rm(list = ls())
library(htmltab)
# links
WhereDEMO=list(page="https://en.wikipedia.org/wiki/Democracy_Index",
xpath='//*[@id="mw-content-text"]/div[1]/table[6]/tbody')
demo = htmltab(doc = WhereDEMO$page,
which = WhereDEMO$xpath,
encoding = "UTF-8")
library(kableExtra)
library(magrittr)
head(demo, 15)%>%kbl()%>%
kable_styling(bootstrap_options = "striped", font_size = 10)
|
|
Rank >> Full democracies >> Flawed democracies >>
Hybrid regimes >> Authoritarian regimes
|
.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}Δ
Rank >> Full democracies >> Flawed democracies >>
Hybrid regimes >> Authoritarian regimes
|
Country >> Full democracies >> Flawed democracies >>
Hybrid regimes >> Authoritarian regimes
|
Regime type >> Full democracies >> Flawed democracies
>> Hybrid regimes >> Authoritarian regimes
|
Overall score >> Full democracies >> Flawed democracies
>> Hybrid regimes >> Authoritarian regimes
|
Δ Score >> Full democracies >> Flawed democracies >>
Hybrid regimes >> Authoritarian regimes
|
Electoral processand pluralism >> Full democracies >> Flawed
democracies >> Hybrid regimes >> Authoritarian regimes
|
Functioningof government >> Full democracies >> Flawed
democracies >> Hybrid regimes >> Authoritarian regimes
|
Politicalparticipation >> Full democracies >> Flawed
democracies >> Hybrid regimes >> Authoritarian regimes
|
Politicalculture >> Full democracies >> Flawed democracies
>> Hybrid regimes >> Authoritarian regimes
|
Civilliberties >> Full democracies >> Flawed democracies
>> Hybrid regimes >> Authoritarian regimes
|
|
3
|
1
|
NA
|
Norway
|
Full democracy
|
9.75
|
0.06
|
10.00
|
9.64
|
10.00
|
10.00
|
9.12
|
|
4
|
2
|
2
|
New Zealand
|
Full democracy
|
9.37
|
0.12
|
10.00
|
8.93
|
9.44
|
8.75
|
9.71
|
|
5
|
3
|
3
|
Finland
|
Full democracy
|
9.27
|
0.07
|
10.00
|
9.29
|
8.89
|
8.75
|
9.41
|
|
6
|
4
|
1
|
Sweden
|
Full democracy
|
9.26
|
NA
|
9.58
|
9.29
|
8.33
|
10.00
|
9.12
|
|
7
|
5
|
3
|
Iceland
|
Full democracy
|
9.18
|
0.19
|
10.00
|
8.21
|
8.89
|
9.38
|
9.41
|
|
8
|
6
|
1
|
Denmark
|
Full democracy
|
9.09
|
0.06
|
10.00
|
8.93
|
8.33
|
9.38
|
8.82
|
|
9
|
7
|
1
|
Ireland
|
Full democracy
|
9.00
|
0.05
|
10.00
|
7.86
|
8.33
|
9.38
|
9.41
|
|
10
|
8
|
3
|
Taiwan
|
Full democracy
|
8.99
|
0.05
|
10.00
|
9.64
|
7.78
|
8.13
|
9.41
|
|
11
|
9
|
NA
|
Australia
|
Full democracy
|
8.90
|
0.06
|
10.00
|
8.57
|
7.78
|
8.75
|
9.41
|
|
12
|
9
|
2
|
Switzerland
|
Full democracy
|
8.90
|
0.07
|
9.58
|
8.93
|
7.78
|
9.38
|
8.82
|
|
13
|
11
|
1
|
Netherlands
|
Full democracy
|
8.88
|
0.08
|
9.58
|
8.93
|
8.33
|
8.75
|
8.82
|
|
14
|
12
|
7
|
Canada
|
Full democracy
|
8.87
|
0.37
|
10.00
|
8.21
|
8.89
|
8.13
|
9.12
|
|
15
|
13
|
2
|
Uruguay
|
Full democracy
|
8.85
|
0.24
|
10.00
|
8.57
|
7.22
|
8.75
|
9.71
|
|
16
|
14
|
1
|
Luxembourg
|
Full democracy
|
8.68
|
NA
|
10.00
|
8.57
|
6.67
|
8.75
|
9.41
|
|
17
|
15
|
1
|
Germany
|
Full democracy
|
8.67
|
NA
|
9.58
|
8.21
|
8.33
|
8.13
|
9.12
|
WhereIDH='https://github.com/Estadistica-AnalisisPolitico/DataFiles-estadistica/raw/main/HDR21-22_Statistical_Annex_HDI_Table.xlsx'
#carga
idh = rio::import(WhereIDH,skip=4,.name_repair='minimal')
head(idh, 15)%>%kbl()%>%
kable_styling(bootstrap_options = "striped", font_size = 10)
|
|
|
Human Development Index (HDI)
|
|
Life expectancy at birth
|
|
Expected years of schooling
|
|
Mean years of schooling
|
|
Gross national income (GNI) per capita
|
|
GNI per capita rank minus HDI rank
|
|
HDI rank
|
|
HDI rank
|
Country
|
Value
|
NA
|
(years)
|
NA
|
(years)
|
NA
|
(years)
|
NA
|
(2017 PPP $)
|
NA
|
NA
|
NA
|
NA
|
|
NA
|
NA
|
2021
|
NA
|
2021
|
NA
|
2021
|
a
|
2021
|
a
|
2021
|
NA
|
2021
|
b
|
2020
|
|
NA
|
VERY HIGH HUMAN DEVELOPMENT
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
|
1
|
Switzerland
|
0.96199999999999997
|
NA
|
83.987200000000001
|
NA
|
16.50029945
|
NA
|
13.85966015
|
NA
|
66933.004539999994
|
NA
|
5
|
NA
|
3
|
|
2
|
Norway
|
0.96099999999999997
|
NA
|
83.233900000000006
|
NA
|
18.185199740000002
|
c
|
13.00362968
|
NA
|
64660.106220000001
|
NA
|
6
|
NA
|
1
|
|
3
|
Iceland
|
0.95899999999999996
|
NA
|
82.678200000000004
|
NA
|
19.163059230000002
|
c
|
13.76716995
|
NA
|
55782.049809999997
|
NA
|
11
|
NA
|
2
|
|
4
|
Hong Kong, China (SAR)
|
0.95199999999999996
|
NA
|
85.473399999999998
|
d
|
17.278169630000001
|
NA
|
12.22620964
|
NA
|
62606.845399999998
|
NA
|
6
|
NA
|
4
|
|
5
|
Australia
|
0.95099999999999996
|
NA
|
84.526499999999999
|
NA
|
21.054590229999999
|
c
|
12.726819989999999
|
NA
|
49238.433349999999
|
NA
|
18
|
NA
|
5
|
|
6
|
Denmark
|
0.94799999999999995
|
NA
|
81.375299999999996
|
NA
|
18.714799880000001
|
c
|
12.96049023
|
NA
|
60364.785949999998
|
NA
|
6
|
NA
|
5
|
|
7
|
Sweden
|
0.94699999999999995
|
NA
|
82.9833
|
NA
|
19.418529509999999
|
c
|
12.609720230000001
|
NA
|
54489.37401
|
NA
|
9
|
NA
|
9
|
|
8
|
Ireland
|
0.94499999999999995
|
NA
|
81.997600000000006
|
NA
|
18.94522095
|
c
|
11.58222303
|
e
|
76168.984429999997
|
f
|
-3
|
NA
|
8
|
|
9
|
Germany
|
0.94199999999999995
|
NA
|
80.630099999999999
|
NA
|
17.010139469999999
|
NA
|
14.090966910000001
|
e
|
54534.216820000001
|
NA
|
6
|
NA
|
7
|
|
10
|
Netherlands
|
0.94099999999999995
|
NA
|
81.687299999999993
|
NA
|
18.693165220000001
|
c,e
|
12.581629749999999
|
NA
|
55979.411
|
NA
|
3
|
NA
|
10
|
|
11
|
Finland
|
0.94
|
NA
|
82.0381
|
NA
|
19.051929470000001
|
c
|
12.87362003
|
NA
|
49452.166720000001
|
NA
|
11
|
NA
|
12
|
|
12
|
Singapore
|
0.93899999999999995
|
NA
|
82.754499999999993
|
NA
|
16.524320599999999
|
NA
|
11.924880030000001
|
NA
|
90918.644709999993
|
f
|
-10
|
NA
|
10
|
idh=idh[,c(2,3,5,7,9,11)]
demo=demo[,-c(1,2,6)]
# recombrando columns
newDemo=c("Pais","RegimeType","Score","Electoral","Functioning","participation","culture",'Civilliberties')
newIDH=c('Pais','puntuacion','EsperanzaVida','EscolaridadDuracion','EscolaridadPromedio','PBI')
names(demo)=newDemo
names(idh)=newIDH
#seleccionando filas
idh=idh[c(1:202),]
idh=idh[!is.na(idh$Pais),]
# tipo de datos
str(demo)
## 'data.frame': 167 obs. of 8 variables:
## $ Pais : chr " Norway" " New Zealand" " Finland" " Sweden" ...
## $ RegimeType : chr "Full democracy" "Full democracy" "Full democracy" "Full democracy" ...
## $ Score : chr "9.75" "9.37" "9.27" "9.26" ...
## $ Electoral : chr "10.00" "10.00" "10.00" "9.58" ...
## $ Functioning : chr "9.64" "8.93" "9.29" "9.29" ...
## $ participation : chr "10.00" "9.44" "8.89" "8.33" ...
## $ culture : chr "10.00" "8.75" "8.75" "10.00" ...
## $ Civilliberties: chr "9.12" "9.71" "9.41" "9.12" ...
str(idh)
## 'data.frame': 201 obs. of 6 variables:
## $ Pais : chr "Country" "VERY HIGH HUMAN DEVELOPMENT" "Switzerland" "Norway" ...
## $ puntuacion : chr "Value" NA "0.96199999999999997" "0.96099999999999997" ...
## $ EsperanzaVida : chr "(years)" NA "83.987200000000001" "83.233900000000006" ...
## $ EscolaridadDuracion: chr "(years)" NA "16.50029945" "18.185199740000002" ...
## $ EscolaridadPromedio: chr "(years)" NA "13.85966015" "13.00362968" ...
## $ PBI : chr "(2017 PPP $)" NA "66933.004539999994" "64660.106220000001" ...
OrdinalVector=c('Authoritarian','Hybrid regime','Flawed democracy','Full democracy')
demo$RegimeType=factor(demo$RegimeType,
levels = OrdinalVector,
ordered = T)
# formateo: texto a numero
idh[,-1]=lapply(idh[,-1], as.numeric)
## Warning in lapply(idh[, -1], as.numeric): NAs introduced by coercion
## Warning in lapply(idh[, -1], as.numeric): NAs introduced by coercion
## Warning in lapply(idh[, -1], as.numeric): NAs introduced by coercion
## Warning in lapply(idh[, -1], as.numeric): NAs introduced by coercion
## Warning in lapply(idh[, -1], as.numeric): NAs introduced by coercion
demo[,3:8]=lapply(demo[,3:8],as.numeric)
idh[!complete.cases(idh[,-1]),]%>%kbl()%>%
kable_styling(bootstrap_options = "striped", font_size = 10)
|
|
Pais
|
puntuacion
|
EsperanzaVida
|
EscolaridadDuracion
|
EscolaridadPromedio
|
PBI
|
|
1
|
Country
|
NA
|
NA
|
NA
|
NA
|
NA
|
|
3
|
VERY HIGH HUMAN DEVELOPMENT
|
NA
|
NA
|
NA
|
NA
|
NA
|
|
70
|
HIGH HUMAN DEVELOPMENT
|
NA
|
NA
|
NA
|
NA
|
NA
|
|
120
|
MEDIUM HUMAN DEVELOPMENT
|
NA
|
NA
|
NA
|
NA
|
NA
|
|
165
|
LOW HUMAN DEVELOPMENT
|
NA
|
NA
|
NA
|
NA
|
NA
|
|
198
|
OTHER COUNTRIES OR TERRITORIES
|
NA
|
NA
|
NA
|
NA
|
NA
|
|
199
|
Korea (Democratic People’s Rep. of)
|
NA
|
73.2845
|
10.78317
|
NA
|
NA
|
|
200
|
Monaco
|
NA
|
85.9463
|
NA
|
NA
|
NA
|
|
201
|
Nauru
|
NA
|
63.6170
|
11.69042
|
NA
|
17729.741
|
|
202
|
Somalia
|
NA
|
55.2803
|
NA
|
NA
|
1017.968
|
idh=idh[complete.cases(idh[,-1]),]
row.names(idh)=NULL # resetear numero de filas
##Merge
idh$Pais= trimws(idh$Pais,whitespace = "[\\h\\v]")
demo$Pais= trimws(demo$Pais,whitespace = "[\\h\\v]")
idh[idh$Pais=="Bolivia (Plurinational State of)",'Pais']= "Bolivia"
idh[idh$Pais=="Cabo Verde",'Pais']= "Cape Verde"
idh[idh$Pais=="Czechia",'Pais']= "Czech Republic"
idh[idh$Pais=="Congo (Democratic Republic of the)",'Pais']= "Democratic Republic of the Congo"
idh[idh$Pais=="Timor-Leste",'Pais']= "East Timor"
idh[idh$Pais=="Eswatini (Kingdom of)",'Pais']= "Eswatini"
idh[idh$Pais=="Hong Kong, China (SAR)",'Pais']= "Hong Kong"
idh[idh$Pais=="Iran (Islamic Republic of)",'Pais']= "Iran"
idh[idh$Pais=="Côte d'Ivoire",'Pais']= "Ivory Coast"
idh[idh$Pais=="Lao People's Democratic Republic" ,'Pais']= "Laos"
idh[idh$Pais=="Moldova (Republic of)",'Pais']= "Moldova"
idh[idh$Pais=="Palestine, State of",'Pais']= "Palestine"
idh[idh$Pais=="Congo",'Pais']= "Republic of the Congo"
idh[idh$Pais=="Russian Federation",'Pais']= "Russia"
idh[idh$Pais=="Korea (Republic of)",'Pais']= "South Korea"
idh[idh$Pais=="Syrian Arab Republic",'Pais']="Syria"
idh[idh$Pais=="Tanzania (United Republic of)",'Pais']= "Tanzania"
idh[idh$Pais=="Türkiye" ,'Pais']= "Turkey"
idh[idh$Pais=="Venezuela (Bolivarian Republic of)",'Pais']="Venezuela"
idh[idh$Pais=="Viet Nam" ,'Pais']="Vietnam"
idhdemo=merge(idh,demo)
summary(idhdemo)
## Pais puntuacion EsperanzaVida EscolaridadDuracion
## Length:165 Min. :0.3940 Min. :52.53 Min. : 6.957
## Class :character 1st Qu.:0.5860 1st Qu.:65.27 1st Qu.:11.468
## Mode :character Median :0.7310 Median :71.91 Median :13.644
## Mean :0.7204 Mean :71.22 Mean :13.607
## 3rd Qu.:0.8480 3rd Qu.:76.94 3rd Qu.:15.765
## Max. :0.9620 Max. :85.47 Max. :21.055
## EscolaridadPromedio PBI RegimeType Score
## Min. : 2.115 Min. : 731.8 Authoritarian :58 Min. :0.320
## 1st Qu.: 5.916 1st Qu.: 4566.3 Hybrid regime :34 1st Qu.:3.220
## Median : 9.424 Median :12578.2 Flawed democracy:53 Median :5.610
## Mean : 8.926 Mean :20108.4 Full democracy :20 Mean :5.284
## 3rd Qu.:11.654 3rd Qu.:30690.5 3rd Qu.:7.060
## Max. :14.091 Max. :90918.6 Max. :9.750
## Electoral Functioning participation culture
## Min. : 0.000 Min. :0.000 Min. : 0.000 Min. : 1.250
## 1st Qu.: 1.500 1st Qu.:2.710 1st Qu.: 3.890 1st Qu.: 3.750
## Median : 7.000 Median :5.000 Median : 5.560 Median : 5.000
## Mean : 5.636 Mean :4.623 Mean : 5.401 Mean : 5.389
## 3rd Qu.: 9.170 3rd Qu.:6.430 3rd Qu.: 6.670 3rd Qu.: 6.250
## Max. :10.000 Max. :9.640 Max. :10.000 Max. :10.000
## Civilliberties
## Min. :0.000
## 1st Qu.:3.240
## Median :5.590
## Mean :5.378
## 3rd Qu.:7.650
## Max. :9.710
library(BBmisc)
##
## Attaching package: 'BBmisc'
## The following object is masked from 'package:base':
##
## isFALSE
boxplot(normalize(idhdemo[,c(3:6)],method='range',range=c(0,10)))

boxplot(normalize(idhdemo[,c(3:6)],method='standardize'))

idhdemo[,c(3:6)]=normalize(idhdemo[,c(3:6)],method='standardize')
cor(idhdemo[,c(3:6)])
## EsperanzaVida EscolaridadDuracion EscolaridadPromedio
## EsperanzaVida 1.0000000 0.8057425 0.7659252
## EscolaridadDuracion 0.8057425 1.0000000 0.8159101
## EscolaridadPromedio 0.7659252 0.8159101 1.0000000
## PBI 0.7838335 0.7311884 0.7139462
## PBI
## EsperanzaVida 0.7838335
## EscolaridadDuracion 0.7311884
## EscolaridadPromedio 0.7139462
## PBI 1.0000000
dataClus=idhdemo[,c(3:6)]
row.names(dataClus)=idhdemo$Pais
library(cluster)
g.dist = daisy(dataClus, metric="gower")
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
fviz_nbclust(dataClus, pam,diss=g.dist,method = "gap_stat",k.max = 10,verbose = F)

set.seed(123)
res.pam=pam(g.dist,3,cluster.only = F)
#nueva columna
dataClus$pam=res.pam$cluster
# ver
head(dataClus,15)%>%kbl()%>%kable_styling()
|
|
EsperanzaVida
|
EscolaridadDuracion
|
EscolaridadPromedio
|
PBI
|
pam
|
|
Afghanistan
|
-1.1720163
|
-1.1223433
|
-1.7899045
|
-0.9036118
|
1
|
|
Albania
|
0.6655042
|
0.2825071
|
0.7113515
|
-0.2954005
|
2
|
|
Algeria
|
0.6546035
|
0.3425723
|
-0.2580009
|
-0.4600137
|
2
|
|
Angola
|
-1.2150350
|
-0.4816372
|
-1.0570320
|
-0.7236515
|
1
|
|
Argentina
|
0.5293798
|
1.4330952
|
0.6694140
|
0.0403686
|
2
|
|
Armenia
|
0.1046748
|
-0.1644630
|
0.7245624
|
-0.3434922
|
2
|
|
Australia
|
1.6888036
|
2.5007014
|
1.1453419
|
1.4396130
|
3
|
|
Austria
|
1.3148582
|
0.8062709
|
1.0036890
|
1.6560856
|
3
|
|
Azerbaijan
|
-0.2350715
|
-0.0368326
|
0.4873350
|
-0.2891916
|
2
|
|
Bahrain
|
0.9571050
|
0.9035056
|
0.6390787
|
0.9582010
|
3
|
|
Bangladesh
|
0.1475666
|
-0.3910236
|
-0.4659696
|
-0.7233309
|
2
|
|
Belarus
|
0.1547871
|
0.5249118
|
0.9696084
|
-0.0622427
|
2
|
|
Belgium
|
1.3528009
|
2.0137324
|
1.0395414
|
1.5905903
|
3
|
|
Benin
|
-1.4462954
|
-0.9535138
|
-1.3922662
|
-0.8252918
|
1
|
|
Bhutan
|
0.0757291
|
-0.1281194
|
-1.1314933
|
-0.5273580
|
1
|
fviz_silhouette(res.pam,print.summary = F)

silPAM=data.frame(res.pam$silinfo$widths)
silPAM$country=row.names(silPAM)
poorPAM=silPAM[silPAM$sil_width<0,'country']%>%sort()
poorPAM
## [1] "Chile" "Latvia"
##Promedio de cada Cluster
aggregate(.~ pam, data=dataClus,mean)
## pam EsperanzaVida EscolaridadDuracion EscolaridadPromedio PBI
## 1 1 -1.0811743 -1.0681695 -1.1822831 -0.8111138
## 2 2 0.1340138 0.1819924 0.3393855 -0.2301917
## 3 3 1.2520905 1.1502463 1.0317146 1.5181170
idhdemo$pamIDHpoor=idhdemo$Pais%in%poorPAM
idhdemo$pamIDH=as.ordered(dataClus$pam)
dataClus$pam=NULL
##Jerarquización
fviz_nbclust(dataClus, hcut, diss = g.dist, method = "gap_stat", k.max = 10, verbose = F, hc_func= "agnes")

###Vía AGNES
set.seed(123)
library(factoextra)
res.agnes<- hcut(g.dist, k = 3,hc_func='agnes',hc_method = "ward.D")
dataClus$agnes=res.agnes$cluster
# ver
head(dataClus,15)%>%kbl()%>%kable_styling()
|
|
EsperanzaVida
|
EscolaridadDuracion
|
EscolaridadPromedio
|
PBI
|
agnes
|
|
Afghanistan
|
-1.1720163
|
-1.1223433
|
-1.7899045
|
-0.9036118
|
1
|
|
Albania
|
0.6655042
|
0.2825071
|
0.7113515
|
-0.2954005
|
2
|
|
Algeria
|
0.6546035
|
0.3425723
|
-0.2580009
|
-0.4600137
|
2
|
|
Angola
|
-1.2150350
|
-0.4816372
|
-1.0570320
|
-0.7236515
|
1
|
|
Argentina
|
0.5293798
|
1.4330952
|
0.6694140
|
0.0403686
|
2
|
|
Armenia
|
0.1046748
|
-0.1644630
|
0.7245624
|
-0.3434922
|
2
|
|
Australia
|
1.6888036
|
2.5007014
|
1.1453419
|
1.4396130
|
3
|
|
Austria
|
1.3148582
|
0.8062709
|
1.0036890
|
1.6560856
|
3
|
|
Azerbaijan
|
-0.2350715
|
-0.0368326
|
0.4873350
|
-0.2891916
|
2
|
|
Bahrain
|
0.9571050
|
0.9035056
|
0.6390787
|
0.9582010
|
2
|
|
Bangladesh
|
0.1475666
|
-0.3910236
|
-0.4659696
|
-0.7233309
|
2
|
|
Belarus
|
0.1547871
|
0.5249118
|
0.9696084
|
-0.0622427
|
2
|
|
Belgium
|
1.3528009
|
2.0137324
|
1.0395414
|
1.5905903
|
3
|
|
Benin
|
-1.4462954
|
-0.9535138
|
-1.3922662
|
-0.8252918
|
1
|
|
Bhutan
|
0.0757291
|
-0.1281194
|
-1.1314933
|
-0.5273580
|
2
|
fviz_silhouette(res.agnes,print.summary = F)

silAGNES=data.frame(res.agnes$silinfo$widths)
silAGNES$country=row.names(silAGNES)
poorAGNES=silAGNES[silAGNES$sil_width<0,'country']%>%sort()
poorAGNES
## [1] "Bahrain" "Bhutan" "Cape Verde" "Czech Republic"
## [5] "Estonia" "Greece" "Kuwait" "Lithuania"
## [9] "Poland" "Portugal" "Saudi Arabia" "Spain"
aggregate(.~ agnes, data=dataClus,mean)
## agnes EsperanzaVida EscolaridadDuracion EscolaridadPromedio PBI
## 1 1 -1.1025984 -1.0855778 -1.1832237 -0.81636850
## 2 2 0.2356679 0.2867675 0.3801487 -0.08496801
## 3 3 1.3867428 1.2105608 1.1283409 1.76038883
idhdemo$agnesIDHpoor=idhdemo$Pais%in%poorAGNES
idhdemo$agnesIDH=as.ordered(dataClus$agnes)
dataClus$agnes=NULL
##Estrategia divisiva
fviz_nbclust(dataClus, hcut,diss=g.dist,method = "gap_stat",k.max = 10,verbose = F,hc_func = "diana")

set.seed(123)
res.diana <- hcut(g.dist, k = 4,hc_func='diana')
dataClus$diana=res.diana$cluster
# veamos
head(dataClus,15)%>%kbl%>%kable_styling()
|
|
EsperanzaVida
|
EscolaridadDuracion
|
EscolaridadPromedio
|
PBI
|
diana
|
|
Afghanistan
|
-1.1720163
|
-1.1223433
|
-1.7899045
|
-0.9036118
|
1
|
|
Albania
|
0.6655042
|
0.2825071
|
0.7113515
|
-0.2954005
|
2
|
|
Algeria
|
0.6546035
|
0.3425723
|
-0.2580009
|
-0.4600137
|
2
|
|
Angola
|
-1.2150350
|
-0.4816372
|
-1.0570320
|
-0.7236515
|
1
|
|
Argentina
|
0.5293798
|
1.4330952
|
0.6694140
|
0.0403686
|
2
|
|
Armenia
|
0.1046748
|
-0.1644630
|
0.7245624
|
-0.3434922
|
2
|
|
Australia
|
1.6888036
|
2.5007014
|
1.1453419
|
1.4396130
|
3
|
|
Austria
|
1.3148582
|
0.8062709
|
1.0036890
|
1.6560856
|
3
|
|
Azerbaijan
|
-0.2350715
|
-0.0368326
|
0.4873350
|
-0.2891916
|
2
|
|
Bahrain
|
0.9571050
|
0.9035056
|
0.6390787
|
0.9582010
|
3
|
|
Bangladesh
|
0.1475666
|
-0.3910236
|
-0.4659696
|
-0.7233309
|
4
|
|
Belarus
|
0.1547871
|
0.5249118
|
0.9696084
|
-0.0622427
|
2
|
|
Belgium
|
1.3528009
|
2.0137324
|
1.0395414
|
1.5905903
|
3
|
|
Benin
|
-1.4462954
|
-0.9535138
|
-1.3922662
|
-0.8252918
|
1
|
|
Bhutan
|
0.0757291
|
-0.1281194
|
-1.1314933
|
-0.5273580
|
4
|
fviz_silhouette(res.diana,print.summary = F)

silDIANA=data.frame(res.diana$silinfo$widths)
silDIANA$country=row.names(silDIANA)
poorDIANA=silDIANA[silDIANA$sil_width<0,'country']%>%sort()
poorDIANA
## [1] "Azerbaijan" "Ecuador" "Mongolia" "Turkmenistan"