### Setup
getwd()
## [1] "C:/Users/Jerome/Documents/0000_Work_Files/0000_Montgomery_College/Data_Science_101/Data_101_Fall_2022/Homework_10_Due_14Nov22"
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.5 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.3      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(dplyr)
library(readr)
library(infer)
library(ggplot2)
library(hablar)
## 
## Attaching package: 'hablar'
## 
## The following object is masked from 'package:forcats':
## 
##     fct
## 
## The following object is masked from 'package:dplyr':
## 
##     na_if
## 
## The following object is masked from 'package:tibble':
## 
##     num
### Question 1
### I wanted to find a file that had a good mix of continuous, discrete, and categorical variables, and from which I could tell some sort of story. I found this dataset on Kaggle: https://www.kaggle.com/datasets/whenamancodes/credit-card-customers-prediction  The data set has data on one bank's credit card customers. The data were used to determine how many credit card customers "churned," or left the bank for other credit card vendors. I'm not interested in that aspect of the dataset, but I am interested in the demographics in relation to credit card limits and the extent to which people use their cards. 

### There are 10,127 observations and 23 variables in the data set. Obviously I don't need all 23 variables. I selected 12 variables; again, far too many for this assignment, but I wanted a sufficient # of variables so I could play around w/ the data if I wanted to do so. The variables I chose are as follows:

#1  Customer Age    
#2  Customer Gender -   F, M
#3  # Dependents    
#4  Customer Education -    7 Categories Ranging from Unknown, then Uneducated, high school, college, graduate, post-graduate, doctorate. No explanation was given, so I have no clue how to rank these from low to high. Note there is no way to distinguish between some high school and a high school graduate. Does graduate mean "this person graduated," or does it mean "some graduate school?" The documentation doesn't say. 
#5  Customer Marital Status -   S, M, D, U Note there is no code for widow or widower
#6  Credit Card Type -  Blue, Silver, Gold, Platinum
#7  # of Months with Bank   (Descriptives run for this variable "Months_on_book")
#8  # of Customer's  Bank Products  
#9  Customer Credit Limit   (Descriptives run for this variable "Credit_Limit")
#10 Total Annual $ Value of the Customer's Transactions (Descriptives run for this Variable "Total_Trans_Amt")  
#11 Total # of Customer's  Annual Transactions  
#12 Mean Card Utilization Ratio - Formula not given



###
# Question 2 - Descriptives for 2 - 3 key quantitative variables.  1st import the data into R. 

bc <- read_csv("BankChurners.csv", show_col_types = FALSE)
# Question 2 (con't.) - Delete unwanted columns
bc1 <- bc[c(3,4,5,6,7,9,10,11,14,18,19,21)]
names(bc1)
##  [1] "Customer_Age"             "Gender"                  
##  [3] "Dependent_count"          "Education_Level"         
##  [5] "Marital_Status"           "Card_Category"           
##  [7] "Months_on_book"           "Total_Relationship_Count"
##  [9] "Credit_Limit"             "Total_Trans_Amt"         
## [11] "Total_Trans_Ct"           "Avg_Utilization_Ratio"
#Question 2 (con't) - Calculate descriptives for Months_on_book, Credit_Limit, and Total_Trans_Amt.I will do all descriptives for each variable sequentially, starting w/ Months_on_book. Note there are NAs in this data set (I lucked out).

mean(bc1$Months_on_book)
## [1] 35.92841
median(bc1$Months_on_book)
## [1] 36
which.max(table(bc1$Months_on_book)) %>% names
## [1] "36"
min(bc1$Months_on_book)
## [1] 13
max(bc1$Months_on_book)
## [1] 56
length(bc1$Months_on_book)
## [1] 10127
sd(bc1$Months_on_book)
## [1] 7.986416
# Question 2 (con't.) - Descriptives for Credit_Limit

mean(bc1$Credit_Limit)
## [1] 8631.954
median(bc1$Credit_Limit)
## [1] 4549
which.max(table(bc1$Credit_Limit)) %>% names
## [1] "34516"
min(bc1$Credit_Limit)
## [1] 1438.3
max(bc1$Credit_Limit)
## [1] 34516
length(bc1$Credit_Limit)
## [1] 10127
sd(bc1$Credit_Limit)
## [1] 9088.777
# Verify the Mode and Median are the same in Credit_Limit

unique(bc1$Credit_Limit)
##    [1] 12691.0  8256.0  3418.0  3313.0  4716.0  4010.0 34516.0 29081.0 22352.0
##   [10] 11656.0  6748.0  9095.0 11751.0  8547.0  2436.0  4234.0 30367.0 13535.0
##   [19]  3193.0 14470.0 20979.0  1438.3  4470.0  2492.0 12217.0  7768.0 14784.0
##   [28] 10215.0 10100.0  4785.0  2753.0  2451.0  8923.0  2650.0 12555.0  3520.0
##   [37]  3035.0 15433.0  3672.0  7882.0 32426.0  6205.0 17304.0  3906.0  9830.0
##   [46]  2283.0  2548.0 19458.0  4745.0  2622.0  3171.0 19763.0 15769.0  3298.0
##   [55]  2802.0  4458.0  6273.0  3336.0  3436.0  5926.0 23957.0 14734.0  6584.0
##   [64]  2084.0  1687.0 25300.0  2216.0  2910.0 22913.0 24312.0  5272.0  7000.0
##   [73]  7038.0  2536.0 28904.0  8567.0  2158.0 10133.0  3085.0 19040.0  4026.0
##   [82] 12756.0  5266.0  9930.0 31302.0  6576.0  2664.0  2535.0  1709.0  3454.0
##   [91]  3789.0  9689.0  5449.0 23032.0  2940.0  3031.0  1862.0  8358.0 14450.0
##  [100] 33791.0  8466.0 15088.0  3263.0  1494.0 13551.0 18886.0 11976.0  9964.0
##  [109] 24159.0  5362.0  3174.0 12262.0  3788.0  2926.0 32090.0 11669.0 13532.0
##  [118] 11888.0  2393.0  6111.0 19270.0  3710.0  3235.0 11749.0  7753.0 10408.0
##  [127]  3967.0  8025.0  9036.0 14926.0  6335.0 14979.0  2732.0  2250.0 10916.0
##  [136]  5349.0  9366.0 21617.0 13860.0 18386.0  2405.0  2154.0  2038.0  8135.0
##  [145]  9364.0 32643.0  3195.0  2852.0  4224.0 20459.0  3482.0  3065.0  2185.0
##  [154]  1611.0  2822.0 32975.0 15875.0  6703.0  3212.0  9797.0 10400.0 26792.0
##  [163]  3006.0 19482.0  3356.0  5771.0 11106.0  2890.0  3380.0 21331.0 12860.0
##  [172]  6278.0  9355.0 20758.0 14612.0 27259.0  6347.0 21592.0  3449.0  6028.0
##  [181] 18214.0 16393.0  7871.0  5288.0 11376.0 12302.0 10514.0  2619.0 24407.0
##  [190]  2377.0 11086.0 11432.0 13258.0  2571.0  5781.0  7872.0 11127.0  1857.0
##  [199]  1913.0  3839.0  2115.0 27756.0 13878.0  3106.0 18871.0  5207.0 17965.0
##  [208]  2733.0  8863.0 11107.0 21573.0  2859.0  5269.0  3387.0  1982.0  4645.0
##  [217]  2189.0  2442.0 21304.0  7577.0  3234.0  4469.0  3616.0  3252.0  2358.0
##  [226] 22322.0  3133.0  3540.0  6990.0 24396.0  2474.0  5214.0  9512.0  3187.0
##  [235]  3353.0  2290.0  5279.0 23603.0  2601.0  6363.0  8029.0  2410.0  3401.0
##  [244]  2260.0 17682.0  4206.0 23018.0  5556.0  6094.0  2939.0 27126.0  3342.0
##  [253]  2532.0  1900.0 14546.0  2521.0 16427.0 13068.0 23218.0  3281.0  3096.0
##  [262]  2052.0  9432.0 14938.0  2221.0  5731.0  6985.0 24221.0 15439.0 21637.0
##  [271] 14543.0  9684.0  5007.0  1616.0 19116.0  2759.0  8249.0 14041.0  5264.0
##  [280]  2420.0  2826.0 12518.0  5876.0  9648.0  3025.0  3265.0  6041.0  2293.0
##  [289] 13399.0  4317.0  3378.0  5012.0  2569.0  3471.0  3312.0  2578.0  2902.0
##  [298]  2742.0  2077.0  6265.0  7819.0  2731.0 16286.0  2609.0  7567.0 22770.0
##  [307]  3791.0  2702.0  2555.0  2355.0  5332.0  1443.0 10741.0  7984.0 18584.0
##  [316]  5585.0  2478.0  2339.0  2726.0 14881.0  1628.0  3156.0 19727.0 22720.0
##  [325]  8129.0  3751.0  1594.0 18206.0  3104.0  2406.0 24571.0 15534.0 12301.0
##  [334]  2846.0  9788.0  7231.0  2324.0 12208.0  5639.0 10021.0  2215.0  2027.0
##  [343]  3920.0  9226.0  9376.0  1944.0  9599.0 28202.0 24850.0  3805.0 12781.0
##  [352]  7477.0 29963.0  6509.0 13450.0 27000.0 13048.0  2453.0 16138.0  8077.0
##  [361]  1929.0  3127.0  8645.0 24487.0  2567.0  4131.0 10790.0  6884.0 13961.0
##  [370] 29801.0 13219.0  9478.0  3502.0 10509.0  1491.0  9734.0  2305.0 14241.0
##  [379]  4789.0 23138.0 23008.0  3131.0  5798.0  6880.0  2075.0  4589.0  2317.0
##  [388]  1981.0  6038.0 14910.0 29659.0  4320.0 11213.0 26181.0  5773.0  4503.0
##  [397] 29770.0  5014.0  3445.0 23412.0  3044.0 14596.0  3864.0 17030.0 23090.0
##  [406] 29205.0 14035.0  2962.0 18578.0  2201.0  2061.0 24602.0 15911.0 16867.0
##  [415]  2783.0  2972.0  5124.0  2880.0  5579.0 12010.0  4394.0 18325.0  3773.0
##  [424] 21684.0  1919.0  9995.0 11910.0  2279.0  3539.0 30579.0 24480.0 17561.0
##  [433]  1638.0  2947.0  5738.0 33304.0  7251.0  2885.0  2641.0  2801.0 16794.0
##  [442]  9336.0  2763.0 17391.0  3198.0  5100.0  3955.0  3140.0  4028.0  2264.0
##  [451] 21620.0  6385.0  2375.0  1963.0  4256.0  5097.0  3228.0 20231.0 27512.0
##  [460]  2585.0 12151.0  5504.0  3558.0 19853.0  4969.0  3117.0 21526.0  5512.0
##  [469]  7262.0  7319.0  7712.0  2053.0 12804.0 26443.0  3125.0  4930.0  9476.0
##  [478] 11722.0 13301.0  6705.0 22718.0 23981.0  2318.0 19324.0  5331.0 15700.0
##  [487] 17625.0 17438.0  1962.0  3290.0  2402.0  9256.0  3674.0  6462.0  4335.0
##  [496]  3233.0 11862.0 19802.0 24869.0  3624.0  6175.0 10953.0 11338.0  5544.0
##  [505] 19665.0  2927.0  5146.0  1704.0  2974.0  5472.0  2736.0  5406.0  1976.0
##  [514]  8714.0  8693.0  9247.0  7717.0  4908.0  7222.0 21740.0  2323.0  7788.0
##  [523] 23700.0 11710.0  2278.0  4048.0  3663.0  3518.0  1717.0 16813.0 16434.0
##  [532] 21872.0 15897.0  4271.0  7361.0  8628.0 18750.0 21242.0  2961.0 11327.0
##  [541]  8308.0  3249.0  2981.0  8829.0  3714.0  7340.0 16952.0 20865.0  3083.0
##  [550] 10584.0  2240.0 12240.0  5120.0  3124.0 11261.0  2468.0 22157.0 11477.0
##  [559]  3933.0  8022.0 13771.0 30271.0  3244.0  2936.0  6242.0 11806.0  4734.0
##  [568]  6244.0 23561.0 24742.0 27560.0  5923.0  8581.0  7151.0  1535.0  2122.0
##  [577] 17131.0  5822.0  3537.0 16320.0  2407.0  3538.0  2684.0 15459.0  4307.0
##  [586]  2081.0  2848.0  6361.0 15428.0  2544.0  9959.0  8796.0  3428.0 18001.0
##  [595]  2680.0  4675.0  2448.0  4049.0  8154.0  4559.0 19354.0  2340.0 13848.0
##  [604]  2490.0 32156.0  9050.0  8362.0  6514.0  4051.0 11959.0  2070.0 11840.0
##  [613]  3636.0 11067.0 11262.0  5108.0  2072.0  4119.0  5903.0  7860.0  5918.0
##  [622]  6741.0  3880.0  2494.0 22149.0  5450.0  2003.0  7723.0 18226.0  8128.0
##  [631]  5851.0 10260.0 26945.0  2243.0 12248.0 19843.0  2163.0 33864.0  4531.0
##  [640]  2950.0  7706.0 25657.0 17536.0  3770.0 10344.0 26437.0  2450.0  3136.0
##  [649]  6976.0 21134.0  2019.0 20241.0  2421.0 30948.0  2642.0  8070.0  4085.0
##  [658]  2187.0  3358.0  1888.0 14447.0 32349.0 12605.0  2964.0  3785.0  2727.0
##  [667]  3343.0  9786.0  6407.0  4158.0 21697.0 31383.0 30883.0 12918.0  8520.0
##  [676] 14310.0 14434.0  7793.0  8990.0  4343.0  2872.0  9697.0  2967.0  2148.0
##  [685]  6116.0 18085.0  2524.0 33951.0  9956.0  3888.0 30655.0  2997.0 11042.0
##  [694]  3386.0 15987.0 25188.0  4315.0  2592.0  5476.0  2464.0  2378.0 20056.0
##  [703]  8013.0  7906.0 11501.0 13632.0  2229.0  5158.0 23271.0 10244.0  2588.0
##  [712] 10747.0  7474.0  3555.0 22140.0  9457.0  6218.0  2580.0  6224.0  3093.0
##  [721]  4076.0  4861.0  9851.0  7349.0  2853.0 17023.0 10060.0  1595.0  8475.0
##  [730]  5559.0  2917.0  6692.0  8551.0 10569.0  7051.0 10117.0  8311.0 26442.0
##  [739]  4920.0 26750.0  1869.0 14539.0 26977.0  5426.0  7623.0  4844.0  2683.0
##  [748]  3214.0  5374.0  8004.0  2925.0  9235.0  8837.0  8801.0  3563.0  8138.0
##  [757]  2458.0  4592.0  1868.0 20156.0  7410.0 12163.0  4250.0 12059.0  2799.0
##  [766] 18037.0  5657.0 13770.0  4646.0  2514.0 14501.0  8663.0  2333.0  3038.0
##  [775]  8851.0  2945.0  5267.0  8512.0 19063.0  5376.0  7772.0  9173.0 11975.0
##  [784] 15405.0  2615.0 23991.0  3102.0  3170.0 17298.0 11915.0 16868.0  3266.0
##  [793]  2770.0  3556.0  9149.0 14701.0 14825.0 10127.0  2929.0  3735.0  2930.0
##  [802] 12716.0 22120.0  4546.0  1759.0  4829.0  7692.0  2156.0  9521.0 26714.0
##  [811]  2092.0 11594.0  2834.0  4724.0  3049.0 20614.0  3250.0  3128.0  6414.0
##  [820]  2506.0  7469.0  3460.0  4175.0 10264.0  4129.0  2658.0  2781.0 24880.0
##  [829]  8504.0  8091.0  3417.0  9204.0 14302.0  6313.0 15904.0 11696.0 20371.0
##  [838]  7552.0  5561.0  1441.0 19715.0  2486.0  4570.0  3870.0 12938.0 21178.0
##  [847] 12182.0  3583.0 17018.0 16031.0  4203.0  4213.0 21548.0 18513.0  2483.0
##  [856]  6511.0  2985.0 18797.0  2888.0  9172.0 14281.0  7353.0  5145.0  4753.0
##  [865]  2171.0  4150.0  9106.0  2686.0 10239.0 15017.0  4426.0  2155.0 20620.0
##  [874]  3238.0 14316.0  2607.0  6231.0  3730.0  3094.0  6630.0  1925.0 33406.0
##  [883]  9452.0  2162.0  3947.0 15970.0  1830.0 20811.0 11789.0  3073.0  6725.0
##  [892]  2978.0 24545.0 10074.0  2259.0  9519.0  3706.0  4438.0  2372.0  4214.0
##  [901]  2613.0  4331.0  3665.0  4411.0 15871.0 12643.0  6088.0 13873.0  6158.0
##  [910]  5638.0  2178.0 12588.0 11942.0  3914.0 18693.0  2943.0  2435.0  5756.0
##  [919] 21065.0  9428.0  6065.0  5024.0  2174.0  3398.0  4319.0  3673.0  1815.0
##  [928]  2495.0  3368.0  7225.0  5202.0  1923.0  6929.0  4364.0  2400.0 25878.0
##  [937] 11876.0  4568.0  4740.0  4949.0 11189.0  6099.0  3575.0  3184.0 13363.0
##  [946]  3452.0  4466.0  3030.0  2112.0  7583.0 11760.0 19762.0  2803.0 25666.0
##  [955]  9297.0  2999.0 16435.0  5335.0  3506.0  3610.0  3172.0  8206.0  2416.0
##  [964]  1677.0 11819.0  1459.0  1458.0  7758.0 10836.0  5062.0  3399.0  2212.0
##  [973]  3186.0  5927.0  5176.0  3126.0  4670.0 10155.0 15242.0 16043.0  3181.0
##  [982] 27088.0  5688.0 10462.0  5249.0  5155.0 10705.0 16494.0  6469.0  2800.0
##  [991]  5159.0  5248.0  5881.0  1467.0  4999.0  4668.0  8638.0  9343.0  2256.0
## [1000]  8267.0  2235.0  2111.0 10604.0 21782.0  2133.0 16677.0  2717.0  3980.0
## [1009]  8411.0  2227.0  1860.0  2829.0  3764.0  4701.0  1631.0  8096.0  2304.0
## [1018]  5210.0  5452.0  7475.0  2359.0  4237.0 18582.0  7202.0 11221.0 18889.0
## [1027]  2066.0 20050.0  3046.0  6193.0  5634.0  4507.0  3040.0 21006.0  7326.0
## [1036]  3651.0  3416.0  3664.0  6085.0 22332.0  2063.0  4429.0  3991.0  9723.0
## [1045]  5325.0  7427.0  5619.0  5413.0  7646.0  4252.0  2031.0  6861.0  3327.0
## [1054]  7272.0  2515.0  2798.0 12609.0 19159.0  9642.0  8396.0  6978.0  2459.0
## [1063] 12956.0  7128.0 18749.0  2193.0  4522.0  2157.0 11927.0 11341.0  7345.0
## [1072]  6036.0  2096.0  1906.0  5039.0  6214.0  1512.0  3346.0  6660.0  2234.0
## [1081]  9671.0  6605.0  5456.0  4088.0  3930.0  4188.0  3637.0 11521.0  2253.0
## [1090] 30503.0  4596.0  5701.0  3221.0  3022.0  2699.0  2210.0  2041.0  1643.0
## [1099] 29543.0  3158.0  2899.0  5645.0  2463.0  2897.0  5391.0  2870.0 23959.0
## [1108] 14918.0  3590.0  2297.0 25058.0  7418.0  3012.0  4562.0 10723.0  1578.0
## [1117]  2094.0  4138.0  5417.0  9592.0  8881.0  3893.0  3242.0  6035.0 17642.0
## [1126]  4327.0  4852.0  7147.0 10320.0  3297.0  9981.0  3329.0  5991.0  6259.0
## [1135]  2541.0 21351.0  8998.0 10247.0 20311.0 33182.0  1686.0  4742.0  1726.0
## [1144]  8420.0  3352.0  6648.0  2335.0 12397.0  5330.0  1795.0  5741.0  2002.0
## [1153] 25662.0 22103.0 12355.0  2000.0  8713.0  9165.0 11583.0  8149.0  8434.0
## [1162]  9791.0  8444.0  2228.0 12211.0  1586.0  2247.0  2789.0  4241.0  8398.0
## [1171]  4112.0 15578.0  4008.0 12766.0  3438.0 16692.0  4066.0 13080.0  1934.0
## [1180]  3230.0  3615.0  1801.0  2665.0 28822.0 14632.0  6715.0  6658.0  3360.0
## [1189] 14853.0  4800.0  4610.0  8377.0  4147.0  2644.0 13355.0  3251.0  2100.0
## [1198]  3566.0 14915.0 13003.0  1758.0  5510.0 17196.0  5877.0  7667.0  5898.0
## [1207] 19995.0  2773.0  3323.0 16049.0  3601.0  2307.0  3742.0  2937.0  3209.0
## [1216] 12554.0  4702.0 14308.0  4882.0 33405.0  2700.0  2934.0  1548.0  5525.0
## [1225]  5750.0 27157.0 12830.0  5530.0  2437.0  3827.0  5940.0 13162.0 18713.0
## [1234]  3023.0  6103.0 10607.0 25197.0  2743.0  4111.0  3667.0  3178.0  5674.0
## [1243] 11444.0  6387.0 11827.0  2608.0  3203.0  2472.0  2147.0  8058.0  3410.0
## [1252] 19044.0  1606.0 24336.0  5030.0 24577.0  3517.0  7400.0  2956.0  3578.0
## [1261] 12778.0  1942.0 29961.0 17657.0  2821.0  1479.0  6859.0  3404.0  1890.0
## [1270]  3602.0  3766.0  3017.0  5478.0 13046.0  8687.0  6174.0  5655.0  5397.0
## [1279] 28465.0  3444.0  2104.0 15610.0 16912.0  5462.0  2868.0  2685.0  5238.0
## [1288]  4561.0 13091.0 10826.0  2600.0  2561.0  7087.0 10266.0  1553.0  6732.0
## [1297] 12181.0  7056.0 14365.0 11473.0 23996.0  2998.0 30011.0 21927.0 10029.0
## [1306]  4934.0 13882.0  2347.0  4116.0 13904.0 32558.0 12902.0  2509.0  2484.0
## [1315]  2780.0  5219.0 18102.0  4532.0 22399.0  4489.0 10329.0  2637.0  1864.0
## [1324] 13276.0  1935.0  6784.0 19127.0 32641.0  2417.0 19259.0  3796.0  4042.0
## [1333] 17603.0  2894.0 16730.0  3282.0 15815.0  1672.0  8121.0  3182.0  5061.0
## [1342]  2735.0  3477.0 27858.0 14057.0  2461.0  7766.0 21308.0  4516.0  5424.0
## [1351]  1764.0  1493.0 17539.0  2149.0  6256.0 11922.0  4075.0  7290.0  5965.0
## [1360]  9007.0  6077.0  1808.0 12810.0  3421.0  3118.0 20013.0  4395.0  9661.0
## [1369]  1973.0  9926.0  4108.0 20741.0 16335.0  4588.0  5712.0 13184.0  8592.0
## [1378]  1910.0  6210.0  2220.0 20756.0  2895.0  9274.0  2334.0  3519.0  3088.0
## [1387] 11906.0 11098.0  2224.0  5723.0  9239.0  4061.0  4189.0  6373.0  3261.0
## [1396]  8014.0 10980.0  3092.0 14315.0  1648.0  1730.0 13768.0  1705.0  8673.0
## [1405]  6391.0 11102.0 24765.0 31864.0  5346.0  3148.0  2786.0 11894.0  7535.0
## [1414] 33180.0  2986.0  6729.0  2730.0  3324.0  5015.0  6905.0  5848.0 19136.0
## [1423]  3500.0  7453.0  6266.0  4945.0 27992.0  6162.0  3337.0  2205.0  4450.0
## [1432]  2172.0  4323.0  4145.0  2032.0  7010.0  3205.0 16547.0  5930.0  2047.0
## [1441]  2636.0  6425.0  4002.0  5175.0  4599.0 31258.0 11638.0  1829.0  8276.0
## [1450] 23539.0  2352.0 11371.0  2857.0  6690.0  4439.0  5344.0 27310.0  2531.0
## [1459]  9096.0  7169.0  5399.0  2280.0  6315.0  4402.0 27732.0  4947.0  3946.0
## [1468] 12291.0  3067.0  8633.0  2394.0 11374.0  6921.0  2564.0  2720.0  9843.0
## [1477] 21691.0  1826.0  5746.0  7061.0  5589.0  9620.0  2539.0  3642.0  3451.0
## [1486]  1841.0  5764.0 18278.0 16059.0  5887.0  3152.0 12464.0  4784.0  1950.0
## [1495]  7478.0  1707.0  4016.0  2370.0  3478.0  1539.0  3142.0 17236.0 13206.0
## [1504]  2480.0  2898.0  1570.0  4460.0  1544.0  3456.0  2751.0  4153.0  3685.0
## [1513]  8902.0  2944.0  2232.0  1569.0 23622.0  3326.0 11352.0 17531.0  8374.0
## [1522]  7049.0  3851.0 15936.0 10305.0  2987.0  6275.0  7185.0  3077.0  2042.0
## [1531]  2001.0  3625.0  7803.0  5951.0 15796.0  7558.0  5381.0  2661.0  8329.0
## [1540]  2774.0  4134.0 11329.0  9055.0 17393.0  5908.0  5825.0  3797.0 13734.0
## [1549]  3034.0  2973.0 24296.0  8969.0  2550.0 10357.0  1475.0  5154.0  3586.0
## [1558]  1640.0  2379.0  3422.0  4365.0 32938.0  6710.0  2507.0  6184.0  2029.0
## [1567] 16659.0  2203.0  5122.0  3074.0  2584.0  2037.0  2014.0  1818.0  2827.0
## [1576] 16033.0  3213.0  5924.0 14535.0  2833.0  1617.0  2237.0  2900.0 13126.0
## [1585]  8695.0  2159.0  2501.0  6338.0  2190.0  7578.0  2963.0  8260.0  8309.0
## [1594] 10230.0 22382.0 25790.0  2675.0  1652.0  5815.0  2595.0  6922.0  6979.0
## [1603]  2594.0 16915.0  2523.0  6235.0  1473.0 17116.0  4631.0  3047.0 32338.0
## [1612] 16611.0 22886.0  3544.0  3480.0  3549.0  6814.0  8500.0 28170.0  6610.0
## [1621] 15755.0  2711.0 10216.0 20420.0 13662.0  7050.0  1775.0  8960.0  6803.0
## [1630]  2145.0  3919.0  4500.0  2941.0  7102.0  6866.0 10378.0 13473.0 18178.0
## [1639]  8171.0  8082.0 24589.0 30310.0  1618.0  2498.0 10540.0 13384.0 16208.0
## [1648] 19214.0  3071.0 13395.0 17126.0  8083.0  8995.0  2404.0  2807.0  3097.0
## [1657] 10651.0  2175.0 28020.0  2640.0 31313.0  7304.0  3254.0  3161.0  7246.0
## [1666] 13719.0  4726.0  6100.0 19279.0  3792.0  6849.0  5802.0  2919.0  2462.0
## [1675]  1947.0 18563.0  3992.0  3568.0  7776.0 19636.0  7327.0  2033.0  5153.0
## [1684]  2062.0  2005.0  2479.0  2263.0  8184.0  9238.0 30210.0  6942.0 14551.0
## [1693] 11332.0 30967.0  7866.0  2718.0  3084.0 17302.0 12159.0  2797.0  2618.0
## [1702]  1442.0  9735.0  4310.0 11450.0  8906.0  4245.0 21953.0  1614.0  5140.0
## [1711] 31762.0 11692.0 15488.0  2503.0  6269.0 20337.0  3100.0 25008.0  1654.0
## [1720]  4608.0  3908.0  2551.0  8621.0  7451.0  2617.0 12634.0  2672.0 11948.0
## [1729]  2677.0 24703.0  6052.0  2562.0 15377.0  8654.0 16040.0 12423.0  9347.0
## [1738]  3143.0  5106.0  9871.0  1525.0 19630.0 12547.0 17686.0  3257.0  4824.0
## [1747]  8603.0 11498.0  3818.0 16594.0  5387.0 10023.0  9303.0  2218.0  7187.0
## [1756]  2590.0  4255.0  2778.0 10711.0 16163.0  2513.0  3291.0  8917.0  4955.0
## [1765]  2909.0 14015.0  2540.0  3497.0  3682.0  4430.0  3877.0 15124.0 19373.0
## [1774] 21590.0  3657.0 32444.0  5830.0  6463.0  2311.0  3585.0  9131.0  5471.0
## [1783]  8823.0  2173.0  5616.0  8571.0  3924.0  5663.0  7997.0  3652.0 12702.0
## [1792]  7189.0 12421.0  2818.0  2351.0  3119.0 13092.0  3702.0  2701.0  1813.0
## [1801]  2469.0  3091.0  5464.0  2942.0 15279.0  4328.0  5824.0 11281.0  7959.0
## [1810]  4459.0 17162.0 16254.0  3278.0  7173.0  3295.0 25033.0  4232.0  2703.0
## [1819]  2710.0  2322.0  5931.0  3300.0  8682.0 12616.0  9652.0  1651.0  2576.0
## [1828]  2575.0  8705.0  3838.0 10306.0  5366.0  2994.0  4247.0  1737.0 18431.0
## [1837]  5839.0  5137.0 11909.0 21390.0  9264.0  5484.0  4739.0  7970.0  7756.0
## [1846]  5605.0  2946.0  8886.0 19435.0  5246.0  2432.0  3103.0 30746.0 11962.0
## [1855] 14690.0  6629.0  5535.0  3305.0  9466.0  5297.0  4260.0  7291.0  6500.0
## [1864]  1626.0  6662.0  5846.0  8063.0  4597.0  7869.0 17884.0  2046.0  6370.0
## [1873]  2737.0  7266.0  2258.0  6510.0  2508.0  4006.0 16317.0  2109.0  7023.0
## [1882]  8302.0  5184.0 14575.0  3107.0  8322.0 10110.0  2707.0  4397.0  5795.0
## [1891]  9760.0  2246.0  3003.0  2638.0  2004.0  2414.0  2043.0  3111.0  8744.0
## [1900]  4185.0  4759.0 24457.0 14244.0  6572.0 23381.0 15965.0  9433.0  9180.0
## [1909]  8818.0  9031.0  9887.0  4161.0  2740.0  6152.0  8167.0 23742.0 16791.0
## [1918] 26783.0 25516.0  4815.0 23462.0  2252.0  2557.0  2300.0 22938.0 13129.0
## [1927]  3396.0  4712.0  7638.0  2624.0 17934.0 15198.0  3191.0  6053.0 12875.0
## [1936]  2602.0  4698.0  2222.0  8217.0 10091.0 19074.0 12852.0 12763.0  8242.0
## [1945]  1825.0  5497.0  6778.0  4267.0  3273.0  9371.0  8389.0 28410.0  6168.0
## [1954]  3141.0  8307.0 30753.0  5660.0  4230.0  9515.0 10962.0 23848.0 10144.0
## [1963]  2647.0  4580.0 24936.0 26101.0 14270.0 25618.0 11037.0 16763.0  2621.0
## [1972]  4939.0  4419.0  3055.0 19412.0 12786.0  4666.0  4894.0 27389.0  2132.0
## [1981]  6590.0  3176.0  4288.0 20130.0  5945.0  3350.0  5780.0  2497.0 10286.0
## [1990] 23125.0  7081.0  6824.0 12280.0 14607.0  2267.0  2556.0 12512.0  5323.0
## [1999]  9078.0 27029.0  9859.0  3552.0  4613.0 10386.0  2657.0  5031.0  1612.0
## [2008]  2423.0  7140.0  3377.0  2295.0  3150.0  2165.0  4249.0  2966.0 14593.0
## [2017]  8327.0  6479.0 18442.0  3032.0  2151.0 24073.0 25517.0  7709.0  4065.0
## [2026] 13169.0 11811.0  7440.0 12714.0 25882.0  3280.0 11023.0  6182.0  2186.0
## [2035] 17996.0  2306.0 26556.0  5779.0  5494.0  7571.0  4274.0  4980.0 15554.0
## [2044] 26570.0 22224.0 10606.0  5865.0  5369.0  5188.0 17742.0  2591.0  6543.0
## [2053] 26053.0  6316.0  4658.0  6476.0  8087.0  9033.0  3206.0 28751.0  2938.0
## [2062]  5715.0  2791.0  6551.0  4533.0  1854.0  6704.0  5489.0 10619.0  2481.0
## [2071]  5905.0  9293.0  5240.0  4182.0  9857.0 20117.0  6012.0  6369.0 13005.0
## [2080]  1575.0  6679.0  6458.0 20803.0  5540.0  2419.0  5156.0 14228.0 10257.0
## [2089] 32096.0  3014.0  5762.0  2140.0  4760.0 26372.0  8203.0  2655.0 13655.0
## [2098] 12169.0  2598.0 10566.0  8232.0 26365.0  4671.0 14869.0  2629.0 21875.0
## [2107]  3007.0 17404.0  2863.0 13919.0 18672.0  4204.0 16050.0 16766.0 20895.0
## [2116]  7881.0 13427.0  2281.0 10974.0  8925.0  5265.0 17156.0 13457.0  3890.0
## [2125] 17198.0 18951.0  1454.0 27499.0 32964.0  7411.0  7200.0 12007.0  3147.0
## [2134]  5110.0  5438.0 17450.0 18352.0  1585.0  2858.0 16443.0  3687.0  4840.0
## [2143] 15108.0  1909.0 15982.0  2549.0  5967.0  2182.0  2689.0 30622.0  6453.0
## [2152]  3318.0 22075.0  6746.0  4408.0  4838.0  3823.0 21670.0  7928.0 33996.0
## [2161]  2248.0  1901.0 31680.0  1872.0  2055.0 10991.0  3939.0  2127.0 34010.0
## [2170]  6971.0  1741.0 24904.0 11115.0 13241.0 14438.0  5228.0  5550.0  2064.0
## [2179]  3450.0 30030.0  7181.0 27745.0  6735.0  6128.0 23124.0  8874.0  3402.0
## [2188]  1556.0  7372.0  5713.0  2965.0  9819.0  8186.0  3846.0 13131.0  7554.0
## [2197] 25215.0  2606.0  8133.0  3101.0 24446.0  2361.0  2441.0  8532.0 16954.0
## [2206]  6827.0  4513.0 27347.0  1676.0 23870.0  4868.0 20437.0  2239.0  2428.0
## [2215] 15027.0 32056.0  2143.0 23507.0  4277.0  2771.0  2265.0  3075.0 15340.0
## [2224]  7118.0 11419.0  2403.0  2706.0  2226.0  3351.0  5570.0 10448.0 31501.0
## [2233] 21695.0 13650.0 16156.0  2413.0  5920.0  5841.0  8418.0 20640.0  9453.0
## [2242]  7949.0  2758.0 20148.0 26566.0 13477.0  9706.0  7457.0 19081.0  2447.0
## [2251] 28830.0  2563.0  3397.0  1842.0  2383.0 20791.0 19900.0 32024.0  3701.0
## [2260]  4199.0  4353.0  4913.0  5454.0  2845.0 18570.0 25907.0  2206.0 12050.0
## [2269]  2107.0 27175.0 17905.0  4940.0  1835.0  1993.0  7130.0 12539.0  8208.0
## [2278] 26222.0 34173.0  5882.0  7158.0  5833.0  4152.0 11699.0  4505.0  5257.0
## [2287] 10331.0 17557.0  4366.0  8037.0  8740.0  8514.0  3132.0  2010.0  2381.0
## [2296] 16411.0 22127.0  5685.0  7348.0 11188.0  3650.0  5076.0 32658.0 28634.0
## [2305]  3414.0 12315.0  2690.0 12165.0  1792.0 19300.0  8120.0  2292.0 21434.0
## [2314]  3424.0  2787.0  8696.0 32446.0  9133.0  5116.0 18974.0 12101.0  5379.0
## [2323] 32676.0 15202.0  5858.0  2692.0  7165.0 26988.0  2517.0 11091.0 10745.0
## [2332]  2722.0  8228.0 11777.0 14821.0  6131.0 22380.0 12893.0  5093.0  1927.0
## [2341] 22125.0  5260.0  4333.0  6637.0  4396.0  6853.0  2570.0  2166.0  3647.0
## [2350] 11684.0  4475.0 16604.0  5446.0 28700.0  9451.0 13933.0  6130.0 15008.0
## [2359]  4583.0  5268.0 14976.0  2282.0  5130.0  5702.0 14480.0  7570.0 12878.0
## [2368] 26218.0  2804.0  5801.0  2271.0  4465.0  3264.0 26856.0 21756.0  5596.0
## [2377] 15326.0 11373.0  2673.0 16227.0 19110.0  2993.0 11176.0 21416.0 14265.0
## [2386] 16985.0  4341.0 27710.0 13431.0  2645.0 14028.0  5699.0 16284.0  3226.0
## [2395]  2192.0  8318.0  4736.0  9944.0  4717.0 16920.0  3240.0  4704.0 14987.0
## [2404]  3554.0  9227.0  7522.0  2319.0 18531.0  4683.0  7133.0 10253.0  4210.0
## [2413] 12630.0 21084.0  3639.0 31945.0  5894.0  2209.0 23447.0  4180.0 12685.0
## [2422] 21374.0  1911.0  8666.0  5984.0 23000.0  2976.0 16099.0 19595.0 13193.0
## [2431]  5758.0 25873.0  2695.0 20860.0  1892.0 27751.0 24580.0 29893.0 21165.0
## [2440]  9148.0 10979.0  6519.0 14999.0 10332.0 10226.0 26124.0  9816.0 15942.0
## [2449] 12222.0 10227.0  4265.0 13867.0 11239.0 22558.0 23510.0  4549.0  7176.0
## [2458] 18293.0 18332.0  6383.0 13441.0 20114.0  8017.0  8519.0  9474.0  6587.0
## [2467]  7154.0  4039.0  5516.0  5577.0 30137.0  9778.0 20912.0 14699.0 10350.0
## [2476] 11346.0 19711.0  8650.0  9748.0  2454.0  3271.0 13306.0 13637.0  6733.0
## [2485]  2728.0  6250.0  3653.0 22919.0  4198.0  7532.0  4587.0 12250.0 17753.0
## [2494] 12535.0  3541.0 14622.0 23973.0 29200.0 10077.0  8667.0 12871.0  2346.0
## [2503]  9919.0 17087.0  5505.0  1902.0  4254.0  9854.0  7711.0  9977.0  5659.0
## [2512] 17161.0  5018.0 11474.0  7925.0 12793.0  4834.0 12948.0  5662.0  6030.0
## [2521]  6779.0 15248.0 15583.0 25270.0  8717.0 33755.0  7282.0  7260.0 12952.0
## [2530]  5353.0 11741.0 11167.0 20882.0  6617.0  3276.0 10097.0  5776.0  7207.0
## [2539]  2106.0 21158.0 22906.0  2648.0 30702.0 17054.0  3761.0 15845.0  8061.0
## [2548] 19430.0  2708.0 23566.0  9829.0  7226.0  4072.0 21646.0 14046.0 25620.0
## [2557] 21358.0  1856.0  2586.0  7115.0 13220.0  5996.0  9080.0  7563.0  8749.0
## [2566] 14973.0  7108.0 23007.0 24248.0 11617.0 30428.0  6805.0 14257.0  5719.0
## [2575]  9517.0  5317.0  2526.0  2971.0  6834.0  3002.0 16727.0  4573.0 15410.0
## [2584]  3299.0 13453.0  6362.0  2679.0  4369.0  1721.0  2196.0 21144.0  3952.0
## [2593] 17343.0  3498.0  9121.0 20230.0 15422.0  9132.0  8054.0  8739.0 24949.0
## [2602]  3115.0 29695.0  7261.0  1621.0 33472.0 11512.0 12463.0  8511.0  4821.0
## [2611]  8596.0  7223.0  1629.0  7216.0 28397.0 13720.0  7553.0  2952.0 11229.0
## [2620]  7109.0  4511.0  2533.0  2016.0 11068.0  5546.0  7277.0  9426.0  3490.0
## [2629]  2364.0 15704.0 18253.0  3696.0  8748.0  5608.0  3236.0  5195.0  6327.0
## [2638]  4728.0  6276.0 13430.0  2796.0  2457.0  7075.0 12386.0 32210.0  2136.0
## [2647] 10851.0 10698.0  6772.0 10696.0 11851.0 11558.0  9551.0 29923.0  3675.0
## [2656]  9183.0  7924.0  5383.0 21425.0 32866.0 10467.0 12856.0  9721.0  3981.0
## [2665]  7587.0  8012.0  3812.0 21378.0 12873.0 20229.0 16546.0 11191.0 17576.0
## [2674] 10271.0  1647.0  1560.0  1659.0 22487.0  5403.0  5180.0  4915.0 12154.0
## [2683]  3258.0 13349.0 31458.0 10961.0  8904.0 16105.0 16815.0 11538.0  9569.0
## [2692]  3340.0  3654.0 10541.0  1613.0  1922.0 14521.0  1931.0  8513.0  1478.0
## [2701]  2466.0 13602.0  2485.0 14817.0 13824.0  6189.0 22956.0  3943.0  5569.0
## [2710]  2418.0  7966.0  7742.0  2074.0  4948.0  4988.0 28701.0  6607.0 16034.0
## [2719] 24149.0 16903.0 24657.0  5026.0  9352.0  9502.0 22855.0  6602.0  3728.0
## [2728]  2021.0  2255.0  8436.0  8340.0 15104.0  2009.0 31668.0  5735.0  7633.0
## [2737] 23642.0  6698.0 17814.0  7738.0 13114.0 17345.0  8706.0 19272.0  4798.0
## [2746] 12254.0  9549.0 11568.0  6197.0  1791.0  7238.0  4514.0 29812.0  9559.0
## [2755]  8353.0  5455.0  9899.0 15641.0  3504.0 18432.0  2369.0 10882.0  3509.0
## [2764] 14335.0  4005.0  3734.0  6033.0  6245.0 11880.0  9344.0 24126.0  5496.0
## [2773] 12342.0  1928.0 12814.0  5242.0  8808.0  8031.0  9728.0  4748.0 19999.0
## [2782]  6331.0  9662.0  1693.0  5483.0 15186.0 33408.0  9810.0  7084.0  8896.0
## [2791] 30733.0 10177.0  6848.0 17165.0 20274.0 19939.0  9773.0  3668.0  3196.0
## [2800]  7030.0  9410.0  4096.0  7210.0  8026.0 18064.0  6897.0 13991.0 11366.0
## [2809] 23692.0  3476.0 27781.0 10534.0  2721.0 10458.0 12544.0 11464.0 11770.0
## [2818] 10998.0  2757.0 19709.0  6967.0 23424.0 21718.0  1470.0  7936.0 14366.0
## [2827]  9231.0 18679.0 20356.0  6663.0  2424.0 15677.0  1816.0  4950.0 24172.0
## [2836]  9037.0  7616.0 11209.0  9908.0 18737.0 19032.0  5916.0 16277.0  9442.0
## [2845]  2990.0  1527.0  6022.0 26729.0  6102.0  8101.0  4632.0  1996.0 11600.0
## [2854]  8464.0 29003.0  5000.0 14963.0  3855.0 28200.0  2310.0  1960.0  9771.0
## [2863]  6417.0 16037.0 14839.0  8769.0 20968.0  2188.0 30314.0 18799.0  2546.0
## [2872] 10775.0  5816.0 20533.0  9890.0 30820.0  6091.0  9690.0  6797.0  4985.0
## [2881]  2125.0  4012.0 23858.0  6728.0  2527.0  5644.0  2837.0  5941.0  9576.0
## [2890] 15412.0  2663.0 18873.0  5341.0  9904.0  7498.0 32719.0 12590.0 25133.0
## [2899] 17818.0  6006.0  3269.0 28262.0  2169.0  3767.0  8989.0  2838.0  7199.0
## [2908]  8495.0 14164.0  3604.0  1752.0  6649.0  6813.0 18004.0 11242.0 10693.0
## [2917]  3026.0 12836.0 11277.0 12815.0 24016.0 26516.0  2285.0  9617.0  2354.0
## [2926] 11533.0  5042.0  1809.0  8624.0 22917.0 18410.0 10130.0  3099.0 19849.0
## [2935]  3469.0  4092.0  3458.0  3028.0 11884.0 26058.0  2808.0  1874.0 11236.0
## [2944]  6380.0  1645.0  5797.0 21721.0 31756.0  8333.0  2067.0  2214.0  3775.0
## [2953]  4388.0  4100.0  5157.0 15939.0  9216.0  3413.0 20348.0  2440.0 11328.0
## [2962]  3183.0 12945.0 24528.0 15898.0  8516.0 10062.0  9589.0  5826.0  3521.0
## [2971]  8386.0 15449.0  7323.0  8924.0 18965.0  7976.0  3054.0 10620.0  3984.0
## [2980]  7599.0 31954.0 19666.0  6628.0 13049.0  3036.0 16575.0 23391.0 23898.0
## [2989]  4944.0 18026.0  5216.0  7699.0  7232.0  8476.0 25837.0  1536.0  4453.0
## [2998]  4389.0 13429.0  1840.0 17846.0  9013.0 18862.0  7958.0  4854.0  3807.0
## [3007]  2529.0  4097.0  3057.0  1957.0 11252.0 24534.0 33384.0  7582.0 13884.0
## [3016]  6167.0 11545.0  5666.0  4417.0  2991.0 13109.0  5443.0  2628.0 16054.0
## [3025]  3216.0 12295.0  5794.0  1858.0  2593.0 12420.0  2775.0  2886.0  7037.0
## [3034]  7065.0  1896.0 11634.0 13735.0  6899.0  6508.0  5090.0  7015.0 30560.0
## [3043]  4384.0  1511.0  4946.0 32182.0  9595.0 21952.0  5667.0  6366.0 14320.0
## [3052]  5972.0  8771.0  7112.0  7333.0  4207.0  1555.0  6846.0  2071.0 11336.0
## [3061] 15221.0 21359.0 19366.0  2923.0  7853.0 16386.0 11164.0  2960.0 10816.0
## [3070]  2568.0  4539.0  4806.0  2025.0  6249.0  4284.0  1738.0  4527.0  3532.0
## [3079]  4846.0 11392.0 22036.0  2772.0 11117.0 10714.0  5420.0  2652.0  6492.0
## [3088]  3167.0  2431.0  3050.0  2191.0  5677.0  4176.0  2577.0  9261.0  1564.0
## [3097] 12740.0  3778.0 12698.0 26229.0  8346.0  5395.0  1490.0 18274.0  4409.0
## [3106]  7560.0 20783.0  6188.0 27876.0  1924.0 29149.0  3160.0  2331.0  8156.0
## [3115]  8109.0  5853.0  5997.0 10824.0  9300.0  5351.0  2097.0  2266.0 13598.0
## [3124]  1803.0  6292.0  1765.0  4964.0  3741.0 31631.0  7636.0 11096.0 25027.0
## [3133] 27391.0  2704.0 11721.0 15142.0  1936.0  3828.0  4786.0 22143.0  7150.0
## [3142] 25502.0 20178.0  5258.0  1561.0 11550.0 28618.0  6623.0  8136.0 19156.0
## [3151]  7982.0  3120.0  4606.0  9949.0  2892.0  7093.0  3569.0  4663.0  2553.0
## [3160]  2873.0  7840.0  1971.0  6230.0 22243.0  2855.0  8440.0  4186.0 22074.0
## [3169] 17667.0 26548.0  8795.0  3491.0  6060.0 25190.0 13911.0  5652.0  2777.0
## [3178]  2223.0  2916.0 16476.0  9598.0 13626.0  2298.0  9191.0  4181.0  7540.0
## [3187]  1477.0  8916.0  1481.0  8580.0 21163.0 30540.0  7357.0 11879.0 21877.0
## [3196]  7255.0  6394.0  5597.0 32535.0  4391.0  8738.0  1592.0 24593.0  7613.0
## [3205] 26107.0  4287.0 10733.0  5536.0  1469.0  5693.0  4098.0 18358.0  2337.0
## [3214]  2124.0  3968.0  2793.0 13513.0 16351.0  9619.0 19030.0  3179.0  5065.0
## [3223] 10885.0 10817.0 13666.0  7191.0  3222.0  1610.0  3809.0  2388.0  2473.0
## [3232] 13103.0  2465.0  6081.0 21815.0  8264.0  1697.0  3069.0 10309.0  4983.0
## [3241]  1663.0 14782.0  2488.0  1785.0  7897.0  4772.0 12064.0  9065.0 10290.0
## [3250]  3433.0  1773.0  4555.0 30666.0  1891.0 16634.0  7985.0  3304.0  6247.0
## [3259]  3645.0 21329.0  7234.0  2262.0  4187.0 16362.0  2748.0 21585.0  9966.0
## [3268] 27804.0 15626.0 18800.0  4579.0 25824.0  3429.0 15809.0  2493.0  6593.0
## [3277]  1625.0  2121.0  4757.0  8668.0 21869.0  8190.0  1850.0  7066.0  3640.0
## [3286]  5527.0 31625.0 32409.0  9827.0  2623.0 12944.0  6401.0  5506.0 17673.0
## [3295]  2656.0  6118.0 17437.0  1461.0  1965.0 30899.0  8876.0 15535.0 13354.0
## [3304] 26723.0  3949.0  5937.0 18806.0  3512.0  1975.0  9375.0  2806.0  6836.0
## [3313]  8757.0 10529.0  2883.0  5225.0  2582.0 11524.0 13039.0  1456.0  5612.0
## [3322]  4205.0  3515.0 26174.0  1602.0 29939.0  5298.0  2433.0  9758.0 24931.0
## [3331]  8854.0  2230.0 28327.0  2500.0  9246.0 11155.0 11926.0  5501.0  2110.0
## [3340] 12994.0 29551.0  5054.0  6109.0  3989.0  3315.0  1794.0  5993.0  8320.0
## [3349]  1930.0  2329.0 18128.0 10642.0  6946.0  9716.0  4377.0  2516.0  1844.0
## [3358] 13233.0  1593.0  8589.0  1714.0 21148.0  7487.0  7608.0  2184.0  3495.0
## [3367]  8018.0 20543.0 18819.0 17811.0 14418.0  3936.0  1513.0 18075.0  5989.0
## [3376]  2659.0 13490.0  1664.0 16026.0  2705.0  2884.0 24299.0 20755.0 21096.0
## [3385]  6457.0  1603.0  9051.0 10057.0  2348.0  2017.0 13613.0  5553.0  6346.0
## [3394] 15133.0  2502.0  2589.0  2049.0  3560.0 25937.0  2387.0  2912.0  7062.0
## [3403] 12186.0  3570.0  3072.0  5928.0  8482.0 23911.0 33913.0  1637.0  5448.0
## [3412]  5152.0 15195.0  1817.0  3443.0  4281.0 28186.0 11494.0 28142.0  2316.0
## [3421] 10533.0 14322.0  6798.0  2445.0  1781.0  2270.0  3292.0 10797.0 30501.0
## [3430]  5371.0  9137.0 10614.0  4035.0 21114.0  2522.0 11309.0 13883.0 13448.0
## [3439] 25991.0  2537.0 13019.0  3339.0 28390.0 23665.0  1624.0  8900.0  5239.0
## [3448]  9351.0  3173.0  6243.0  6730.0  1746.0  4141.0  2363.0 28829.0  1994.0
## [3457]  9727.0 33771.0 10452.0  4707.0  8258.0  8892.0  3841.0  1920.0  7802.0
## [3466]  1822.0  9294.0 15069.0  4650.0 10007.0  3095.0  3607.0  1954.0 21317.0
## [3475] 19402.0  1845.0  4710.0 24287.0  1694.0  1457.0 25045.0 10859.0 16928.0
## [3484]  4297.0  2734.0 27374.0  9110.0  2667.0  3062.0  3114.0 14948.0  1749.0
## [3493]  2534.0 13284.0  4830.0  5911.0 11012.0 19188.0 18056.0  3201.0  3144.0
## [3502]  9782.0  4738.0  1938.0  3781.0  2211.0 20631.0  1507.0 11097.0  8162.0
## [3511] 18721.0  1736.0  6611.0  7942.0 13382.0 18550.0  1696.0  3056.0  3331.0
## [3520]  4123.0  2238.0  3875.0  2760.0  9086.0 21142.0  1713.0  6548.0  1953.0
## [3529]  3051.0 25256.0  1630.0 10800.0  1876.0  4963.0 16739.0  4743.0  9382.0
## [3538]  2059.0 20410.0  6472.0  2766.0  3283.0  2470.0 20695.0  4228.0 31743.0
## [3547]  5884.0  1724.0  1912.0 18927.0  1986.0  2877.0  2312.0  3510.0 15026.0
## [3556] 27186.0 29535.0  8148.0  2646.0  2054.0  1879.0 15913.0  8685.0  2676.0
## [3565]  1711.0  2572.0  4535.0  5950.0  2088.0 10466.0  4761.0  1488.0 19114.0
## [3574]  7536.0 13189.0  1914.0  1679.0  7119.0  7459.0  2294.0  5129.0  1722.0
## [3583]  8708.0  8869.0 10543.0 17764.0  6371.0  3076.0  4139.0  4121.0  3394.0
## [3592] 17628.0  4480.0  3370.0  3112.0  1551.0  1682.0  6743.0 32838.0  2510.0
## [3601]  3199.0  1918.0 18660.0  7591.0 18038.0  1853.0  4951.0  1757.0 24033.0
## [3610]  3614.0  1943.0  3795.0  3001.0  5726.0 14914.0  1580.0 15483.0  1916.0
## [3619]  1667.0  2231.0  6465.0  8599.0  5444.0 25293.0  1748.0  4034.0 26129.0
## [3628] 14902.0 12228.0 16665.0 20974.0  3139.0 19865.0  2069.0 33371.0  5370.0
## [3637] 22437.0  3573.0  1959.0  1661.0  5363.0  3009.0 18535.0  2376.0  2882.0
## [3646]  3277.0  3301.0 12391.0  2168.0  7762.0 12587.0 14785.0  2425.0 11619.0
## [3655]  2035.0  8842.0 13921.0  2761.0  3232.0 19075.0 31978.0  6225.0 10360.0
## [3664]  3135.0  3189.0  8963.0  1723.0  2161.0  3901.0  1895.0 26496.0  1583.0
## [3673] 13608.0 10273.0  8431.0  5852.0 12914.0  8694.0  1735.0  2286.0  3589.0
## [3682]  9437.0 11557.0 14831.0  1495.0  9703.0  3889.0 14140.0  2694.0 19629.0
## [3691]  6507.0 10195.0 11314.0  1837.0  7821.0  1984.0  1970.0  4476.0  1699.0
## [3700]  3698.0  2712.0  5486.0 18096.0 16741.0  6936.0 11099.0  4406.0  5104.0
## [3709]  7195.0  1956.0  3317.0  5095.0 10111.0  5987.0  5630.0  6622.0 18733.0
## [3718]  2907.0  8791.0  2302.0  2670.0 21382.0  2254.0  4433.0  2520.0  3961.0
## [3727]  2476.0 11606.0  8459.0  9554.0 19826.0  2545.0  3164.0  1804.0 22664.0
## [3736]  3547.0 29715.0  2179.0  4906.0  1880.0 12155.0  6160.0 28422.0  1671.0
## [3745] 11422.0  5139.0  4783.0  4502.0 33521.0  4361.0  7026.0 16388.0  2905.0
## [3754]  5649.0 14345.0  6524.0  2633.0  7693.0 10262.0 11320.0  2482.0 26308.0
## [3763]  6721.0  5842.0  8777.0 15060.0  2126.0  4907.0  3553.0  4428.0  6723.0
## [3772]  2756.0 34198.0  2817.0  2573.0  5869.0  4586.0  1790.0  5862.0 15594.0
## [3781] 11410.0  1584.0 13298.0  2114.0  1762.0  2245.0  8168.0  3881.0 20485.0
## [3790]  9856.0 32244.0  5624.0  1656.0 15699.0  6608.0  1547.0 11060.0  3670.0
## [3799]  1538.0  2330.0  2120.0  5583.0  7764.0 25670.0  5791.0  2865.0  6467.0
## [3808]  1468.0  5386.0  5402.0  2983.0  4871.0  2313.0  2434.0 14544.0 24621.0
## [3817] 33122.0  2709.0  4499.0  4697.0  3110.0  1734.0  3562.0 19198.0  4540.0
## [3826]  1990.0  5096.0  3015.0  3786.0 12078.0  6448.0  5398.0  2620.0 13435.0
## [3835]  7098.0  3086.0  1520.0  4043.0 16541.0  7486.0  8365.0  7789.0  6626.0
## [3844]  5547.0 14527.0  8185.0  6340.0  5711.0  2086.0  3256.0 14854.0  7184.0
## [3853]  6541.0 12663.0  5056.0 30928.0  1669.0  9725.0 21696.0  2992.0  9673.0
## [3862]  3609.0  6423.0 14899.0  3224.0  4135.0  8376.0 25944.0  8701.0  5600.0
## [3871]  2687.0  4464.0  1529.0  6274.0  2134.0 17158.0  3359.0 11997.0  3302.0
## [3880]  2860.0 13387.0 10873.0  7596.0  2921.0 10136.0 30997.0  2611.0  3328.0
## [3889] 26142.0 12405.0 17655.0  4941.0  1644.0 13906.0 10588.0  4045.0  5845.0
## [3898] 15341.0  4602.0  9383.0  2847.0 15638.0 10700.0  7939.0  2850.0  8973.0
## [3907]  6960.0  4167.0  5099.0  2782.0  1480.0  5070.0  5774.0  6054.0 19090.0
## [3916]  4473.0  3245.0 14728.0 11272.0 12270.0  7901.0  5983.0  7362.0 12972.0
## [3925] 17785.0  3029.0  9097.0  3802.0  2954.0 11882.0  5632.0 11025.0 30357.0
## [3934]  5182.0  3783.0  1515.0  2341.0 13287.0  1639.0  5668.0 24542.0  1838.0
## [3943]  3927.0  4345.0  2422.0  1440.0 26108.0  3646.0  8729.0  4073.0  9916.0
## [3952]  6452.0  1952.0  2610.0  2415.0  2918.0  3666.0  2809.0 26303.0 25060.0
## [3961]  1545.0  1451.0 16424.0  1926.0  1848.0  1634.0  5481.0  2129.0  9026.0
## [3970]  1761.0  3316.0 13364.0 28292.0  2933.0 21630.0  4173.0 12229.0  2272.0
## [3979]  6953.0  2765.0  6904.0  7531.0  8644.0  1531.0 10241.0  4542.0  3372.0
## [3988]  5299.0  2138.0 29100.0 13509.0  2396.0 18964.0  1623.0  2579.0  5045.0
## [3997]  2089.0  2866.0  9738.0  4370.0  3355.0  2325.0  3871.0  3983.0 15490.0
## [4006]  2314.0  4212.0  6248.0  2430.0  5543.0  3255.0  1691.0 18229.0  4202.0
## [4015]  5245.0  2583.0  7464.0  4928.0  9863.0  1452.0  1546.0  2013.0  2819.0
## [4024]  1702.0  3272.0  6145.0  1657.0  4554.0  5119.0 10600.0 20769.0  7116.0
## [4033]  2082.0  5626.0  2920.0  6526.0  1793.0  2427.0  3011.0  7492.0  3632.0
## [4042]  1744.0  9654.0  1605.0 10573.0  1789.0  7595.0  2382.0 22294.0  2574.0
## [4051]  5441.0  4467.0  5033.0  8604.0  9705.0  1554.0  1786.0  2477.0  7336.0
## [4060]  9396.0  4020.0 25856.0  7398.0  4058.0  3042.0  2688.0  3388.0  4902.0
## [4069]  3241.0  5069.0 13625.0  8766.0  9005.0  2713.0 18284.0  7215.0 21800.0
## [4078]  1485.0  2505.0  2631.0  3307.0 29638.0  1859.0 13362.0  6034.0  2194.0
## [4087]  2922.0  6943.0  4248.0  2392.0  3474.0  8737.0 13397.0  6352.0  1787.0
## [4096] 18734.0  3525.0  2051.0 27378.0  7862.0 21805.0  1698.0 15631.0 15011.0
## [4105] 10721.0  6125.0  3200.0 12286.0 21543.0  6355.0  2836.0 14951.0  1591.0
## [4114]  8930.0  4685.0  3390.0 17412.0 11186.0  2716.0  2874.0 18776.0 19793.0
## [4123] 12362.0  4143.0  2197.0  9314.0  3719.0  6996.0  7306.0 13199.0  2491.0
## [4132]  1977.0  1806.0  3188.0  2288.0  1780.0  2373.0 23250.0 12882.0  6348.0
## [4141]  1843.0  2303.0 29195.0 28253.0  1882.0  2395.0  3845.0  1506.0 11778.0
## [4150]  2747.0  3068.0  3426.0 12906.0  7904.0 11502.0 16199.0 13590.0  1695.0
## [4159]  1522.0 16509.0  7316.0  7627.0  9465.0 12283.0  2715.0 19897.0 24250.0
## [4168]  1964.0  1904.0 18202.0  2291.0  3375.0  8856.0  2980.0 17656.0  2475.0
## [4177]  3942.0  1771.0 17678.0 20958.0  4117.0 18524.0  4090.0 14958.0 21961.0
## [4186] 11629.0  4142.0  2202.0  3591.0  4781.0  3832.0  9025.0 11627.0  5686.0
## [4195]  4976.0 13951.0 14370.0 21681.0  2634.0  2204.0  1502.0  4478.0  7359.0
## [4204] 13090.0  5678.0  3964.0  4692.0  5821.0  2357.0  8294.0  1852.0  3503.0
## [4213] 17835.0  3383.0  3815.0  2144.0 16612.0  2560.0  2057.0  1972.0  6223.0
## [4222]  7632.0  1836.0  9397.0  1601.0  2543.0  3462.0 13095.0  5396.0  1899.0
## [4231]  7564.0 13116.0  3716.0  2006.0  2948.0  4669.0 13994.0  8760.0  1688.0
## [4240]  9881.0  4534.0  3545.0  3334.0  2496.0  9357.0  1783.0 10580.0  3279.0
## [4249]  4068.0  2128.0  1878.0  9909.0  1665.0 14111.0  2012.0  5714.0  5071.0
## [4258] 24028.0  9124.0  8051.0  3635.0  2028.0  4304.0  6644.0  7607.0  2060.0
## [4267]  6885.0  1871.0  1867.0  4640.0  3853.0 14409.0  2639.0  2338.0  4283.0
## [4276]  6263.0  2225.0  1519.0  5495.0  2141.0  2616.0  6606.0 13812.0 12310.0
## [4285]  1622.0 12559.0  7927.0  1720.0  6143.0  3899.0 11964.0  3862.0 33142.0
## [4294]  3523.0  4462.0  3976.0  2719.0  3369.0  1690.0  8583.0  2996.0  6966.0
## [4303] 11316.0 11362.0  7790.0  2023.0  9117.0  8787.0 27436.0  2195.0  4575.0
## [4312]  4860.0 24512.0 21430.0  2558.0 10061.0  2815.0  6185.0  9234.0  2749.0
## [4321]  1980.0  6931.0  4235.0  6501.0  6376.0  5576.0 12917.0 13324.0 11154.0
## [4330]  9535.0  2904.0  1770.0  1534.0  2170.0 10001.0  4169.0  2566.0  6812.0
## [4339]  4332.0 11761.0  4776.0  2697.0  3542.0  3492.0  2977.0 30976.0  2810.0
## [4348]  8997.0  4998.0  3892.0  2345.0  2135.0  2528.0 19719.0 15292.0 31733.0
## [4357]  2547.0  5708.0 19838.0  2284.0 11535.0  3524.0 30186.0  1620.0  4038.0
## [4366]  2078.0  1571.0  4604.0  4312.0  1462.0  4163.0  7201.0  1883.0  3308.0
## [4375]  2022.0  8597.0  4693.0  3400.0  8241.0  2901.0  9759.0  2525.0 19262.0
## [4384]  7077.0  8169.0  1966.0 13439.0  1636.0  1449.0  4120.0  2289.0  3511.0
## [4393]  2426.0 12230.0  7328.0 16207.0 15468.0  4009.0  3411.0 15525.0  2118.0
## [4402]  2275.0  4642.0  3743.0  4130.0 10960.0  3900.0  6236.0  1615.0  8332.0
## [4411] 11536.0 11905.0  3052.0  1978.0  2876.0  9505.0  1576.0  5647.0  1766.0
## [4420]  2896.0 13840.0  4862.0 22651.0 12935.0  1516.0  1820.0 10190.0  1833.0
## [4429]  4490.0 11062.0  1574.0  2368.0  1937.0  7135.0  5190.0  6059.0  1572.0
## [4438] 28600.0  3455.0 18123.0  1518.0  2723.0  1776.0  1968.0  2180.0 12114.0
## [4447]  4959.0 10374.0  1486.0  2542.0  4943.0  1760.0  1670.0  6018.0  2755.0
## [4456]  8783.0  1861.0 13709.0 17285.0  3210.0  1755.0 14485.0  6043.0 17239.0
## [4465]  7951.0 14201.0  1849.0  4972.0 13565.0  6332.0  6062.0 13407.0  2030.0
## [4474]  3146.0  5302.0  3185.0  9090.0  2792.0 12890.0  6854.0  5293.0 14670.0
## [4483]  4375.0  3448.0  3123.0 15713.0  4115.0  6925.0  1898.0 22639.0  2452.0
## [4492]  9924.0  2308.0  1655.0  2768.0 25658.0  4410.0  3468.0  6968.0 32733.0
## [4501]  8315.0  2020.0  5261.0  3680.0  4311.0  8438.0  3595.0  2315.0  3427.0
## [4510]  5573.0 18008.0 13483.0  4349.0 11698.0  1503.0  9094.0 15100.0  9030.0
## [4519]  1543.0  1877.0  9577.0  5427.0  5913.0  2867.0  3137.0  3913.0  4953.0
## [4528]  5724.0  1886.0  2024.0  2299.0  2137.0 12219.0  2343.0 19724.0  4386.0
## [4537]  2411.0  6397.0 23958.0 10033.0  1641.0 11596.0  5162.0 16312.0 25276.0
## [4546]  1939.0  2788.0 10317.0  2397.0  6169.0  2811.0  7501.0  2856.0 29898.0
## [4555]  2812.0 10031.0  2669.0  1951.0  1528.0  8406.0  2242.0  6538.0 13032.0
## [4564]  5013.0  3466.0  1689.0  2429.0 17523.0  9257.0  1731.0 16929.0  3606.0
## [4573] 23512.0  1855.0 13546.0  2552.0 18379.0  3499.0 18295.0  1568.0  2177.0
## [4582]  2296.0  9220.0 23128.0 14897.0  1798.0 14304.0 15370.0  6318.0  9852.0
## [4591]  1579.0  4541.0  1674.0 32611.0  3027.0 10931.0  1573.0  2626.0 13376.0
## [4600] 31636.0  3453.0 11434.0  2790.0 14314.0  1889.0  2875.0  1763.0  3288.0
## [4609]  4382.0  3159.0  5393.0 12618.0  6049.0 13816.0  6400.0  3347.0  1514.0
## [4618]  2504.0  1633.0  5466.0 21328.0  3534.0 11238.0  1460.0  4225.0  2344.0
## [4627]  7270.0  2835.0  1540.0  5084.0 23925.0  6720.0 15569.0  1565.0  5947.0
## [4636] 18821.0  2153.0  1684.0 12398.0  4461.0  2597.0  9733.0  2261.0  8793.0
## [4645]  5843.0  3322.0  2036.0  1884.0  3747.0 16002.0  5222.0  1533.0  5763.0
## [4654]  2814.0  2903.0  4543.0 17506.0  5956.0  4177.0  3059.0  3208.0  7534.0
## [4663] 14044.0  5005.0  3033.0  5204.0  2213.0  3546.0  2989.0 13587.0 32431.0
## [4672]  2207.0  6475.0  2142.0  3382.0  8961.0  4223.0  1666.0  4565.0  9817.0
## [4681]  4970.0  4373.0 12073.0  6451.0  1897.0  3231.0  1577.0  3061.0  3024.0
## [4690]  1998.0 11881.0  2968.0 13984.0  5856.0  7182.0  5844.0  3940.0  5784.0
## [4699]  8632.0  9874.0  1873.0  2754.0  3979.0 28229.0 12084.0  2762.0  3934.0
## [4708]  9139.0 10351.0  6811.0  2040.0  8404.0  4354.0  9974.0  4316.0  3116.0
## [4717] 24868.0 17706.0  1819.0 19350.0 12045.0 10587.0  2596.0  3008.0  5528.0
## [4726]  7381.0 11354.0 23034.0  4752.0  6114.0 18232.0  3868.0  3808.0  1750.0
## [4735]  2385.0  1811.0 34058.0 16290.0  3745.0 26690.0 14566.0  2353.0 23542.0
## [4744]  9272.0  1967.0  5068.0  7499.0  8700.0 14266.0  2957.0  9918.0  8159.0
## [4753] 18551.0 10886.0 10457.0  4960.0  4601.0  2741.0 23209.0 12610.0  2090.0
## [4762]  2269.0  4036.0  5342.0  5640.0  3349.0  1504.0  2018.0  2105.0 20080.0
## [4771]  1530.0  2915.0 11742.0  1814.0  1446.0  4244.0  2984.0  2471.0 27437.0
## [4780]  4166.0 13100.0  4432.0  4975.0  3489.0 14858.0  2241.0  2581.0 14713.0
## [4789]  2366.0  1681.0  4696.0  4682.0 11670.0  1596.0  1590.0  4994.0 16406.0
## [4798]  9109.0  2632.0  2776.0  8529.0  1604.0  4263.0  1521.0  5284.0  5590.0
## [4807]  7645.0  1745.0  3376.0  7298.0  8383.0  3600.0  4595.0  2795.0  1768.0
## [4816]  2887.0 10879.0  1562.0  5295.0  4708.0  2384.0 11249.0  2932.0  1484.0
## [4825]  1678.0 12373.0 20789.0  3911.0  4848.0 19099.0 22981.0 22067.0  8958.0
## [4834] 25219.0  3361.0  2725.0 10039.0  2467.0  2045.0  4170.0  5422.0  2015.0
## [4843]  2048.0  2152.0  3858.0 11651.0  9449.0  3423.0 11486.0  1653.0  1824.0
## [4852]  9248.0 17627.0  5357.0  1706.0 19360.0  3844.0  2851.0  2951.0 22863.0
## [4861]  1784.0  8919.0  2164.0  4788.0  1532.0  3659.0  3811.0  7106.0  2784.0
## [4870]  1866.0  7514.0  4938.0 19940.0 12366.0  1708.0  2123.0  5633.0  4556.0
## [4879]  1537.0  2080.0  7565.0  8446.0 13908.0 19220.0  9186.0  6673.0  1662.0
## [4888]  3879.0 11794.0  7603.0  2654.0  3611.0  7421.0 12268.0  9873.0  2160.0
## [4897]  1834.0 13001.0  2146.0  4269.0  4195.0  1832.0  4847.0  7507.0  5232.0
## [4906]  1828.0 10834.0  2099.0 11438.0  4703.0  5254.0  1788.0  7508.0  3333.0
## [4915] 13745.0  5021.0  9641.0 12621.0  6074.0  4995.0  4617.0  8220.0  5716.0
## [4924]  1635.0  4259.0 10762.0  4651.0  4576.0  2911.0  2257.0 18457.0  7382.0
## [4933]  3861.0 10009.0  8243.0 11946.0  4025.0  3649.0  5562.0 13733.0  2374.0
## [4942]  3319.0  3021.0 29219.0  4431.0  6384.0 24462.0  1474.0  9880.0 21839.0
## [4951]  1991.0 29795.0  2131.0  2605.0  5169.0  4694.0  6039.0  5256.0 20401.0
## [4960]  3296.0  8956.0  2671.0  2208.0  4196.0 12581.0 17890.0  3192.0  3293.0
## [4969]  7268.0 12725.0  2371.0  7751.0  2401.0  4661.0  8494.0  3926.0  2864.0
## [4978]  4607.0  1476.0  4778.0 16239.0 11726.0 17827.0  1701.0  3998.0 33211.0
## [4987]  1863.0  2691.0 15471.0  4222.0  6614.0  4836.0 12675.0  2813.0  3223.0
## [4996]  2653.0  2745.0  1870.0  8064.0 10016.0  4523.0  6083.0  5813.0  1588.0
## [5005]  3749.0  1796.0  1489.0  8953.0  5999.0  3617.0  3219.0 19782.0 11561.0
## [5014]  8477.0  8671.0  7773.0  8075.0  7932.0  1753.0  5814.0  1989.0  9560.0
## [5023]  5275.0  3758.0 10946.0  3108.0  3202.0  1472.0 10024.0  8840.0  4468.0
## [5032] 17268.0  1649.0  1609.0  6973.0 17228.0  2321.0  3157.0  5523.0  7317.0
## [5041]  5218.0 11114.0 10648.0 10761.0  3897.0  4721.0  2831.0  1508.0 21350.0
## [5050] 10431.0  9430.0 11671.0 11367.0  4416.0  1715.0  2604.0  4978.0  4047.0
## [5059]  5384.0  5141.0  3977.0  1751.0  7434.0  6959.0  2979.0  2391.0  7264.0
## [5068]  4348.0  4162.0  9749.0  4916.0  8279.0  7562.0  4662.0 10503.0  5557.0
## [5077]  1728.0 11750.0 10486.0 13679.0  1921.0  1732.0  5037.0  8314.0 20929.0
## [5086]  1754.0  4209.0  2449.0  4618.0  3618.0  3437.0  3481.0  3019.0  4688.0
## [5095]  1812.0 13623.0  3731.0  2446.0  1821.0  1517.0 19138.0 16835.0  5549.0
## [5104]  4654.0  9114.0  3043.0  4621.0  1740.0  7744.0  9389.0  9317.0  7452.0
## [5113]  1946.0  1471.0  3709.0 10214.0  8111.0 10730.0  1567.0  7278.0  3190.0
## [5122]  3081.0  3793.0  1779.0 21680.0  3918.0 12764.0  3287.0  3891.0  3559.0
## [5131]  2843.0  4325.0  2881.0  4095.0 10417.0  1483.0  5087.0  3819.0  8074.0
## [5140]  8688.0 15109.0 22304.0  1893.0  3790.0  6392.0  9989.0  2559.0  4022.0
## [5149]  1632.0  2085.0  3803.0  3165.0  4628.0  3306.0  8480.0  4637.0  3420.0
## [5158]  4445.0  5721.0  2328.0  3883.0  3229.0  3080.0  4517.0  4762.0  4802.0
## [5167]  2268.0  8204.0  1827.0  8086.0 11287.0  3430.0  6314.0  2181.0  4754.0
## [5176] 11247.0 16258.0  9091.0  1552.0  3472.0 10973.0 25645.0  4257.0  4977.0
## [5185]  7114.0 10972.0  3439.0  3005.0  5051.0 10254.0 28673.0 25410.0  8566.0
## [5194]  2816.0  2350.0  2625.0  3959.0  6941.0  1466.0 17999.0  4553.0  2953.0
## [5203]  4363.0  1894.0  1983.0  7879.0  1915.0  4878.0  4718.0  3683.0 13478.0
## [5212]  2841.0  2360.0  3717.0  5338.0  2276.0  4091.0  3798.0  1778.0 10880.0
## [5221] 20749.0  7600.0  5578.0  1933.0 27169.0  2367.0  5642.0  3239.0  8103.0
## [5230]  5492.0  2444.0  9017.0 32777.0 23486.0  1997.0  3379.0 16553.0  2830.0
## [5239] 24987.0  3705.0  1675.0  1439.0  4440.0  6618.0  4436.0 13138.0  6272.0
## [5248]  9906.0  9525.0  3168.0  2724.0  4629.0  1558.0 13093.0  4451.0  6426.0
## [5257]  3367.0  4154.0  1774.0  1492.0  1550.0  3311.0  2233.0 32106.0  4057.0
## [5266] 17096.0  6568.0  7884.0  4146.0  7293.0  3829.0 16747.0  4790.0 13670.0
## [5275] 12287.0 24431.0  6615.0  1979.0  4262.0  5431.0  7299.0  7551.0  9076.0
## [5284] 10699.0  7212.0  3089.0 11250.0  2456.0 11773.0  4060.0 12967.0  2326.0
## [5293]  4376.0 12745.0  2969.0  5400.0  1719.0  4883.0  3626.0  3335.0  1727.0
## [5302] 19349.0 13409.0  6330.0  3391.0 14324.0  1839.0  1685.0  4850.0  2840.0
## [5311]  1961.0  2832.0 11409.0  8827.0 24256.0  5594.0  3505.0  1905.0  6146.0
## [5320] 13426.0  9104.0 30300.0  7088.0  6763.0 24379.0 13172.0  5027.0  7584.0
## [5329] 28930.0  3485.0 23459.0 18177.0  7839.0  6078.0 21322.0 15618.0 34496.0
## [5338]  4765.0 16583.0  6153.0 11000.0 14344.0 20304.0  8283.0 11318.0 11919.0
## [5347] 12294.0  7253.0 21922.0 13452.0 24735.0  4942.0 29690.0  6751.0  9484.0
## [5356] 25178.0 18224.0  4813.0 24965.0 12569.0  8259.0 13804.0  5700.0  5479.0
## [5365]  5807.0  3605.0 17077.0  5380.0 27720.0 18341.0 27712.0  8285.0 19704.0
## [5374] 21325.0  7045.0 14388.0  3874.0  7484.0 18336.0 10682.0  8587.0  6228.0
## [5383]  7537.0 13609.0  7350.0 18956.0 13445.0  8979.0  6674.0 13165.0  9243.0
## [5392]  4737.0  8798.0 24670.0 23453.0  6139.0 14800.0  9815.0 12265.0 19000.0
## [5401] 13197.0 22599.0 23457.0 31560.0 29572.0  2844.0  9678.0 26882.0 15034.0
## [5410] 12214.0 23070.0  2167.0  6895.0 25894.0  3138.0 12055.0 16592.0 33184.0
## [5419] 10753.0 20001.0  8786.0  7142.0  4477.0 23402.0  6565.0  6982.0  5128.0
## [5428]  9405.0 14646.0 12578.0  6058.0  8561.0  5625.0  2274.0  9422.0  3849.0
## [5437]  5168.0 21046.0  6540.0  8141.0 33441.0  3794.0  5785.0 19387.0  4086.0
## [5446] 31987.0  9043.0 11128.0 22054.0  2199.0  7566.0 11343.0 15155.0 10795.0
## [5455]  6633.0  8572.0 14895.0  9511.0 10896.0  8401.0 12406.0  6769.0 32292.0
## [5464]  4557.0 10949.0 10398.0 22361.0 10877.0 11552.0 11901.0  2273.0  3082.0
## [5473]  9298.0  4136.0 12399.0 15030.0  6441.0  4174.0 23223.0  6954.0  7136.0
## [5482]  6636.0 31497.0  7801.0  6455.0  2879.0  6713.0 10984.0 23058.0 17606.0
## [5491] 18000.0  5800.0 10874.0 13769.0 17894.0 15016.0 12813.0  4660.0 13174.0
## [5500] 11210.0 31639.0 26438.0  7504.0 15048.0 11548.0  8767.0  5306.0  3608.0
## [5509] 31782.0 19107.0 21751.0  7926.0 27984.0 24499.0 27318.0  9766.0 26692.0
## [5518] 33256.0 17698.0  6482.0 18975.0  8230.0 22226.0 28852.0  6893.0  7653.0
## [5527] 26840.0 16828.0  6530.0 11642.0  5390.0  8390.0  3442.0  6680.0  7244.0
## [5536]  8758.0 13432.0 10830.0 20633.0  9070.0 11954.0  4479.0  2599.0 10901.0
## [5545]  8325.0  7196.0 32926.0 18072.0 24533.0  4874.0 12889.0 30117.0  5131.0
## [5554] 24262.0  7385.0 20708.0 17072.0 25737.0 16950.0 15043.0 29338.0 25808.0
## [5563]  8861.0 15365.0  2913.0 11508.0 18991.0 10908.0 14627.0  2219.0 25736.0
## [5572]  2849.0 29227.0 12458.0  7547.0 10677.0  6329.0 28307.0  7650.0  6443.0
## [5581] 13356.0 30172.0 11814.0 28687.0 25653.0  4705.0 19150.0 11765.0 16627.0
## [5590] 13553.0 11476.0 23026.0 18477.0 29890.0  8290.0  3723.0 12695.0 30379.0
## [5599]  9875.0 12218.0 21754.0 12094.0 17812.0 13743.0 15785.0 11714.0 11135.0
## [5608] 13259.0 23355.0 20734.0 14630.0  6080.0 28605.0 10850.0 24244.0 17218.0
## [5617] 14746.0 34458.0  9369.0 22741.0 17277.0 33565.0 20176.0  2519.0 13067.0
## [5626] 11529.0  6616.0 11467.0 15821.0 15795.0  3109.0  8110.0  2236.0  3711.0
## [5635] 18980.0 15472.0 21498.0  4291.0 12773.0  9594.0 19281.0 14806.0  7473.0
## [5644] 27742.0 14563.0  7791.0  3733.0 14416.0 12033.0  3243.0  9761.0  9947.0
## [5653]  3599.0 12648.0  4572.0  4021.0 25601.0 25428.0  4216.0 21161.0  9074.0
## [5662] 24927.0  6157.0 33889.0 33552.0 19594.0 14803.0  3536.0 19333.0 11605.0
## [5671]  5975.0 19141.0  3461.0 29394.0 16191.0  4023.0 33711.0 31699.0  8858.0
## [5680]  7064.0 15487.0 33870.0 23760.0 29239.0  4598.0  3435.0 17540.0 31346.0
## [5689]  4342.0  3842.0  9682.0  7664.0 30498.0 19962.0 21398.0  4746.0 20434.0
## [5698] 29531.0 10688.0 22725.0  8155.0 18266.0 10492.0 19055.0  3973.0  4318.0
## [5707]  7660.0 13313.0  8284.0  3768.0 14382.0 10798.0 22729.0 27670.0 33874.0
## [5716]  3175.0  7979.0 14767.0  3592.0  4819.0 16433.0 12174.0  9230.0  6867.0
## [5725] 18046.0  7680.0  7825.0  5002.0  4755.0 22104.0 29038.0  4620.0 11463.0
## [5734] 19252.0  4822.0 12100.0 20466.0 17887.0 23399.0 13026.0 15698.0 17575.0
## [5743] 29528.0 12494.0 13411.0 17646.0 11121.0  4109.0  6176.0  4512.0 32791.0
## [5752] 10602.0  7953.0  9092.0  5541.0  7204.0  4548.0  3860.0 14581.0 12375.0
## [5761] 19534.0 22993.0 15164.0  9215.0 25438.0  3759.0 12207.0 32089.0  7139.0
## [5770]  3669.0  5859.0 32417.0 27945.0 12338.0 16703.0 16667.0 18512.0 14131.0
## [5779]  3629.0 13312.0 15223.0  5287.0  9060.0  4731.0 29738.0  3944.0  6577.0
## [5788]  8670.0 32554.0  8331.0 15524.0  3275.0 18349.0  4015.0  9719.0  4178.0
## [5797] 29856.0 11522.0 14774.0  5118.0 14682.0 28612.0 24134.0 27929.0  8257.0
## [5806] 23051.0  3755.0  7539.0 11808.0 15504.0 12091.0 13818.0  4442.0  5282.0
## [5815] 10353.0  6280.0 13694.0  8940.0  6546.0 32587.0  9463.0 12552.0 21679.0
## [5824] 10531.0  4905.0 10017.0 31832.0 34427.0  4779.0  3882.0  6121.0  3535.0
## [5833]  9178.0  9634.0 19033.0  5508.0  5871.0 15219.0  8147.0  9711.0 11358.0
## [5842]  6765.0  4725.0  3699.0  8506.0 21714.0  3371.0  9546.0  3848.0  9199.0
## [5851] 13381.0 15101.0  3603.0  4132.0  6882.0 17978.0  3821.0  3787.0  4623.0
## [5860] 17328.0 23889.0  3999.0 11782.0  3220.0  9742.0 26819.0  9580.0  7940.0
## [5869] 14072.0 15928.0 20798.0  9752.0 24844.0  3090.0  9943.0  3384.0 10186.0
## [5878] 16983.0  4268.0 10748.0 31718.0 11898.0 13056.0 14002.0  5500.0  8549.0
## [5887]  4390.0 24884.0  4841.0  4246.0 29974.0 20724.0 21079.0  3720.0 11077.0
## [5896] 12024.0  4446.0 11511.0 19192.0 17542.0 32949.0 32250.0  4251.0 23714.0
## [5905]  3744.0  8449.0  4192.0 14217.0 17350.0 13784.0  5073.0  4074.0 10284.0
## [5914] 11900.0  9701.0  6075.0 13035.0 17306.0  5319.0 15894.0  5855.0 13062.0
## [5923]  7428.0  8848.0  4380.0 12510.0 23712.0  3784.0  9680.0  8065.0 20501.0
## [5932] 23260.0  9073.0 20101.0  6911.0 10729.0 28570.0 12495.0 13344.0 32563.0
## [5941] 12299.0 10858.0  5465.0 12633.0  3876.0  6903.0 13731.0  4826.0 16998.0
## [5950] 29295.0 26423.0  4935.0 12933.0 29937.0 27514.0 32275.0  4107.0  5023.0
## [5959]  6071.0 27494.0 17230.0 30885.0 17970.0 10343.0  9267.0 14386.0  3581.0
## [5968]  3079.0  3594.0 10488.0 24001.0 10301.0 23939.0 21615.0  8712.0 12203.0
## [5977]  3548.0 30543.0  5230.0  3246.0 10018.0 10272.0 19846.0 20701.0  8426.0
## [5986] 16722.0  4413.0  8455.0  7659.0 11059.0  4093.0 24239.0  6024.0 32222.0
## [5995] 31091.0  7769.0  3533.0 27229.0  6261.0  5189.0 14458.0 16909.0  6739.0
## [6004]  4982.0 12359.0  8507.0 15355.0 23731.0 17909.0  3995.0  8297.0  5520.0
## [6013]  3736.0  9664.0 28043.0 16453.0 23502.0  7685.0 17374.0 20030.0  8656.0
## [6022]  5988.0  4917.0 18591.0 10982.0 20144.0 16349.0 10610.0  7386.0  4720.0
## [6031]  3660.0 12932.0  6089.0 23103.0 11280.0 16565.0 14305.0  6104.0  4063.0
## [6040] 11791.0 17744.0 21032.0 18571.0 10948.0 29076.0 20237.0 14828.0  3727.0
## [6049] 14290.0  7594.0  8416.0 34140.0 13753.0 15315.0 12086.0  5016.0 10325.0
## [6058] 18418.0  9633.0  8698.0  4041.0 19713.0 15261.0 33779.0 15648.0  9283.0
## [6067]  3970.0  6159.0 15633.0  3895.0  5611.0 22722.0 12978.0  9129.0  7500.0
## [6076] 14804.0  9683.0 19671.0 25217.0 21067.0 25187.0 18142.0 29865.0  9431.0
## [6085] 30770.0  3638.0 27124.0 13747.0 28174.0 11109.0  4014.0 21226.0  3681.0
## [6094] 26710.0  9550.0 16127.0 18022.0 16748.0 14143.0  7684.0 26021.0  3843.0
## [6103] 14840.0  3929.0 11427.0  3771.0 23362.0 13669.0  9764.0 10585.0 33905.0
## [6112] 33004.0 20891.0 22715.0  3526.0  6991.0 16268.0  5768.0  9491.0  4155.0
## [6121] 13894.0  6828.0  5542.0 15733.0 30082.0  3676.0 17721.0  4404.0  4423.0
## [6130]  4184.0 26923.0 15977.0 26812.0 22355.0 23240.0 16081.0 14135.0 31546.0
## [6139]  3310.0 10292.0 15944.0 34162.0  7832.0 13704.0  4133.0  5270.0  3782.0
## [6148]  5173.0 21551.0  9805.0  7530.0  8983.0  4855.0  9524.0  5181.0 28831.0
## [6157]  7020.0 12833.0  3804.0 21794.0  3850.0  4626.0 13651.0 26794.0 17190.0
## [6166]  6933.0 13589.0  4552.0  3750.0  8224.0  5654.0 28564.0  6172.0  5435.0
## [6175] 16496.0  8348.0  7935.0  9611.0 12958.0  4103.0  6888.0 21906.0  7288.0
## [6184] 12540.0  4493.0 29808.0 22754.0 29663.0  5043.0  4299.0 11859.0 17504.0
## [6193]  4165.0  6481.0 13303.0  4700.0 13187.0 17925.0 14657.0 13940.0  3688.0
## [6202]  4003.0  5409.0  5281.0 10388.0
# Question 2 (con't.) - Descriptives for Total_Trans_Amt

mean(bc1$Total_Trans_Amt)
## [1] 4404.086
median(bc1$Total_Trans_Amt)
## [1] 3899
which.max(table(bc1$Total_Trans_Amt)) %>% names
## [1] "4253"
min(bc1$Total_Trans_Amt)
## [1] 510
max(bc1$Total_Trans_Amt)
## [1] 18484
length(bc1$Total_Trans_Amt)
## [1] 10127
sd(bc1$Total_Trans_Amt)
## [1] 3397.129
# Question 3 - Frequency Distribution and a Relative Frequency Distribution for a categorical variable

# First, the Frequency Distribution of Card Category

table(bc1$Card_Category)
## 
##     Blue     Gold Platinum   Silver 
##     9436      116       20      555
# Then the Relative Frequency Distribution of Card Category

table(bc1$Card_Category) / length(bc1$Card_Category)
## 
##        Blue        Gold    Platinum      Silver 
## 0.931766565 0.011454528 0.001974919 0.054803989
# Question 4 - Contingency Table for 2 categorical Variables

table(bc1$Marital_Status, bc1$Education_Level)
##           
##            College Doctorate Graduate High School Post-Graduate Uneducated
##   Divorced      86        36      225         128            41        136
##   Married      467       205     1479         949           243        656
##   Single       386       182     1197         782           189        586
##   Unknown       74        28      227         154            43        109
##           
##            Unknown
##   Divorced      96
##   Married      688
##   Single       621
##   Unknown      114
# Question 5 - Bar Chart & Pie Chart for categorical variables
# First the bar chart of Educaion Levels

p1 <- bc1 %>%
  ggplot(aes(x = Education_Level))+
  geom_bar()+
  ggtitle("Education Level of the Bank's Card Holders")+
  xlab("Education Levels")
p1

# Question 5 (con't.) Now the Pie Chart


card_type <- c("Blue", "Silver", "Gold", "Platinum")
number <- c(9436, 555, 116, 20 )
cards <- data.frame(card_type, number)
cards
##   card_type number
## 1      Blue   9436
## 2    Silver    555
## 3      Gold    116
## 4  Platinum     20
#col = rainbow(length(cards$number)) I tried a # of ways to get color; finally got this. Not happy w/ it, but it worked. 
pie(cards$number, 
  col = rainbow(length(cards$number)),
    labels = card_type, 
    main = "The Bank's Card Holders by Card Type" )

# Question 6 - 2 Histograms & 2 Boxplots  - 1 each for 2 quantitative variables
# The first histogram I will create is of the Total Transaction Amount, differentiated by Gender

p2 <- bc1 %>%
ggplot( aes(x=Total_Trans_Amt, colour = Gender)) +
    geom_histogram( binwidth=100) +
    ggtitle("Histogram of Total Transaction Amount by Gender") 
   # theme_ipsum() +
    #theme(
     # plot.title = "Histogram of Total Transaction Amount by Gender"
    #)
p2

# Question 6 (con't.) Boxplot of Total Transaction Amount by Gender
boxplot(bc1$Total_Trans_Amt ~ (bc1$Gender), ylab = "Total Transaction Amount", xlab = "Gender", main = "Boxplot of Total Transaction Amount by Gender")

# Question 6 - 2 Histograms & 2 Boxplots  - 1 each for 2 quantitative variables
# The second histogram I will create is of the Credit Limit

p3 <- bc1 %>%
ggplot( aes(x=Credit_Limit)) +
    geom_histogram(binwidth = 500) +
    ggtitle("Histogram of Credit Limit") 
p3

# Question 6 (con't.) Boxplot of Credit Limit by Marital Status
boxplot(bc1$Credit_Limit ~ (bc1$Marital_Status), ylab = "Credit Limit", xlab = "Marital Status", main = "Boxplot of Credit Limit by Marital Status")

#Question 7 - Analyze the results

### One interesting result, and to me unexpected, was the 6,205 unique credit limits. Almost everyone in the data set had his or her own credit limit -  6,205 of 10,127 observations. The statistics that led me to investigate this was the congruence of the mode and maximum of the credit limit. It was not intuituve, to me at least, why the highest credit limit was the mode. I thought there must be an error. But many, if not most, of the credit limit values had only 1 or 2 occurrences. I thought credit limits would be in even dollar amounts  - 500, 1000, 1500, etc. This is not the case, at least w/ this bank. 

### Another interesting finding is the total transaction amount compared by gender. The histogram seems to show females have more transactions at any given total transaction amount. Yet when I ran the boxplot, the males were highter. What happened?  Then I studied the histogram in more detail. At the very highest transaction amount, the number of females is  either negligible or none. Males thus underspend females, except at the very highest level. This seems to confirm the adage: "The difference between men and boys is the price of their  toys." 

### Finally, it seems odd that married individuals have overall lower credit limits than divorced or single persons. While the outliers for all groups seem to be about the same, the IQC and median for marrieds is the lowest of all 4 marital status groups. 

### All in all, a very interesting and fun assignment.