# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("TSLA", "AAPL", "NFLX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol)%>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl%>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "NFLX" "TSLA"
# weights
weights <- c(.25, .25, .2)
weights
## [1] 0.25 0.25 0.20
w_tble <- tibble(symbols, weights)
w_tble
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 NFLX 0.25
## 3 TSLA 0.2
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tble,
rebalance_on ="months",
col_rename = "Returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date Returns
## <date> <dbl>
## 1 2013-01-31 0.126
## 2 2013-02-28 0.0111
## 3 2013-03-28 0.0191
## 4 2013-04-30 0.104
## 5 2013-05-31 0.136
## 6 2013-06-28 -0.0301
## 7 2013-07-31 0.114
## 8 2013-08-30 0.103
## 9 2013-09-30 0.0429
## 10 2013-10-31 -0.00445
## # … with 50 more rows
market_returns_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")%>%
# Convert prices to Returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfoli_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfoli_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.775
portfoli_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5,
color = tidyquant::palette_light()[3]) +
labs(y = "Porfolio Returns",
x = "Market Returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
There isn’t a very strong relation between my portfolio and the market. The dot’s stray from the line so there isnt a strong linear relationship.