Preliminaries

Download the vegan package

Only do this once, then comment out of the script. You may have already done this this for a previous assignment.

#install.packages("vegan")

Load the libraries

library(ggplot2)
library(vegan)
## Warning: package 'vegan' was built under R version 4.2.2
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4

Load the msleep package

The mammals dataset is a classic dataset in the MASS package. msleep is an updated version of the data in the ggplot2 package that includes more numeric data (e.g. hours of sleep) and categorical data (e.g. if a species is endangered).

#make sure you've loaded ggplot2 w/ library(ggplot2_
data(msleep)

Subset numeric variables

msleep has a mixture of numeric and categorical variables. We want only the numeric data and a few key labels, which I’ll also have to set up a special way. Don’t worry about the details.

First, we will subset all the columns we may want:

msleep_num <- msleep[,c("sleep_total","sleep_rem",
                        "sleep_cycle","awake","brainwt" ,
                        "bodywt",
                        "vore","order")]

All data should be continuous numeric that can take on decimal values, except the last 2

summary(msleep_num[,-c(7:8)])
##   sleep_total      sleep_rem      sleep_cycle         awake      
##  Min.   : 1.90   Min.   :0.100   Min.   :0.1167   Min.   : 4.10  
##  1st Qu.: 7.85   1st Qu.:0.900   1st Qu.:0.1833   1st Qu.:10.25  
##  Median :10.10   Median :1.500   Median :0.3333   Median :13.90  
##  Mean   :10.43   Mean   :1.875   Mean   :0.4396   Mean   :13.57  
##  3rd Qu.:13.75   3rd Qu.:2.400   3rd Qu.:0.5792   3rd Qu.:16.15  
##  Max.   :19.90   Max.   :6.600   Max.   :1.5000   Max.   :22.10  
##                  NA's   :22      NA's   :51                      
##     brainwt            bodywt        
##  Min.   :0.00014   Min.   :   0.005  
##  1st Qu.:0.00290   1st Qu.:   0.174  
##  Median :0.01240   Median :   1.670  
##  Mean   :0.28158   Mean   : 166.136  
##  3rd Qu.:0.12550   3rd Qu.:  41.750  
##  Max.   :5.71200   Max.   :6654.000  
##  NA's   :27

We can look at these data with a scatterplot matrix

# add pairs()
pairs(msleep_num[,-c(7:8)])

The data are in tibble format (tbl_df)

is(msleep_num)
## [1] "tbl_df"     "tbl"        "data.frame" "list"       "oldClass"  
## [6] "vector"

Convert to dataframe because I don’t like tibbles!

# add data.frame()
msleep_num <- data.frame(msleep_num)

Remove missing values with na.omit()

#add na.omit()
msleep_num <-na.omit(msleep_num)
msleep_num
##    sleep_total sleep_rem sleep_cycle awake brainwt  bodywt    vore
## 4         14.9       2.3   0.1333333   9.1 0.00029   0.019    omni
## 5          4.0       0.7   0.6666667  20.0 0.42300 600.000   herbi
## 9         10.1       2.9   0.3333333  13.9 0.07000  14.000   carni
## 12         9.4       0.8   0.2166667  14.6 0.00550   0.728   herbi
## 14        12.5       1.5   0.1166667  11.5 0.00640   0.420   herbi
## 17         9.1       1.4   0.1500000  14.9 0.00014   0.005    omni
## 18        17.4       3.1   0.3833333   6.6 0.01080   3.500   carni
## 20        18.0       4.9   0.3333333   6.0 0.00630   1.700    omni
## 22        19.7       3.9   0.1166667   4.3 0.00030   0.023 insecti
## 23         2.9       0.6   1.0000000  21.1 0.65500 521.000   herbi
## 25        10.1       3.5   0.2833333  13.9 0.00350   0.770    omni
## 28        12.5       3.2   0.4166667  11.5 0.02560   3.300   carni
## 29         9.8       1.1   0.5500000  14.2 0.00500   0.200    omni
## 34         8.0       1.9   1.5000000  16.0 1.32000  62.000    omni
## 38        10.1       1.2   0.7500000  13.9 0.17900   6.800    omni
## 40        14.3       3.1   0.2000000   9.7 0.00100   0.120   herbi
## 42        12.5       1.4   0.1833333  11.5 0.00040   0.022   herbi
## 43        19.9       2.0   0.2000000   4.1 0.00025   0.010 insecti
## 48         8.4       0.9   0.4166667  15.6 0.01210   2.500   herbi
## 50         9.7       1.4   1.4166667  14.3 0.44000  52.200    omni
## 54         9.4       1.0   0.6666667  14.6 0.18000  25.235    omni
## 64        13.0       2.4   0.1833333  11.0 0.00190   0.320   herbi
## 67         8.4       2.1   0.1666667  15.6 0.00120   0.075 insecti
## 68        11.3       1.1   0.1500000  12.7 0.00118   0.148   herbi
## 71        13.8       3.4   0.2166667  10.2 0.00400   0.101   herbi
## 74         9.1       2.4   0.5000000  14.9 0.18000  86.250    omni
## 77         4.4       1.0   0.9000000  19.6 0.16900 207.501   herbi
## 79         8.9       2.6   0.2333333  15.1 0.00250   0.104    omni
## 83         9.8       2.4   0.3500000  14.2 0.05040   4.230   carni
##              order
## 4     Soricomorpha
## 5     Artiodactyla
## 9        Carnivora
## 12        Rodentia
## 14        Rodentia
## 17    Soricomorpha
## 18       Cingulata
## 20 Didelphimorphia
## 22      Chiroptera
## 23  Perissodactyla
## 25  Erinaceomorpha
## 28       Carnivora
## 29        Primates
## 34        Primates
## 38        Primates
## 40        Rodentia
## 42        Rodentia
## 43      Chiroptera
## 48      Lagomorpha
## 50        Primates
## 54        Primates
## 64        Rodentia
## 67    Soricomorpha
## 68        Rodentia
## 71        Rodentia
## 74    Artiodactyla
## 77  Perissodactyla
## 79      Scandentia
## 83       Carnivora

Principal components analysis - base R

Principal component analysis is typically done using base R functions using the prcomp() function.

Run the PCA.

# add prcomp()
pca.out <- prcomp(msleep_num[,-c(7,8)], scale = TRUE)

Plot the biplot with biplot()

# add biplot()
biplot(pca.out)

Principal components analysis - vegan

The base R PCA output isn’t very flexible. The R package vegan is has a function rda() which does PCA and has many more nice features.

For another example see https://rpubs.com/brouwern/veganpca

Run the PCA using vegan::rda()

rda.out <- vegan::rda(msleep_num[,-c(7,8)], scale = TRUE)

Extract what are known as the PCA scores using the scores() function.

# add scores()
rda_scores <- scores(rda.out)

vegan let’s you plot a scatterplot of the scores or a full biplot with the arrows (vectors). The displays the 2D scatterplot plot without the arrows. For more info on what this code does, see the RPubs document linked above.

# add biplot()
biplot(rda.out, 
       display = "sites")

vegan has some nice tools for grouping things.

In this dataset I don’t expect there to be any interesting groups, but I’ll check anyway.

PCA is an exploratory method. First I’ll see if there are any groupings based on diet (“vore”). Not really.

#make the plot with biplot()
# add biplot()
biplot(rda.out, display = "sites")

#add "hulls" with the ordihull()function
# add ordihull()
ordihull(rda.out,
         group = msleep_num$vore,
         col = 1:7,
         lty = 1:7,
         lwd = c(3,6))

Task

Copy the previous code chunk and change the group so that the taxonomic order is plotted (column “order”). Upload the image to this assignment. Consider if there are any meaningful groups.

## add your code here
#make the plot with biplot()
# add biplot()
biplot(rda.out, display = "sites")

#add "hulls" with the ordihull()function
# add ordihull()
ordihull(rda.out,
         group = msleep_num$order,
         col = 1:7,
         lty = 1:7,
         lwd = c(3,6))