcGxvdChkcnVnMywgIlJQTF9USEVNRTIiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBEcnVnIFVzZSBHaXZlbiBUSEVNRTIiKQpjcGxvdChkcnVnMywgIlJQTF9USEVNRTMiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBEcnVnIFVzZSBHaXZlbiBUSEVNRTMiKQpjcGxvdChkcnVnMywgIlJQTF9USEVNRTQiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBEcnVnIFVzZSBHaXZlbiBUSEVNRTQiKQpgYGAKCiMjIFNlbnNpdGl2aXR5IGFuYWx5c2lzIGluY2x1ZGluZyBtc3RhdCBhbmQgcmVsaWdfYWZmaWwgCmBgYHtyfQpkcnVnNCA8LSBnbG0oYWN0X3RvYiB+IGFnZV95cnMgKyBnZW5kZXIgKyByYWNlXzUgKyBldGhuaWNfMyArIGxhbmdfMyAgKyBtc3RhdF81ICsgcmVsaWdfYWZmaWwgKwogICAgICAgICAgICAgICAgbWF4X2NoICsgYW54aWV0eV8yICsgZGVwcmVzc2lvbl8yICsgUlBMX1RIRU1FMSArIFJQTF9USEVNRTIgKyBSUExfVEhFTUUzICsgCiAgICAgICAgICAgICAgICBSUExfVEhFTUU0LAogICAgICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIsCiAgICAgICAgICAgICAgZGF0YSA9IG1oX3ZheF9jb19zdWIpCnN1bW1hcnkoZHJ1ZzQpCmJyb29tOjpnbGFuY2UoZHJ1ZzQpCmJyb29tOjp0aWR5KGRydWc0LCBleHBvbmVudGlhdGUgPSBUUlVFKQp0YmxfcmVncmVzc2lvbihkcnVnNCwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJlZmVycmVkIExhbmd1YWdlIiwgYW54aWV0eV8yIH4iQW54aWV0eSIsIGRlcHJlc3Npb25fMiB+ICJEZXByZXNzaW9uIiwgbWF4X2NoIH4gIkNoYXJsc29uIENvbW9yYmlkaXR5IEluZGV4IiwgUlBMX1RIRU1FMSB+ICJTb2NlaW9lY29ub21pYyBTdGF0dXMiLCBSUExfVEhFTUUyIH4gIkhvdXNlaG9sZCBDb21wb3NpdGlvbiIsIFJQTF9USEVNRTMgfiAiTWlub3JpdHkgU3RhdHVzIGFuZCBMYW5ndWFnZSIsIFJQTF9USEVNRTQgfiAiSG91c2luZyBhbmQgVHJhbnNwb3J0YXRpb24iLCBtc3RhdF81IH4gIk1hcml0YWwgU3RhdHVzIiwgcmVsaWdfYWZmaWwgfiAiQW55IFJlbGlnaW91cyBBZmZpbGlhdGlvbiIpLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyMgTW9kZWwgcGVyZm9ybWFuY2UKbW9kZWxfcGVyZm9ybWFuY2UoZHJ1ZzQpCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChkcnVnNCwgcGFuZWwgPSBUUlVFKQoKIyMgTWFyZ2lucwpjcGxvdChkcnVnNCwgIlJQTF9USEVNRTEiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBEcnVnIFVzZSBHaXZlbiBUSEVNRTEiKQpjcGxvdChkcnVnNCwgIlJQTF9USEVNRTIiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBEcnVnIFVzZSBHaXZlbiBUSEVNRTIiKQpjcGxvdChkcnVnNCwgIlJQTF9USEVNRTMiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBEcnVnIFVzZSBHaXZlbiBUSEVNRTMiKQpjcGxvdChkcnVnNCwgIlJQTF9USEVNRTQiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBEcnVnIFVzZSBHaXZlbiBUSEVNRTQiKQpgYGAKCiMgQWxjb2hvbCBVc2U6IE11bHRpdmFyaWFibGUgTW9kZWxzIHsudGFic2V0fQoKIyMgQWxjb2hvbCBVc2UgKyBSUExfVEhFTUVTIApgYGB7cn0KIyByZW1vdmluZyBtc3RhdF81IGFuZCByZWxpZ19hZmZpbCBiZWNhdXNlIG9mIG1pc3NpbmcgZGF0YSBhbmQgbWFkZSBubyBkaWZmZXJlbmNlIGluIGJpdmFyaWF0ZSBtb2RlbHMgCgpldG9oMSA8LSBnbG0oZXRvaF91c2UgfiBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyBsYW5nXzMgICsgCiAgICAgICAgICAgICAgICBtYXhfY2ggKyBhbnhpZXR5XzIgKyBkZXByZXNzaW9uXzIgKyBSUExfVEhFTUVTLAogICAgICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIsCiAgICAgICAgICAgICAgZGF0YSA9IG1oX3ZheF9jb19zdWIpCnN1bW1hcnkoZXRvaDEpCmJyb29tOjpnbGFuY2UoZXRvaDEpCmJyb29tOjp0aWR5KGV0b2gxLCBleHBvbmVudGlhdGUgPSBUUlVFKQp0YmxfcmVncmVzc2lvbihldG9oMSwgbGFiZWwgPSBsaXN0KGFnZV95cnMgfiAiQWdlIiwgZ2VuZGVyfiAiR2VuZGVyIiwgcmFjZV81IH4gIlJhY2UiLCBldGhuaWNfMyB+ICJFdGhuaWNpdHkiLCBsYW5nXzMgfiAiUHJlZmVycmVkIExhbmd1YWdlIiwgUlBMX1RIRU1FUyB+ICJUb3RhbCBTVkkiLCBhbnhpZXR5XzIgfiJBbnhpZXR5IiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCiMjIE1vZGVsIHBlcmZvcm1hbmNlCm1vZGVsX3BlcmZvcm1hbmNlKGV0b2gxKQpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwoZXRvaDEsIHBhbmVsID0gVFJVRSkKCiMjIE1hcmdpbnMKY3Bsb3QoZXRvaDEsICJSUExfVEhFTUVTIiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQZXJjZW50IExpa2VsaWhvb2Qgb2YgQWxjb2hvbCBVc2UgR2l2ZW4gU1ZJIikKYGBgCgojIyBBbGNvaG9sIFVzZSArIFNWSSBRdWFydGlsZSAKYGBge3J9CiMgcmVtb3ZpbmcgbXN0YXRfNSBhbmQgcmVsaWdfYWZmaWwgYmVjYXVzZSBvZiBtaXNzaW5nIGRhdGEgYW5kIG1hZGUgbm8gZGlmZmVyZW5jZSBpbiBiaXZhcmlhdGUgbW9kZWxzIAoKZXRvaDIgPC0gZ2xtKGV0b2hfdXNlIH4gYWdlX3lycyArIGdlbmRlciArIHJhY2VfNSArIGV0aG5pY18zICsgbGFuZ18zICArIAogICAgICAgICAgICAgICAgbWF4X2NoICsgYW54aWV0eV8yICsgZGVwcmVzc2lvbl8yICsgUlBMXzQsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwKICAgICAgICAgICAgICBkYXRhID0gbWhfdmF4X2NvX3N1YikKc3VtbWFyeShldG9oMikKYnJvb206OmdsYW5jZShldG9oMikKYnJvb206OnRpZHkoZXRvaDIsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKGV0b2gyLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCBSUExfNCB+ICJTVkkgUXVhcnRpbGUiLCBhbnhpZXR5XzIgfiJBbnhpZXR5IiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiKSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCiMjIE1vZGVsIHBlcmZvcm1hbmNlCm1vZGVsX3BlcmZvcm1hbmNlKGV0b2gyKQpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwoZXRvaDIsIHBhbmVsID0gVFJVRSkKCiMjIE1hcmdpbnMKY3Bsb3QoZXRvaDIsICJSUExfNCIsIHdoYXQgPSAicHJlZGljdGlvbiIsIG1haW4gPSAiUGVyY2VudCBMaWtlbGlob29kIG9mIEFsY29ob2wgVXNlIEdpdmVuIFNWSSBRdWFydGlsZSIpCmBgYAoKIyMgQWxjb2hvbCBVc2UgKyBBbGwgVGhlbWVzIApgYGB7cn0KIyByZW1vdmluZyBtc3RhdF81IGFuZCByZWxpZ19hZmZpbCBiZWNhdXNlIG9mIG1pc3NpbmcgZGF0YSBhbmQgbWFkZSBubyBkaWZmZXJlbmNlIGluIGJpdmFyaWF0ZSBtb2RlbHMgCgpldG9oMyA8LSBnbG0oZXRvaF91c2UgfiBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyBsYW5nXzMgICsgCiAgICAgICAgICAgICAgICBtYXhfY2ggKyBhbnhpZXR5XzIgKyBkZXByZXNzaW9uXzIgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMgKyAKICAgICAgICAgICAgICAgIFJQTF9USEVNRTQsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwKICAgICAgICAgICAgICBkYXRhID0gbWhfdmF4X2NvX3N1YikKc3VtbWFyeShldG9oMykKYnJvb206OmdsYW5jZShldG9oMykKYnJvb206OnRpZHkoZXRvaDMsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKGV0b2gzLCBsYWJlbCA9IGxpc3QoYWdlX3lycyB+ICJBZ2UiLCBnZW5kZXJ+ICJHZW5kZXIiLCByYWNlXzUgfiAiUmFjZSIsIGV0aG5pY18zIH4gIkV0aG5pY2l0eSIsIGxhbmdfMyB+ICJQcmVmZXJyZWQgTGFuZ3VhZ2UiLCBhbnhpZXR5XzIgfiJBbnhpZXR5IiwgZGVwcmVzc2lvbl8yIH4gIkRlcHJlc3Npb24iLCBtYXhfY2ggfiAiQ2hhcmxzb24gQ29tb3JiaWRpdHkgSW5kZXgiLCBSUExfVEhFTUUxIH4gIlNvY2Vpb2Vjb25vbWljIFN0YXR1cyIsIFJQTF9USEVNRTIgfiAiSG91c2Vob2xkIENvbXBvc2l0aW9uIiwgUlBMX1RIRU1FMyB+ICJNaW5vcml0eSBTdGF0dXMgYW5kIExhbmd1YWdlIiwgUlBMX1RIRU1FNCB+ICJIb3VzaW5nIGFuZCBUcmFuc3BvcnRhdGlvbiIpLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyMgTW9kZWwgcGVyZm9ybWFuY2UKbW9kZWxfcGVyZm9ybWFuY2UoZXRvaDMpCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChldG9oMywgcGFuZWwgPSBUUlVFKQoKIyMgTWFyZ2lucwpjcGxvdChldG9oMywgIlJQTF9USEVNRTEiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBBbGNvaG9sIFVzZSBHaXZlbiBUSEVNRTEiKQpjcGxvdChldG9oMywgIlJQTF9USEVNRTIiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBBbGNvaG9sIFVzZSBHaXZlbiBUSEVNRTIiKQpjcGxvdChldG9oMywgIlJQTF9USEVNRTMiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBBbGNvaG9sIFVzZSBHaXZlbiBUSEVNRTMiKQpjcGxvdChldG9oMywgIlJQTF9USEVNRTQiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlBlcmNlbnQgTGlrZWxpaG9vZCBvZiBBbGNvaG9sIFVzZSBHaXZlbiBUSEVNRTQiKQpgYGAKCg==