#Data File
PP <- read.csv("Proteins_2022.03.28.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))

#Sample Size: Number of participants (rows)
nrow(PP)
## [1] 1005

Demographics

Age

#"How old are you?" 

## Age Range, Descriptives, and Standard Deviation
range(PP$Dem_Age, na.rm = T)
## [1] 13 83
describe(PP$Dem_Age, na.rm = T)
## PP$Dem_Age 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      987       18       66        1    42.08    17.25       21       23 
##      .25      .50      .75      .90      .95 
##       30       40       53       65       70 
## 
## lowest : 13 18 19 20 21, highest: 78 79 81 82 83
sd(PP$Dem_Age, na.rm = T)
## [1] 15.1872
## Histogram
hist(PP$Dem_Age)

Ethnicity

## Ethnicity: Which racial or ethnic group best describes you? (1 = Asian, Asian-American, 2 = Black, Black American, 3 = Hispanic/Latino-American, 4 = Native American, 5 = Native Pacific Islander, 6 = White/Caucasian-American, 7 = Other)

table(PP$Dem_Ethnicity)
## 
##   1   2   3   4   5   6   7 
##  44 178  66  11   5 680  19
PP$Ethnicity <- NA
PP$Ethnicity[PP$Dem_Ethnicity == 1] <- 'Asian'
PP$Ethnicity[PP$Dem_Ethnicity == 2] <- 'Black'
PP$Ethnicity[PP$Dem_Ethnicity == 3] <- 'Hispanic'
PP$Ethnicity[PP$Dem_Ethnicity == 4] <- 'Nat Amer'
PP$Ethnicity[PP$Dem_Ethnicity == 5] <- 'Nat Pac'
PP$Ethnicity[PP$Dem_Ethnicity == 6] <- 'White'
PP$Ethnicity[PP$Dem_Ethnicity == 7] <- 'Other'

describe(PP$Dem_Ethnicity)
## PP$Dem_Ethnicity 
##        n  missing distinct     Info     Mean      Gmd 
##     1003        2        7    0.682    4.865    1.718 
## 
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency     44   178    66    11     5   680    19
## Proportion 0.044 0.177 0.066 0.011 0.005 0.678 0.019
histogram(PP$Dem_Ethnicity)

Education

# Education: Please indicate the highest level of education you have completed (1 = Elementary/Grammar School, 2 = Middle School, 3 = High School or Equivalent, 4 = Vocational/Technical School (2 years), 5 = Some College, 6 = College or University (4 years), 7 = Master's Degree (MS, MA, MBA, etc.), 8 = Doctoral Degree (PhD), 9 = Professional Degree (MD, JD, etc.). 

PP$EdNum <- as.numeric(as.character(PP$Dem_Edu))
PP$EDU <- factor(PP$EdNum, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 
                     labels = c("Elementary/Grammar School", "Middle School", "High School or Equivalent", "Vocational/Technical School (2 years)", "Some College", "College or University (4 years)", "Master's Degree (MS, MA, MBA, etc.)", "Doctoral Degree (PhD)", "Doctoral Degree (PhD)", "Other"))
table(PP$EDU)
## 
##             Elementary/Grammar School                         Middle School 
##                                     3                                    13 
##             High School or Equivalent Vocational/Technical School (2 years) 
##                                   310                                    82 
##                          Some College       College or University (4 years) 
##                                   296                                   191 
##   Master's Degree (MS, MA, MBA, etc.)                 Doctoral Degree (PhD) 
##                                    80                                    23 
##                                 Other 
##                                     5
## Histogram
hist(PP$EdNum)

Income

# Please indicate your current household income in U.S. dollars. (Prefer Not to Say"; "Under $10,000"; "$10,000 - $19,999"; "$20,000 - $29,999"; "$30,000 - $39,999"; "$40,000 - $49,999"; "$50,000 - $74,999"; "$75,000 - $99,999"; "$100,000 - $149,999"; "$150,000 or More)

PP$SESNum <- as.numeric(as.character(PP$Dem_SES))
PP$SES <- factor(PP$SESNum, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 
                     labels = c("Prefer Not to Say", "Under $10,000", "$10,000 - $19,999", "$20,000 - $29,999", "$30,000 - $39,999", "$40,000 - $49,999", "$50,000 - $74,999", "$75,000 - $99,999", "$100,000 - $149,999", "$150,000 or More"))
table(PP$SES)
## 
##   Prefer Not to Say       Under $10,000   $10,000 - $19,999   $20,000 - $29,999 
##                  67                 115                 112                 132 
##   $30,000 - $39,999   $40,000 - $49,999   $50,000 - $74,999   $75,000 - $99,999 
##                 135                 101                 156                  83 
## $100,000 - $149,999    $150,000 or More 
##                  65                  37
## Histogram
hist(PP$SESNum)

Type of Community/Living Environment

# Type of Community/Living Environment: Which of the following best describes the area you live in? (1 = Urban, 2 = Suburban, 3 = Rural)

PP$LivNum <- as.numeric(as.character(PP$Dem_Living))

PP$LIVING <- factor(PP$LivNum, levels = c(1, 2, 3), 
                     labels = c("Urban", "Suburban", "Rural"))
table(PP$LIVING)
## 
##    Urban Suburban    Rural 
##      316      425      262
## Histogram
hist(PP$LivNum)

Political Identity

# Political Identity: Which of the following describes your political orientation? (1 = Strongly Conservative, 2 = Moderately Conservative, 3 = Slightly Conservative, 4 = Neither Conservative Nor Liberal, 5 = Slightly Liberal, 6 = Moderately Liberal, 7 = Strongly Liberal)

PP$polOR <- factor(PP$PI_Orientation, levels = c(1, 2, 3, 4, 5, 6, 7), 
                     labels = c("Strongly Conservative", "Moderately Conservative", "Slightly Conservative", "Neither Conservative Nor Liberal", "Slightly Liberal", "Moderately Liberal", "Strongly Liberal"))
table(PP$polOR)
## 
##            Strongly Conservative          Moderately Conservative 
##                              126                              171 
##            Slightly Conservative Neither Conservative Nor Liberal 
##                              124                              301 
##                 Slightly Liberal               Moderately Liberal 
##                               93                               93 
##                 Strongly Liberal 
##                               94
# Political Orientation: Which of the following best describes your political orientation? ( 1 = Strongly Conservative to 7 = Strongly Liberal)

PP$Orientation = as.numeric(recode_factor(PP$PI_Orientation,'1'= "3",'2'= "2",'3'= "1",
                                          '4'= "0",'5'= "-1", '6'= "-2", '7'= "-3"))
describe(PP$Orientation)
## PP$Orientation 
##        n  missing distinct     Info     Mean      Gmd 
##     1002        3        7    0.962    3.718    2.003 
## 
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency    126   171   124   301    93    93    94
## Proportion 0.126 0.171 0.124 0.300 0.093 0.093 0.094
hist(PP$Orientation , main = 'Political Orientation (Liberal to Conservative)')

# Political Party 
##Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (1 = Republican, 2 = Democrat, 3 = Independent, 4 = Other (write-in), 5 = No Preference)

describe(PP$Party)
##  
## NULL
PP$Party <- PP$Party
PP$DemStrength <- PP$DStrength
PP$RepStrength <- PP$RStrength
PP$PartyClose <- PP$Closerto

# Recode Party

PP$PartyFull <- NA
PP$PartyFull[PP$DemStrength == 1] <- -3
PP$PartyFull[PP$DemStrength == 2] <- -2
PP$PartyFull[PP$PartyClose == 1] <- -1
PP$PartyFull[PP$PartyClose == 3] <- 0
PP$PartyFull[PP$PartyClose == 2] <- 1
PP$PartyFull[PP$RepStrength == 2] <- 2
PP$PartyFull[PP$RepStrength == 1] <- 3

describe(PP$PartyFull)
## PP$PartyFull 
##        n  missing distinct     Info     Mean      Gmd 
##      996        9        7    0.967  -0.1797    2.495 
## 
## lowest : -3 -2 -1  0  1, highest: -1  0  1  2  3
##                                                     
## Value         -3    -2    -1     0     1     2     3
## Frequency    227   136    66   212    65    95   195
## Proportion 0.228 0.137 0.066 0.213 0.065 0.095 0.196
hist(PP$PartyFull , main = 'Party Identification')

#New Variable: Ideology
PP$Ideology <-  rowMeans(PP[, c('PartyFull', 'Orientation')], na.rm=T)
describe(PP$Ideology)
## PP$Ideology 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1003        2       14    0.949    1.785    1.155     -0.5      0.5 
##      .25      .50      .75      .90      .95 
##      1.5      2.0      2.5      3.0      3.5 
## 
## lowest : -1.0 -0.5  0.0  0.5  1.0, highest:  3.5  4.0  4.5  5.0  6.0
##                                                                             
## Value       -1.0  -0.5   0.0   0.5   1.0   1.5   2.0   2.5   3.0   3.5   4.0
## Frequency     25    27    35    80    79   142   357   126    52    49    14
## Proportion 0.025 0.027 0.035 0.080 0.079 0.142 0.356 0.126 0.052 0.049 0.014
##                             
## Value        4.5   5.0   6.0
## Frequency      6     9     2
## Proportion 0.006 0.009 0.002
hist(PP$Ideology)

Sex

# Frequencies: Sex (1 = female, 2 = male, 3 = other)
PP$Dem_Sex <- factor(PP$Dem_Gen, levels = c(1, 2, 3), 
                     labels = c("Female", "Male", "Other"))
table(PP$Dem_Sex)
## 
## Female   Male  Other 
##    614    384      5
PP$Dem_Sex <- as.numeric(as.character(PP$Dem_Gen))
describe(PP$Dem_Sex)
## PP$Dem_Sex 
##        n  missing distinct     Info     Mean      Gmd 
##     1003        2        3    0.714    1.393   0.4852 
##                             
## Value          1     2     3
## Frequency    614   384     5
## Proportion 0.612 0.383 0.005
## Histogram
hist(PP$Dem_Sex)

#Correlation political ideology and sex
PP$idsex <- data.frame(PP$Dem_Sex,PP$Ideology)
cor(PP$idsex, use= "complete.obs") 
##              PP.Dem_Sex PP.Ideology
## PP.Dem_Sex   1.00000000 -0.02515045
## PP.Ideology -0.02515045  1.00000000

Scales

Animal Welfare

# Animal Welfare: How much do you agree or disagree with the following statements?

## Item 1: It is important to me that my food is produced in a way that animals have not experienced pain.
## Item 2: It is important to me that my food is produced in a way that animals' rights have been respected. 

#Descriptives
describe(PP$AW_1)
## PP$AW_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4       99     0.99    69.77    30.34       16       28 
##      .25      .50      .75      .90      .95 
##       52       75       96      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$AW_1, na.rm=TRUE)
## [1]   0 100
describe(PP$AW_2)
## PP$AW_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1000        5       95    0.991    71.28    28.84     19.9     34.0 
##      .25      .50      .75      .90      .95 
##     53.0     75.0     95.0    100.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$AW_2, na.rm=TRUE)
## [1]   0 100
#Histograms
hist(PP$AW_1, main = 'Produced without animal pain')

hist(PP$AW_2, main = 'Produced with animal rights respected') 

#Correlation
PP$AW_Score <- rowMeans(PP [, c("AW_1", "AW_2")], na.rm=TRUE)
describe(PP$AW_Score)
## PP$AW_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4      172    0.995    70.53    27.43     25.0     39.5 
##      .25      .50      .75      .90      .95 
##     52.0     73.5     92.5    100.0    100.0 
## 
## lowest :   0.0   1.0   2.0   2.5   3.0, highest:  98.0  98.5  99.0  99.5 100.0
PP$AW_Scale <- data.frame(PP$AW_1, PP$AW_2)
describe(PP$AW_Scale)
## PP$AW_Scale 
## 
##  2  Variables      1005  Observations
## --------------------------------------------------------------------------------
## PP.AW_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4       99     0.99    69.77    30.34       16       28 
##      .25      .50      .75      .90      .95 
##       52       75       96      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.AW_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1000        5       95    0.991    71.28    28.84     19.9     34.0 
##      .25      .50      .75      .90      .95 
##     53.0     75.0     95.0    100.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
cor(PP$AW_Scale, use= "complete.obs")
##           PP.AW_1   PP.AW_2
## PP.AW_1 1.0000000 0.6929324
## PP.AW_2 0.6929324 1.0000000

Aversion to Tampering with Nature

# Aversion to Tampering with Nature: How much do you agree or disagree with the following statements?

## Item 1: People who push for technological fixes to environmental problems are underestimating the risks. 
## Item 2: People who say we shouldn’t tamper with nature are just being naïve. 
## Item 3: Human beings have no right to meddle with the natural environment. 
## Item 4: I would prefer to live in a world where humans leave nature alone. 
## Item 5: Altering nature will be our downfall as a species.

# Item Definitions
PP$ATNS_1 <- as.numeric(as.character(PP$ATNS_36))
PP$ATNS_2 <- as.numeric(as.character(PP$ATNS_37))
PP$ATNS_3 <- as.numeric(as.character(PP$ATNS_38))
PP$ATNS_4 <- as.numeric(as.character(PP$ATNS_39))
PP$ATNS_5 <- as.numeric(as.character(PP$ATNS_40))

# Reverse Code Item 2
PP$ATNS_2R <- (100- PP$ATNS_2)
describe(PP$ATNS_2R)
## PP$ATNS_2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      999        6      101    0.999     48.8    35.98        0        8 
##      .25      .50      .75      .90      .95 
##       24       47       75       99      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
# Descriptives 
describe(PP$ATNS_1)
## PP$ATNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4       98    0.998    63.65    29.45       15       26 
##      .25      .50      .75      .90      .95 
##       50       66       83      100      100 
## 
## lowest :   0   1   3   5   7, highest:  96  97  98  99 100
range(PP$ATNS_1, na.rm=TRUE)
## [1]   0 100
describe(PP$ATNS_2)
## PP$ATNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      999        6      101    0.999     51.2    35.98        0        1 
##      .25      .50      .75      .90      .95 
##       25       53       76       92      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$ATNS_2, na.rm=TRUE)
## [1]   0 100
describe(PP$ATNS_3)
## PP$ATNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1000        5      101    0.998    63.75     30.8    11.95    25.00 
##      .25      .50      .75      .90      .95 
##    46.00    68.00    85.00   100.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$ATNS_3, na.rm=TRUE)
## [1]   0 100
describe(PP$ATNS_4)
## PP$ATNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1000        5       98    0.995     67.9    29.41       17       30 
##      .25      .50      .75      .90      .95 
##       52       72       88      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$ATNS_4, na.rm=TRUE)
## [1]   0 100
describe(PP$ATNS_5)
## PP$ATNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1002        3       97    0.996    68.31    29.34       17       30 
##      .25      .50      .75      .90      .95 
##       52       73       90      100      100 
## 
## lowest :   0   1   2   3   5, highest:  96  97  98  99 100
range(PP$ATNS_5, na.rm=TRUE)
## [1]   0 100
#Aversion to Tampering with Nature Scale Histograms by Item (No reversed codes)
hist(PP$ATNS_1, main = '#1: Underestimating risks')

hist(PP$ATNS_2R, main = '#2(R): Shouldn’t tamper = naïve')

hist(PP$ATNS_3, main = '#3: No right to meddle')

hist(PP$ATNS_4, main = '#4: Leave nature alone')

hist(PP$ATNS_5, main = '#5: Altering nature = species downfall')

#Cronbach's Alpha (Item 2 reverse coded)
PP$ATNS_Scale <- data.frame(PP$ATNS_1, PP$ATNS_2R, PP$ATNS_3, PP$ATNS_4, PP$ATNS_5)
PP$ATNS_Score <- rowMeans(PP [, c("ATNS_1", "ATNS_2R", "ATNS_3", "ATNS_4", "ATNS_5")], na.rm=TRUE)
psych::alpha(PP$ATNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(PP$ATNS_Scale): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.ATNS_2R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$ATNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.62      0.65    0.65      0.27 1.8 0.019   62 17     0.39
## 
##  lower alpha upper     95% confidence boundaries
## 0.58 0.62 0.66 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## PP.ATNS_1       0.56      0.59    0.58      0.26 1.4    0.023 0.0722  0.25
## PP.ATNS_2R      0.77      0.77    0.72      0.46 3.3    0.012 0.0039  0.45
## PP.ATNS_3       0.47      0.50    0.50      0.20 1.0    0.028 0.0625  0.19
## PP.ATNS_4       0.49      0.52    0.53      0.22 1.1    0.027 0.0736  0.22
## PP.ATNS_5       0.48      0.51    0.52      0.21 1.0    0.027 0.0670  0.19
## 
##  Item statistics 
##               n raw.r std.r  r.cor r.drop mean sd
## PP.ATNS_1  1001  0.64  0.66  0.530  0.400   64 26
## PP.ATNS_2R  999  0.34  0.29 -0.014 -0.017   49 31
## PP.ATNS_3  1000  0.76  0.77  0.722  0.568   64 27
## PP.ATNS_4  1000  0.73  0.74  0.662  0.526   68 26
## PP.ATNS_5  1002  0.74  0.76  0.695  0.551   68 26
describe(PP$ATNS_Scale)
## PP$ATNS_Scale 
## 
##  5  Variables      1005  Observations
## --------------------------------------------------------------------------------
## PP.ATNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4       98    0.998    63.65    29.45       15       26 
##      .25      .50      .75      .90      .95 
##       50       66       83      100      100 
## 
## lowest :   0   1   3   5   7, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.ATNS_2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      999        6      101    0.999     48.8    35.98        0        8 
##      .25      .50      .75      .90      .95 
##       24       47       75       99      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.ATNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1000        5      101    0.998    63.75     30.8    11.95    25.00 
##      .25      .50      .75      .90      .95 
##    46.00    68.00    85.00   100.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.ATNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1000        5       98    0.995     67.9    29.41       17       30 
##      .25      .50      .75      .90      .95 
##       52       72       88      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.ATNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1002        3       97    0.996    68.31    29.34       17       30 
##      .25      .50      .75      .90      .95 
##       52       73       90      100      100 
## 
## lowest :   0   1   2   3   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------

Benefit

# Benefit perception was measured with 3 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Benefit score calculated by averaging these items.

### Item 1: This is beneficial to my health.
### Item 2: This is beneficial to society.
### Item 3: This is beneficial to the environment.

Grain-fed Feedlot Burger (GFFB)

#GFFB
PP$Benefit_1_GFFB <- PP$GFFB_Benefit_18
describe(PP$Benefit_1_GFFB)
## PP$Benefit_1_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      497      508       95    0.998    56.94     33.7        0       15 
##      .25      .50      .75      .90      .95 
##       36       59       80      100      100 
## 
## lowest :   0   1   2   3   5, highest:  95  97  98  99 100
range(PP$Benefit_1_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_1_GFFB, main = 'GFFB - This is beneficial to my health.')

PP$Benefit_2_GFFB <- PP$GFFB_Benefit_40
describe(PP$Benefit_2_GFFB)
## PP$Benefit_2_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      497      508       97    0.999    56.99    33.41        0       12 
##      .25      .50      .75      .90      .95 
##       37       60       80       98      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Benefit_2_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_2_GFFB, main = 'GFFB - This is beneficial to society.')

PP$Benefit_3_GFFB <- PP$GFFB_Benefit_41
describe(PP$Benefit_3_GFFB)
## PP$Benefit_3_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      495      510      101    0.999    54.58    33.36      0.0     11.4 
##      .25      .50      .75      .90      .95 
##     33.0     55.0     76.5     96.6    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Benefit_3_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_3_GFFB, main = 'GFFB - This is beneficial to the environment.')

#GFFB Benefit Scale
PP$Ben_Score_GFFB <- rowMeans(PP [, c("Benefit_1_GFFB", "Benefit_2_GFFB", "Benefit_3_GFFB")], na.rm=TRUE)
describe(PP$Ben_Score_GFFB)
## PP$Ben_Score_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      497      508      219    0.999     56.2    30.81    2.267   17.533 
##      .25      .50      .75      .90      .95 
##   39.667   56.000   76.667   95.800  100.000 
## 
## lowest :   0.0000000   0.6666667   1.0000000   1.6666667   2.0000000
## highest:  98.3333333  99.0000000  99.3333333  99.6666667 100.0000000
sd(PP$Ben_Score_GFFB, na.rm = TRUE)
## [1] 27.07308
PP$Ben_Scale_GFFB <- data.frame(PP$Benefit_1_GFFB, PP$Benefit_2_GFFB, PP$Benefit_3_GFFB)

#GFFB Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_GFFB, PP$Benefit_2_GFFB, PP$Benefit_3_GFFB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Benefit_1_GFFB, PP$Benefit_2_GFFB, 
##     PP$Benefit_3_GFFB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.92      0.92    0.88      0.78  11 0.0046   56 27     0.78
## 
##  lower alpha upper     95% confidence boundaries
## 0.91 0.92 0.92 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_GFFB      0.89      0.89    0.79      0.79 7.7   0.0072    NA
## PP.Benefit_2_GFFB      0.87      0.87    0.78      0.78 7.0   0.0079    NA
## PP.Benefit_3_GFFB      0.88      0.88    0.78      0.78 7.1   0.0078    NA
##                   med.r
## PP.Benefit_1_GFFB  0.79
## PP.Benefit_2_GFFB  0.78
## PP.Benefit_3_GFFB  0.78
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_GFFB 497  0.92  0.92  0.86   0.82   57 29
## PP.Benefit_2_GFFB 497  0.93  0.93  0.87   0.83   57 29
## PP.Benefit_3_GFFB 495  0.93  0.93  0.87   0.83   55 29
hist(PP$Ben_Score_GFFB, main = 'GFFB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_GFFB, labels = c('1','2', '3'), main = "Correlation Between GFFB Benefit Items")

Grain-fed Pasture Raised Burger (GFPRB)

#GFPRB
PP$Benefit_1_GFPRB <- PP$GFPRB_Benefit_18
describe(PP$Benefit_1_GFPRB)
## PP$Benefit_1_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491       89    0.996     68.8    29.34       19       31 
##      .25      .50      .75      .90      .95 
##       52       72       91      100      100 
## 
## lowest :   0   1   4   7  10, highest:  96  97  98  99 100
range(PP$Benefit_1_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_1_GFPRB, main = 'GFPRB - This is beneficial to my health.')

PP$Benefit_2_GFPRB <- PP$GFPRB_Benefit_40
describe(PP$Benefit_2_GFPRB)
## PP$Benefit_2_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491       88    0.995    68.27    28.95     22.0     31.0 
##      .25      .50      .75      .90      .95 
##     52.0     71.5     90.0    100.0    100.0 
## 
## lowest :   0   2   3   5   7, highest:  96  97  98  99 100
range(PP$Benefit_2_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_2_GFPRB, main = 'GFPRB - This is beneficial to society.')

PP$Benefit_3_GFPRB <- PP$GFPRB_Benefit_41
describe(PP$Benefit_3_GFPRB)
## PP$Benefit_3_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      513      492       94    0.996    64.86    31.85     13.6     24.0 
##      .25      .50      .75      .90      .95 
##     49.0     68.0     89.0    100.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Benefit_3_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_3_GFPRB, main = 'GFPRB - This is beneficial to the environment.')

#GFPRB Benefit Scale
PP$Ben_Score_GFPRB <- rowMeans(PP [, c("Benefit_1_GFPRB", "Benefit_2_GFPRB", "Benefit_3_GFPRB")], na.rm=TRUE)
describe(PP$Ben_Score_GFPRB)
## PP$Ben_Score_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491      193    0.998    67.33    27.03    25.87    33.43 
##      .25      .50      .75      .90      .95 
##    52.42    67.00    87.25   100.00   100.00 
## 
## lowest :   0.0000000   0.3333333   1.3333333   2.3333333   4.0000000
## highest:  98.6666667  99.0000000  99.3333333  99.6666667 100.0000000
sd(PP$Ben_Score_GFPRB, na.rm = TRUE)
## [1] 24.01472
PP$Ben_Scale_GFPRB <- data.frame(PP$Benefit_1_GFPRB, PP$Benefit_2_GFPRB, PP$Benefit_3_GFPRB)

#GFPRB Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_GFPRB, PP$Benefit_2_GFPRB, PP$Benefit_3_GFPRB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Benefit_1_GFPRB, PP$Benefit_2_GFPRB, 
##     PP$Benefit_3_GFPRB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.88      0.88    0.83      0.71 7.5 0.0065   67 24     0.71
## 
##  lower alpha upper     95% confidence boundaries
## 0.87 0.88 0.89 
## 
##  Reliability if an item is dropped:
##                    raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_GFPRB      0.83      0.83    0.71      0.71 4.9   0.0108    NA
## PP.Benefit_2_GFPRB      0.82      0.82    0.69      0.69 4.5   0.0115    NA
## PP.Benefit_3_GFPRB      0.85      0.85    0.74      0.74 5.7   0.0095    NA
##                    med.r
## PP.Benefit_1_GFPRB  0.71
## PP.Benefit_2_GFPRB  0.69
## PP.Benefit_3_GFPRB  0.74
## 
##  Item statistics 
##                      n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_GFPRB 514   0.9  0.90  0.83   0.77   69 26
## PP.Benefit_2_GFPRB 514   0.9  0.91  0.84   0.79   68 26
## PP.Benefit_3_GFPRB 513   0.9  0.89  0.80   0.75   65 28
hist(PP$Ben_Score_GFPRB, main = 'GFPRB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_GFPRB, labels = c('1','2', '3'), main = "Correlation Between GFPRB Benefit Items")

Cultured beef burgers (CBB)

#CBB
PP$Benefit_1_CBB <- PP$CBB_Benefit_18
describe(PP$Benefit_1_CBB)
## PP$Benefit_1_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491       99    0.998    48.75    36.32     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    24.25    51.00    75.00    95.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Benefit_1_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_1_CBB, main = 'CBB - This is beneficial to my health.')

PP$Benefit_2_CBB <- PP$CBB_Benefit_40
describe(PP$Benefit_2_CBB)
## PP$Benefit_2_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491       97    0.999    53.39    34.83      0.0      4.0 
##      .25      .50      .75      .90      .95 
##     32.0     54.0     78.5     95.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Benefit_2_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_2_CBB, main = 'CBB - This is beneficial to society.')

PP$Benefit_3_CBB <- PP$CBB_Benefit_41
describe(PP$Benefit_3_CBB)
## PP$Benefit_3_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      513      492       97    0.998    55.54    35.25      0.0      4.2 
##      .25      .50      .75      .90      .95 
##     34.0     59.0     80.0     98.8    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
range(PP$Benefit_3_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_3_CBB, main = 'CBB - This is beneficial to the environment.')

#Benefit Scale
PP$Ben_Score_CBB <- rowMeans(PP [, c("Benefit_1_CBB", "Benefit_2_CBB", "Benefit_3_CBB")], na.rm=TRUE)
describe(PP$Ben_Score_CBB)
## PP$Ben_Score_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491      228        1    52.55    32.46     0.00     8.10 
##      .25      .50      .75      .90      .95 
##    34.00    53.17    73.67    91.70    99.78 
## 
## lowest :   0.0000000   0.3333333   0.6666667   1.0000000   1.3333333
## highest:  98.3333333  99.0000000  99.3333333  99.6666667 100.0000000
sd(PP$Ben_Score_CBB, na.rm = TRUE)
## [1] 28.37883
PP$Ben_Scale_CBB <- data.frame(PP$Benefit_1_CBB, PP$Benefit_2_CBB, PP$Benefit_3_CBB)

#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_CBB, PP$Benefit_2_CBB, PP$Benefit_3_CBB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Benefit_1_CBB, PP$Benefit_2_CBB, 
##     PP$Benefit_3_CBB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.91      0.91    0.87      0.77 9.9 0.005   53 28     0.76
## 
##  lower alpha upper     95% confidence boundaries
## 0.9 0.91 0.92 
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Benefit_1_CBB      0.89      0.89    0.80      0.80 8.0   0.0070    NA  0.80
## PP.Benefit_2_CBB      0.86      0.86    0.75      0.75 6.0   0.0091    NA  0.75
## PP.Benefit_3_CBB      0.86      0.86    0.76      0.76 6.2   0.0088    NA  0.76
## 
##  Item statistics 
##                    n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_CBB 514  0.91  0.91  0.83   0.79   49 32
## PP.Benefit_2_CBB 514  0.92  0.93  0.87   0.83   53 30
## PP.Benefit_3_CBB 513  0.92  0.92  0.87   0.83   56 31
hist(PP$Ben_Score_CBB, main = 'CBB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_CBB, labels = c('1','2', '3'), main = "Correlation Between CBB Benefit Items")

Plant-based Protein Burger (PBPB)

#PBPB
PP$Benefit_1_PBPB <- PP$PBPB_Benefit_18
describe(PP$Benefit_1_PBPB)
## PP$Benefit_1_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      520      485       93    0.998    61.32     32.7        0       18 
##      .25      .50      .75      .90      .95 
##       42       66       84      100      100 
## 
## lowest :   0   1   3   4   6, highest:  96  97  98  99 100
range(PP$Benefit_1_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_1_PBPB, main = 'PBPB - This is beneficial to my health.')

PP$Benefit_2_PBPB <- PP$PBPB_Benefit_40
describe(PP$Benefit_2_PBPB)
## PP$Benefit_2_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      520      485       97    0.998    60.76    32.99     0.00    17.90 
##      .25      .50      .75      .90      .95 
##    40.75    66.00    83.25   100.00   100.00 
## 
## lowest :   0   1   3   4   6, highest:  96  97  98  99 100
range(PP$Benefit_2_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_2_PBPB, main = 'PBPB - This is beneficial to society.')

PP$Benefit_3_PBPB <- PP$PBPB_Benefit_41
describe(PP$Benefit_3_PBPB)
## PP$Benefit_3_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      520      485       92    0.998    62.35    31.35        0       23 
##      .25      .50      .75      .90      .95 
##       46       67       83      100      100 
## 
## lowest :   0   2   3   6   8, highest:  96  97  98  99 100
range(PP$Benefit_3_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_3_PBPB, main = 'PBPB - This is beneficial to the environment.')

#Benefit Scale
PP$Ben_Score_PBPB <- rowMeans(PP [, c("Benefit_1_PBPB", "Benefit_2_PBPB", "Benefit_3_PBPB")], na.rm=TRUE)
describe(PP$Ben_Score_PBPB)
## PP$Ben_Score_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      521      484      207        1    61.46    29.49    7.667   24.333 
##      .25      .50      .75      .90      .95 
##   47.333   62.667   81.333   96.333  100.000 
## 
## lowest :   0.0000000   0.3333333   0.6666667   1.0000000   3.3333333
## highest:  97.3333333  98.6666667  99.0000000  99.3333333 100.0000000
sd(PP$Ben_Score_PBPB, na.rm = TRUE)
## [1] 26.1661
PP$Ben_Scale_PBPB <- data.frame(PP$Benefit_1_PBPB, PP$Benefit_2_PBPB, PP$Benefit_3_PBPB)

#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_PBPB, PP$Benefit_2_PBPB, PP$Benefit_3_PBPB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Benefit_1_PBPB, PP$Benefit_2_PBPB, 
##     PP$Benefit_3_PBPB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##        0.9       0.9    0.86      0.76 9.3 0.0053   61 26     0.76
## 
##  lower alpha upper     95% confidence boundaries
## 0.89 0.9 0.91 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_PBPB      0.87      0.87    0.76      0.76 6.5   0.0085    NA
## PP.Benefit_2_PBPB      0.84      0.84    0.73      0.73 5.4   0.0098    NA
## PP.Benefit_3_PBPB      0.87      0.87    0.78      0.78 6.9   0.0080    NA
##                   med.r
## PP.Benefit_1_PBPB  0.76
## PP.Benefit_2_PBPB  0.73
## PP.Benefit_3_PBPB  0.78
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_PBPB 520  0.91  0.91  0.84   0.80   61 29
## PP.Benefit_2_PBPB 520  0.93  0.92  0.87   0.83   61 29
## PP.Benefit_3_PBPB 520  0.91  0.91  0.83   0.79   62 28
hist(PP$Ben_Score_PBPB, main = 'PBPB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_PBPB, labels = c('1','2', '3'), main = "Correlation Between PBPB Benefit Items")

Plant-based Fermentation Burger (PBFB)

#PBFB
PP$Benefit_1_PBFB <- PP$PBFB_Benefit_18
describe(PP$Benefit_1_PBFB)
## PP$Benefit_1_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      479      526       97    0.998    55.03    36.29        0        0 
##      .25      .50      .75      .90      .95 
##       33       57       81       97      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Benefit_1_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_1_PBFB, main = 'PBFB - This is beneficial to my health.')

PP$Benefit_2_PBFB <- PP$PBFB_Benefit_40
describe(PP$Benefit_2_PBFB)
## PP$Benefit_2_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      479      526       97    0.998    57.11    34.94      0.0      2.8 
##      .25      .50      .75      .90      .95 
##     36.0     61.0     82.0     97.0    100.0 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  99 100
range(PP$Benefit_2_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_2_PBFB, main = 'PBFB - This is beneficial to society.')

PP$Benefit_3_PBFB <- PP$PBFB_Benefit_41
describe(PP$Benefit_3_PBFB)
## PP$Benefit_3_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      479      526       93    0.998    59.31    33.82      0.0      4.8 
##      .25      .50      .75      .90      .95 
##     39.0     64.0     82.5     99.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Benefit_3_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_3_PBFB, main = 'PBFB - This is beneficial to the environment.')

#Benefit Scale
PP$Ben_Score_PBFB <- rowMeans(PP [, c("Benefit_1_PBFB", "Benefit_2_PBFB", "Benefit_3_PBFB")], na.rm=TRUE)
describe(PP$Ben_Score_PBFB)
## PP$Ben_Score_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      479      526      202        1    57.15    32.14     0.00     8.60 
##      .25      .50      .75      .90      .95 
##    39.67    57.33    80.67    95.00   100.00 
## 
## lowest :   0.0000000   0.3333333   0.6666667   1.3333333   1.6666667
## highest:  98.0000000  98.3333333  99.0000000  99.6666667 100.0000000
sd(PP$Ben_Score_PBFB, na.rm = TRUE)
## [1] 28.36827
PP$Ben_Scale_PBFB <- data.frame(PP$Benefit_1_PBFB, PP$Benefit_2_PBFB, PP$Benefit_3_PBFB)

#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_PBFB, PP$Benefit_2_PBFB, PP$Benefit_3_PBFB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Benefit_1_PBFB, PP$Benefit_2_PBFB, 
##     PP$Benefit_3_PBFB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.91      0.91    0.87      0.78  10 0.0048   57 28     0.76
## 
##  lower alpha upper     95% confidence boundaries
## 0.9 0.91 0.92 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_PBFB      0.86      0.86    0.76      0.76 6.3   0.0086    NA
## PP.Benefit_2_PBFB      0.86      0.86    0.76      0.76 6.3   0.0086    NA
## PP.Benefit_3_PBFB      0.89      0.89    0.80      0.80 8.2   0.0068    NA
##                   med.r
## PP.Benefit_1_PBFB  0.76
## PP.Benefit_2_PBFB  0.76
## PP.Benefit_3_PBFB  0.80
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_PBFB 479  0.93  0.93  0.88   0.83   55 32
## PP.Benefit_2_PBFB 479  0.93  0.93  0.88   0.83   57 31
## PP.Benefit_3_PBFB 479  0.91  0.91  0.84   0.80   59 30
hist(PP$Ben_Score_PBFB, main = 'PBFB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_PBFB, labels = c('1','2', '3'), main = "Correlation Between PBFB Benefit Items")

Veggie Burger (VB)

#VB
PP$Benefit_1_VB <- PP$VB_Benefit_18
describe(PP$Benefit_1_VB)
## PP$Benefit_1_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      471      534       89    0.995    67.68    30.84     15.5     27.0 
##      .25      .50      .75      .90      .95 
##     52.0     71.0     91.0    100.0    100.0 
## 
## lowest :   0   4   5   6   9, highest:  96  97  98  99 100
range(PP$Benefit_1_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_1_VB, main = 'VB - This is beneficial to my health.')

PP$Benefit_2_VB <- PP$VB_Benefit_40
describe(PP$Benefit_2_VB)
## PP$Benefit_2_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      470      535       87    0.995    67.49    30.23    18.00    28.90 
##      .25      .50      .75      .90      .95 
##    51.00    73.00    88.75   100.00   100.00 
## 
## lowest :   0   3   4   5  13, highest:  96  97  98  99 100
range(PP$Benefit_2_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_2_VB, main = 'VB - This is beneficial to society.')

PP$Benefit_3_VB <- PP$VB_Benefit_41
describe(PP$Benefit_3_VB)
## PP$Benefit_3_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      470      535       90    0.995    68.14    29.79    17.45    31.80 
##      .25      .50      .75      .90      .95 
##    52.00    72.00    90.00   100.00   100.00 
## 
## lowest :   0   3   4   5  12, highest:  96  97  98  99 100
range(PP$Benefit_3_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Benefit_3_VB, main = 'VB - This is beneficial to the environment.')

#VB Benefit Scale
PP$Ben_Score_VB <- rowMeans(PP [, c("Benefit_1_VB", "Benefit_2_VB", "Benefit_3_VB")], na.rm=TRUE)
describe(PP$Ben_Score_VB)
## PP$Ben_Score_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      471      534      189    0.999    67.74    27.66    23.83    35.33 
##      .25      .50      .75      .90      .95 
##    52.00    70.00    87.00   100.00   100.00 
## 
## lowest :   0.000000   2.666667  11.000000  13.666667  19.000000
## highest:  98.333333  98.666667  99.333333  99.666667 100.000000
sd(PP$Ben_Score_VB, na.rm = TRUE)
## [1] 24.60428
PP$Ben_Scale_VB <- data.frame(PP$Benefit_1_VB, PP$Benefit_2_VB, PP$Benefit_3_VB)

#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_VB, PP$Benefit_2_VB, PP$Benefit_3_VB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Benefit_1_VB, PP$Benefit_2_VB, 
##     PP$Benefit_3_VB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.89      0.89    0.85      0.74 8.5 0.0058   68 25     0.74
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.89 0.91 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Benefit_1_VB      0.85      0.85    0.75      0.75 5.9   0.0092    NA  0.75
## PP.Benefit_2_VB      0.84      0.84    0.73      0.73 5.4   0.0098    NA  0.73
## PP.Benefit_3_VB      0.85      0.85    0.74      0.74 5.7   0.0095    NA  0.74
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_VB 471  0.91  0.91  0.83   0.79   68 28
## PP.Benefit_2_VB 470  0.91  0.91  0.84   0.80   67 27
## PP.Benefit_3_VB 470  0.91  0.91  0.84   0.79   68 27
hist(PP$Ben_Score_VB, main = 'VB Benefit Scale Score')

#Correlation
cor.plot(PP$Ben_Scale_VB, labels = c('1','2', '3'), main = "Correlation Between VB Benefit Items")

Climate Change Belief

# Climate Change Belief: How much do you agree or disagree with the following statements?

## Item #1: Climate change is happening. 
## Item #2: Climate change poses a risk to human health, safety, and prosperity.
## Item #3: Human activity is largely responsible for recent climate change. 
## Item #4: Reducing greenhouse gas emissions will reduce global warming and climate change.

## Item Definitions
PP$CCBelief_1 <- as.numeric(as.character(PP$CCB_48))
PP$CCBelief_2 <- as.numeric(as.character(PP$CCB_49))
PP$CCBelief_3 <- as.numeric(as.character(PP$CCB_50))
PP$CCBelief_4 <- as.numeric(as.character(PP$CCB_51))

#Climate Change Belief Descriptives
describe(PP$CCBelief_1)
## PP$CCBelief_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4       94     0.98    75.62    27.18       22       38 
##      .25      .50      .75      .90      .95 
##       63       82      100      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$CCBelief_1, na.rm=TRUE)
## [1]   0 100
describe(PP$CCBelief_2)
## PP$CCBelief_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4       94    0.985    72.26    29.56       20       33 
##      .25      .50      .75      .90      .95 
##       55       78       99      100      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(PP$CCBelief_2, na.rm=TRUE)
## [1]   0 100
describe(PP$CCBelief_3)
## PP$CCBelief_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4       94    0.986       73    28.95       18       34 
##      .25      .50      .75      .90      .95 
##       58       78       98      100      100 
## 
## lowest :   0   1   2   3   5, highest:  96  97  98  99 100
range(PP$CCBelief_3, na.rm=TRUE)
## [1]   0 100
describe(PP$CCBelief_4)
## PP$CCBelief_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4       97    0.994    69.18    29.37       19       32 
##      .25      .50      .75      .90      .95 
##       52       73       93      100      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(PP$CCBelief_4, na.rm=TRUE)
## [1]   0 100
#Climate Change Belief Histograms
hist(PP$CCBelief_1, main = '#1: Climate change is happening.')

hist(PP$CCBelief_2, main = '#2: Risk to human health, safety, and prosperity.')

hist(PP$CCBelief_3, main = '#3:Human activity is responsible')

hist(PP$CCBelief_4, main = '#4: Reduce greenhouse gas emissions')

PP$CCBelief_Score <- rowMeans(PP[, c('CCBelief_1', 'CCBelief_2', 'CCBelief_3','CCBelief_4')], na.rm=T)
describe(PP$CCBelief_Score)
## PP$CCBelief_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4      275    0.997    72.51    25.73    31.75    44.75 
##      .25      .50      .75      .90      .95 
##    56.00    75.25    93.25   100.00   100.00 
## 
## lowest :   0.00   0.50   0.75   1.00   1.25, highest:  99.00  99.25  99.50  99.75 100.00
#Cronbach's Alpha
PP$CCB_Scale <- data.frame(PP$CCB_48, PP$CCB_49, PP$CCB_50, PP$CCB_51)
psych::alpha(PP$CCB_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$CCB_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.91      0.91    0.88      0.71 9.8 0.0048   73 23      0.7
## 
##  lower alpha upper     95% confidence boundaries
## 0.9 0.91 0.92 
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## PP.CCB_48      0.87      0.87    0.82      0.69 6.5   0.0072 0.0011  0.70
## PP.CCB_49      0.87      0.87    0.82      0.69 6.7   0.0072 0.0035  0.66
## PP.CCB_50      0.88      0.88    0.84      0.71 7.5   0.0065 0.0037  0.70
## PP.CCB_51      0.90      0.90    0.86      0.75 9.0   0.0055 0.0013  0.76
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## PP.CCB_48 1001  0.90  0.91  0.87   0.83   76 25
## PP.CCB_49 1001  0.90  0.90  0.86   0.82   72 27
## PP.CCB_50 1001  0.88  0.88  0.82   0.78   73 27
## PP.CCB_51 1001  0.85  0.85  0.77   0.73   69 26
PP$CCBelief_Score <- rowMeans(PP[, c('CCBelief_1', 'CCBelief_2', 'CCBelief_3','CCBelief_4')], na.rm=T)

#Correlation CCB 
cor(PP$CCB_Scale, use= "complete.obs")
##           PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51
## PP.CCB_48 1.0000000 0.7821006 0.7572658 0.6629838
## PP.CCB_49 0.7821006 1.0000000 0.7100200 0.6986891
## PP.CCB_50 0.7572658 0.7100200 1.0000000 0.6478465
## PP.CCB_51 0.6629838 0.6986891 0.6478465 1.0000000

Connectedness to Nature

# Connectedness to Nature was measured with 5 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Connected to nature score was calculated by averaging these items.

## Item 1: I often feel a sense of oneness with the natural world around me.'
## Item 2: I think of the natural world as a community to which I belong.'
## Item 3: I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’.
## Item 4: My personal welfare is independent of the welfare of the natural world.
## Item 5: When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.
#Connectedness to Nature Item Definitions
PP$CNS_1 <- as.numeric(as.character(PP$CNS_29))
PP$CNS_2 <- as.numeric(as.character(PP$CNS_30))
PP$CNS_3 <- as.numeric(as.character(PP$CNS_31))
PP$CNS_4 <- as.numeric(as.character(PP$CNS_32))
PP$CNS_5 <- as.numeric(as.character(PP$CNS_33))

#Descriptives
describe(PP$CNS_1)
## PP$CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1002        3       96    0.997    66.57    28.06     22.0     31.0 
##      .25      .50      .75      .90      .95 
##     52.0     69.5     86.0    100.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$CNS_1, na.rm=TRUE)
## [1]   0 100
describe(PP$CNS_2)
## PP$CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1002        3       94    0.997     70.1    25.63    27.05    38.00 
##      .25      .50      .75      .90      .95 
##    55.00    72.50    87.00   100.00   100.00 
## 
## lowest :   0   1   2   3   5, highest:  96  97  98  99 100
range(PP$CNS_2, na.rm=TRUE)
## [1]   0 100
describe(PP$CNS_3)
## PP$CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1002        3       98    0.995    69.48    27.62       21       36 
##      .25      .50      .75      .90      .95 
##       53       73       90      100      100 
## 
## lowest :   0   1   3   5   6, highest:  96  97  98  99 100
range(PP$CNS_3, na.rm=TRUE)
## [1]   0 100
describe(PP$CNS_4)
## PP$CNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4      100    0.999    58.97    32.46        0       15 
##      .25      .50      .75      .90      .95 
##       40       63       80       99      100 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  99 100
range(PP$CNS_4, na.rm=TRUE)
## [1]   0 100
describe(PP$CNS_5)
## PP$CNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1002        3      101    0.999    59.54    31.64     2.05    19.10 
##      .25      .50      .75      .90      .95 
##    41.00    63.00    81.00    98.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$CNS_5, na.rm=TRUE)
## [1]   0 100
#Histograms
hist(PP$CNS_1, main = '#1: Sense of oneness with the natural world')

hist(PP$CNS_2, main = '#2: the natural world = community')

hist(PP$CNS_3, main = '#3: Common ‘life force’.')

hist(PP$CNS_4, main = '#4(R): Personal welfare = independent')

hist(PP$CNS_5, main = '#5(R): Top of hierarchy')

#Recode items 4 and 5
PP$CNS_4R <- (100 - PP$CNS_4) 
PP$CNS_5R <- (100 - PP$CNS_5)

PP$CNS_Scale2 <- data.frame(PP$CNS_1, PP$CNS_2, PP$CNS_3, PP$CNS_4R, PP$CNS_5R)
psych::alpha(PP$CNS_Scale2)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(PP$CNS_Scale2): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.CNS_4R PP.CNS_5R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$CNS_Scale2)
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N   ase mean sd median_r
##       0.16      0.22    0.44     0.053 0.28 0.044   58 12     -0.2
## 
##  lower alpha upper     95% confidence boundaries
## 0.07 0.16 0.25 
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r med.r
## PP.CNS_1    -0.0065     0.004    0.27     0.001  0.004    0.054  0.14 -0.20
## PP.CNS_2    -0.0767    -0.070    0.21    -0.017 -0.065    0.058  0.14 -0.22
## PP.CNS_3    -0.1048    -0.094    0.21    -0.022 -0.086    0.060  0.15 -0.22
## PP.CNS_4R    0.3084     0.374    0.52     0.130  0.597    0.036  0.22  0.14
## PP.CNS_5R    0.3919     0.453    0.55     0.171  0.827    0.032  0.18  0.17
## 
##  Item statistics 
##              n raw.r std.r  r.cor r.drop mean sd
## PP.CNS_1  1002  0.57  0.62  0.561  0.194   67 25
## PP.CNS_2  1002  0.60  0.66  0.645  0.272   70 23
## PP.CNS_3  1002  0.62  0.67  0.652  0.276   69 25
## PP.CNS_4R 1001  0.38  0.30 -0.052 -0.083   41 29
## PP.CNS_5R 1002  0.28  0.20 -0.171 -0.174   40 28
#Drop reverse coded items 
PP$CNS_Scale <- data.frame(PP$CNS_1, PP$CNS_2, PP$CNS_3)
psych::alpha(PP$CNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$CNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.79      0.79    0.71      0.55 3.7 0.012   69 20     0.55
## 
##  lower alpha upper     95% confidence boundaries
## 0.77 0.79 0.81 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.CNS_1      0.73      0.73    0.58      0.58 2.8    0.017    NA  0.58
## PP.CNS_2      0.70      0.70    0.54      0.54 2.3    0.019    NA  0.54
## PP.CNS_3      0.71      0.71    0.55      0.55 2.4    0.018    NA  0.55
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## PP.CNS_1 1002  0.83  0.83  0.69   0.61   67 25
## PP.CNS_2 1002  0.84  0.85  0.73   0.64   70 23
## PP.CNS_3 1002  0.84  0.84  0.71   0.63   69 25
PP$CNS_Score <- rowMeans(PP [, c("CNS_1", "CNS_2", "CNS_3", "CNS_4R", "CNS_5R")], na.rm=TRUE)

#Correlation CCB 
cor(PP$CNS_Scale, use= "complete.obs")
##           PP.CNS_1  PP.CNS_2  PP.CNS_3
## PP.CNS_1 1.0000000 0.5501475 0.5350697
## PP.CNS_2 0.5501475 1.0000000 0.5794158
## PP.CNS_3 0.5350697 0.5794158 1.0000000

Control

# Control was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). 

## Item #1: We have control over the processes in this method.
#GFFB
PP$Control_GFFB <- PP$GFFB_Risk_34
length(PP$Control_GFFB)
## [1] 1005
describe(PP$Control_GFFB)
## PP$Control_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      496      509       95    0.997    65.44     30.6     3.75    25.00 
##      .25      .50      .75      .90      .95 
##    51.75    69.00    86.00   100.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Control_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Control_GFFB, main = 'GFFB - We have control over the processes in this method.')

#GFPRB
PP$Control_GFPRB <- PP$GFPRB_Risk_34
length(PP$Control_GFPRB)
## [1] 1005
describe(PP$Control_GFPRB)
## PP$Control_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      512      493       90    0.996    67.08    30.19       13       26 
##      .25      .50      .75      .90      .95 
##       51       72       88      100      100 
## 
## lowest :   0   1   8   9  11, highest:  96  97  98  99 100
range(PP$Control_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Control_GFPRB, main = 'GFPRB - We have control over the processes in this method.')

#CBB
PP$Control_CBB <- PP$CBB_Risk_34
length(PP$Control_CBB)
## [1] 1005
describe(PP$Control_CBB)
## PP$Control_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      516      489       94    0.998    61.67    32.83     0.75    18.50 
##      .25      .50      .75      .90      .95 
##    43.00    67.00    85.00   100.00   100.00 
## 
## lowest :   0   1   3   4   5, highest:  95  96  98  99 100
range(PP$Control_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Control_CBB, main = 'CBB - We have control over the processes in this method.')

#PBPB
PP$Control_PBPB <- PP$PBPB_Risk_34
length(PP$Control_PBPB)
## [1] 1005
describe(PP$Control_PBPB)
## PP$Control_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      523      482       91    0.997    65.41    29.39     15.1     28.0 
##      .25      .50      .75      .90      .95 
##     52.0     69.0     85.0    100.0    100.0 
## 
## lowest :   0   2   3   6  10, highest:  96  97  98  99 100
range(PP$Control_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Control_PBPB, main = 'PBPB - We have control over the processes in this method.')

#PBFB
PP$Control_PBFB <- PP$PBFB_Risk_34
length(PP$Control_PBFB)
## [1] 1005
describe(PP$Control_PBFB)
## PP$Control_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      481      524       93    0.998    63.87    31.74        4       20 
##      .25      .50      .75      .90      .95 
##       49       70       85      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Control_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Control_PBFB, main = 'PBFB - We have control over the processes in this method.')

#VB
PP$Control_VB <- PP$VB_Risk_34
length(PP$Control_VB)
## [1] 1005
describe(PP$Control_VB)
## PP$Control_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      471      534       93    0.996    65.91    30.96       13       25 
##      .25      .50      .75      .90      .95 
##       51       70       89      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Control_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Control_VB, main = 'VB - We have control over the processes in this method.')

Disgust

# Disgust was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). 

## Item #1: This is disgusting.
#GFFB
PP$Disgust_GFFB <- PP$GFFB_Risk_37
length(PP$Disgust_GFFB)
## [1] 1005
describe(PP$Disgust_GFFB)
## PP$Disgust_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      496      509       98    0.997     49.5    38.87        0        0 
##      .25      .50      .75      .90      .95 
##       20       51       79      100      100 
## 
## lowest :   0   1   2   3   4, highest:  95  97  98  99 100
range(PP$Disgust_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Disgust_GFFB, main = 'GFFB - This is disgusting.')

#GFPRB
PP$Disgust_GFPRB <- PP$GFPRB_Risk_37
length(PP$Disgust_GFPRB)
## [1] 1005
describe(PP$Disgust_GFPRB)
## PP$Disgust_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      512      493       97    0.988    35.25    37.16     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.00    27.00    62.25    87.90   100.00 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
range(PP$Disgust_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Disgust_GFPRB, main = 'GFPRB - This is disgusting.')

#CBB
PP$Disgust_CBB <- PP$CBB_Risk_37
length(PP$Disgust_CBB)
## [1] 1005
describe(PP$Disgust_CBB)
## PP$Disgust_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      512      493       97    0.996    54.62    39.24     0.00     1.00 
##      .25      .50      .75      .90      .95 
##    23.75    58.50    85.25   100.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Disgust_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Disgust_CBB, main = 'CBB - This is disgusting.')

#PBPB
PP$Disgust_PBPB <- PP$PBPB_Risk_37
length(PP$Disgust_PBPB)
## [1] 1005
describe(PP$Disgust_PBPB)
## PP$Disgust_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      525      480       98    0.998    48.87    38.39      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     20.0     50.0     77.0     99.6    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Disgust_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Disgust_PBPB, main = 'PBPB - This is disgusting.')

#PBFB
PP$Disgust_PBFB <- PP$PBFB_Risk_37
length(PP$Disgust_PBFB)
## [1] 1005
describe(PP$Disgust_PBFB)
## PP$Disgust_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      481      524       98    0.997    53.33    39.31        0        3 
##      .25      .50      .75      .90      .95 
##       22       56       83      100      100 
## 
## lowest :   0   1   2   3   5, highest:  96  97  98  99 100
range(PP$Disgust_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Disgust_PBFB, main = 'PBFB - This is disgusting.')

#VB
PP$Disgust_VB <- PP$VB_Risk_37
length(PP$Disgust_VB)
## [1] 1005
describe(PP$Disgust_VB)
## PP$Disgust_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      470      535       98    0.997    44.34    37.49     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    16.00    43.50    72.75    92.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  95  96  98  99 100
range(PP$Disgust_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Disgust_VB, main = 'VB - This is disgusting.')

Disgust Sensitivity Scale

#DS-R Disgust Scale (Olantunji et al., 2007)
##Assesses three disgust domains (core, animal reminder, contamination) on a 0-100 scale. 

##Item 1: If I see someone vomit, it makes me sick to my stomach. 
##Item 2: It would not upset me at all to watch a person with a glass eye take the eye out of the socket. (reverse coded)
##Item 3: I never let any part of my body touch the toilet seat in a public washroom. 

#Define Variables
PP$DS_1D <- as.numeric(as.character(PP$DS_1))
PP$DS_2D <- as.numeric(as.character(PP$DS_8))
PP$DS_2R <- (100- PP$DS_2D)
PP$DS_3D <- as.numeric(as.character(PP$DS_2))
PP$DS_Score <- rowMeans(PP[, c('DS_1D', 'DS_2R', 'DS_3D')], na.rm=T)

#Descriptives
describe(PP$DS_1)
## PP$DS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1000        5       99    0.994    65.68     33.9        2       18 
##      .25      .50      .75      .90      .95 
##       44       72       92      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$DS_1, na.rm=TRUE)
## [1]   0 100
describe(PP$DS_2)
## PP$DS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4      100    0.994    58.14    38.51        0        3 
##      .25      .50      .75      .90      .95 
##       30       63       89      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$DS_2, na.rm=TRUE)
## [1]   0 100
describe(PP$DS_3)
## PP$DS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1001        4      100    0.994    58.14    38.51        0        3 
##      .25      .50      .75      .90      .95 
##       30       63       89      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$DS_3, na.rm=TRUE)
## [1]   0 100
#Histograms
hist(PP$DS_1, main = '#1: Vomit')

hist(PP$DS_2, main = '#2(R): Glass eye out of socket')

hist(PP$DS_3, main = '#3: Public washroom')

PP$DS_Scale <- data.frame(PP$DS_1D, PP$DS_2R,PP$DS_3D)
psych::alpha(PP$DS_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$DS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.27      0.28    0.24      0.12 0.39 0.04   58 21     0.12
## 
##  lower alpha upper     95% confidence boundaries
## 0.19 0.27 0.35 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r med.r
## PP.DS_1D     -0.10     -0.10   -0.05     -0.05 -0.094    0.070    NA -0.05
## PP.DS_2R      0.43      0.43    0.27      0.27  0.750    0.036    NA  0.27
## PP.DS_3D      0.22      0.22    0.12      0.12  0.281    0.049    NA  0.12
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## PP.DS_1D 1000  0.70  0.73  0.52   0.29   66 30
## PP.DS_2R 1000  0.58  0.56  0.10   0.04   49 34
## PP.DS_3D 1001  0.65  0.64  0.32   0.14   58 34
PP$DS_Score <- rowMeans(PP [, c("DS_1D", "DS_2R", "DS_3D")], na.rm=TRUE)

#Correlation CCB 
cor(PP$DS_Scale, use= "complete.obs")
##           PP.DS_1D   PP.DS_2R   PP.DS_3D
## PP.DS_1D 1.0000000  0.1230523  0.2723974
## PP.DS_2R 0.1230523  1.0000000 -0.0495374
## PP.DS_3D 0.2723974 -0.0495374  1.0000000

Familiarity

# Familiarity was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). 

## Item #1: This is familiar.

Grain-fed Feedlot Burger (GFFB)

#GFFB
PP$Familiarity_GFFB <-PP$GFFB_Risk_31
length(PP$Familiarity_GFFB)
## [1] 1005
describe(PP$Familiarity_GFFB)
## PP$Familiarity_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      493      512       97    0.997    62.79    34.17        3       17 
##      .25      .50      .75      .90      .95 
##       41       68       89      100      100 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
sd(PP$Familiarity_GFFB, na.rm = TRUE)
## [1] 30.18567
range(PP$Familiarity_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Familiarity_GFFB, main = 'GFFB - This is familiar.')

Grain-fed Pasture Raised Burger (GFPRB)

#GFPRB
PP$Familiarity_GFPRB <-PP$GFPRB_Risk_31
length(PP$Familiarity_GFPRB)
## [1] 1005
describe(PP$Familiarity_GFPRB)
## PP$Familiarity_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      511      494       84    0.988    73.29    27.98     18.5     37.0 
##      .25      .50      .75      .90      .95 
##     59.5     78.0     97.0    100.0    100.0 
## 
## lowest :   0   1   4   5   8, highest:  96  97  98  99 100
sd(PP$Familiarity_GFPRB, na.rm = TRUE)
## [1] 25.71012
range(PP$Familiarity_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Familiarity_GFPRB, main = 'GFPRB - This is familiar.')

Cultured beef burgers (CBB)

#CBB
PP$Familiarity_CBB <-PP$CBB_Risk_31
length(PP$Familiarity_CBB)
## [1] 1005
describe(PP$Familiarity_CBB)
## PP$Familiarity_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      515      490       99    0.997    46.27     38.6      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     15.0     50.0     74.5     95.6    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(PP$Familiarity_CBB, na.rm = TRUE)
## [1] 33.51951
range(PP$Familiarity_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Familiarity_CBB, main = 'CBB - This is familiar.')

Plant-based Protein Burger (PBPB)

#PBPB
PP$Familiarity_PBPB <-PP$PBPB_Risk_31
length(PP$Familiarity_PBPB)
## [1] 1005
describe(PP$Familiarity_PBPB)
## PP$Familiarity_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481       98    0.999    54.46     34.8        0        7 
##      .25      .50      .75      .90      .95 
##       30       57       79       95      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(PP$Familiarity_PBPB, na.rm = TRUE)
## [1] 30.2881
range(PP$Familiarity_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Familiarity_PBPB, main = 'PBPB - This is familiar.')

Plant-based Fermentation Burger (PBFB)

#PBFB
PP$Familiarity_PBFB <-PP$PBFB_Risk_31
length(PP$Familiarity_PBFB)
## [1] 1005
describe(PP$Familiarity_PBFB)
## PP$Familiarity_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      481      524       99    0.998    48.06    37.95        0        0 
##      .25      .50      .75      .90      .95 
##       18       51       76       93      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(PP$Familiarity_PBFB, na.rm = TRUE)
## [1] 32.91287
range(PP$Familiarity_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Familiarity_PBFB, main = 'PBFB - This is familiar.')

Veggie Burger (VB)

#VB
PP$Familiarity_VB <-PP$VB_Risk_31
length(PP$Familiarity_VB)
## [1] 1005
describe(PP$Familiarity_VB)
## PP$Familiarity_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      472      533       98    0.999    62.01    32.89     1.55    16.00 
##      .25      .50      .75      .90      .95 
##    45.00    67.50    85.00   100.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(PP$Familiarity_VB, na.rm = TRUE)
## [1] 29.15807
range(PP$Familiarity_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Familiarity_VB, main = 'VB - This is familiar.')

Ideology

#Political Orientation
##Which of the following best describes your political orientation? ( 1 = Strongly Conservative to 7 = Strongly Liberal)

PP$Orientation = as.numeric(recode_factor(PP$PI_Orientation,'1'= "3",'2'= "2",'3'= "1",
                                          '4'= "0",'5'= "-1", '6'= "-2", '7'= "-3"))
describe(PP$Orientation)
## PP$Orientation 
##        n  missing distinct     Info     Mean      Gmd 
##     1002        3        7    0.962    3.718    2.003 
## 
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency    126   171   124   301    93    93    94
## Proportion 0.126 0.171 0.124 0.300 0.093 0.093 0.094
hist(PP$Orientation , main = 'Political Orientation (Liberal to Conservative)')

#Political Party Identification
##Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (1 = Republican, 2 = Democrat, 3 = Independent, 4 = Other (write-in), 5 = No Preference)

describe(PP$Party)
##  
## NULL
PP$Party <- PP$Party
PP$DemStrength <- PP$DStrength
PP$RepStrength <- PP$RStrength
PP$PartyClose <- PP$Closerto

# Recode Party

PP$PartyFull <- NA
PP$PartyFull[PP$DemStrength == 1] <- -3
PP$PartyFull[PP$DemStrength == 2] <- -2
PP$PartyFull[PP$PartyClose == 1] <- -1
PP$PartyFull[PP$PartyClose == 3] <- 0
PP$PartyFull[PP$PartyClose == 2] <- 1
PP$PartyFull[PP$RepStrength == 2] <- 2
PP$PartyFull[PP$RepStrength == 1] <- 3

describe(PP$PartyFull)
## PP$PartyFull 
##        n  missing distinct     Info     Mean      Gmd 
##      996        9        7    0.967  -0.1797    2.495 
## 
## lowest : -3 -2 -1  0  1, highest: -1  0  1  2  3
##                                                     
## Value         -3    -2    -1     0     1     2     3
## Frequency    227   136    66   212    65    95   195
## Proportion 0.228 0.137 0.066 0.213 0.065 0.095 0.196
hist(PP$PartyFull , main = 'Party Identification')

PP$PartyID <- NA
PP$PartyID[PP$PartyFull < 0] <- -0.5
PP$PartyID[PP$PartyFull == 0] <- 0
PP$PartyID[PP$PartyFull > 0] <- 0.5

#New Variable: Ideology
PP$Ideology <-  rowMeans(PP[, c('PartyFull', 'Orientation')], na.rm=T)
describe(PP$Ideology)
## PP$Ideology 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1003        2       14    0.949    1.785    1.155     -0.5      0.5 
##      .25      .50      .75      .90      .95 
##      1.5      2.0      2.5      3.0      3.5 
## 
## lowest : -1.0 -0.5  0.0  0.5  1.0, highest:  3.5  4.0  4.5  5.0  6.0
##                                                                             
## Value       -1.0  -0.5   0.0   0.5   1.0   1.5   2.0   2.5   3.0   3.5   4.0
## Frequency     25    27    35    80    79   142   357   126    52    49    14
## Proportion 0.025 0.027 0.035 0.080 0.079 0.142 0.356 0.126 0.052 0.049 0.014
##                             
## Value        4.5   5.0   6.0
## Frequency      6     9     2
## Proportion 0.006 0.009 0.002
hist(PP$Ideology)

Individualism/Collectivism

#Individualism and Collectivism Scale (Code adapted from J.Cole Collectivism Study)

#Individualism and collectivism were each measured with 4 items (for a total of 8 items) on a 1-7 scale of agreement (0 = 'Strongly disagree' to 100 = 'Strongly agree').

##Collectivism Items
### Item #3 (C): It is important to me to think of myself as a member of my religious, national, or ethnic group. 
### Item #4 (C): Learning about the traditions, values, and beliefs of my family is important to me.
### Item #7 (C): In the end, a person feels closest to members of their own religious, national, or ethnic group. 
### Item #8 (C): It is important to me to respect decisions made by my family.

##Individualism Items 
### Item #1 (I): It is important to me to develop my own personal style. 
### Item #2 (I): It is better for me to follow my own ideas than to follow those of anyone else.  
### Item #5 (I): I enjoy being unique and different from others in many respects. 
###I Item #6 (I): My personal achievements and accomplishments are very important to who I am.

#Individualism (Items 1,2,5,6)
PP$Ind_1 <- as.numeric(as.character(PP$Individualism_19))
PP$Ind_2 <- as.numeric(as.character(PP$Individualism_20))
PP$Ind_5 <- as.numeric(as.character(PP$Individualism_23))
PP$Ind_6 <- as.numeric(as.character(PP$Individualism_24))
PP$Individualism_Score <- rowMeans(PP[, c('Ind_1', 'Ind_2', 'Ind_5','Ind_6')], na.rm=T)

#Collectivism (Items 3,4,7,8)
PP$Ind_3 <- as.numeric(as.character(PP$Individualism_21))
PP$Ind_4 <- as.numeric(as.character(PP$Individualism_22))
PP$Ind_7 <- as.numeric(as.character(PP$Individualism_25))
PP$Ind_8 <- as.numeric(as.character(PP$Individualism_34))
PP$Collectivism_Score <- rowMeans(PP[, c('Ind_3', 'Ind_4', 'Ind_7','Ind_8')], na.rm=T)

#Individualism Alpha and Histogram (4 items)
psych::alpha(data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5,PP$Ind_6))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5, PP$Ind_6))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##        0.8       0.8    0.75       0.5 3.9 0.01   74 18     0.49
## 
##  lower alpha upper     95% confidence boundaries
## 0.78 0.8 0.82 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## PP.Ind_1      0.72      0.72    0.63      0.46 2.5    0.015 0.00254  0.43
## PP.Ind_2      0.74      0.74    0.67      0.49 2.9    0.014 0.00574  0.47
## PP.Ind_5      0.74      0.74    0.66      0.49 2.8    0.014 0.00397  0.47
## PP.Ind_6      0.79      0.79    0.71      0.55 3.7    0.012 0.00089  0.55
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## PP.Ind_1 1000  0.82  0.82  0.75   0.67   75 23
## PP.Ind_2 1000  0.79  0.79  0.69   0.62   74 23
## PP.Ind_5 1000  0.80  0.80  0.70   0.63   74 23
## PP.Ind_6 1000  0.74  0.74  0.59   0.53   72 23
hist(PP$Individualism_Score , main = 'Individualism Score')

#Collectivism Alpha and Histogram (4 items)
psych::alpha(data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.76      0.77    0.73      0.45 3.3 0.012   67 20     0.42
## 
##  lower alpha upper     95% confidence boundaries
## 0.74 0.76 0.79 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## PP.Ind_3      0.69      0.69    0.61      0.43 2.2    0.017 0.0090  0.38
## PP.Ind_4      0.71      0.70    0.63      0.44 2.4    0.016 0.0138  0.38
## PP.Ind_7      0.70      0.72    0.64      0.46 2.5    0.016 0.0059  0.45
## PP.Ind_8      0.73      0.73    0.65      0.47 2.7    0.014 0.0102  0.45
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## PP.Ind_3  998  0.82  0.79  0.69   0.61   60 31
## PP.Ind_4 1000  0.75  0.77  0.66   0.57   72 24
## PP.Ind_7 1000  0.77  0.76  0.64   0.57   64 27
## PP.Ind_8 1001  0.72  0.75  0.62   0.52   70 24
hist(PP$Collectivism_Score , main = 'Collectivism Score')

#Cronbachs Alpha for Individualism and Collectivism scales
PP$IndScale <- data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5,PP$Ind_6)
psych::alpha(PP$IndScale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$IndScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##        0.8       0.8    0.75       0.5 3.9 0.01   74 18     0.49
## 
##  lower alpha upper     95% confidence boundaries
## 0.78 0.8 0.82 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## PP.Ind_1      0.72      0.72    0.63      0.46 2.5    0.015 0.00254  0.43
## PP.Ind_2      0.74      0.74    0.67      0.49 2.9    0.014 0.00574  0.47
## PP.Ind_5      0.74      0.74    0.66      0.49 2.8    0.014 0.00397  0.47
## PP.Ind_6      0.79      0.79    0.71      0.55 3.7    0.012 0.00089  0.55
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## PP.Ind_1 1000  0.82  0.82  0.75   0.67   75 23
## PP.Ind_2 1000  0.79  0.79  0.69   0.62   74 23
## PP.Ind_5 1000  0.80  0.80  0.70   0.63   74 23
## PP.Ind_6 1000  0.74  0.74  0.59   0.53   72 23
PP$CollScale <- data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8)
psych::alpha(PP$CollScale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$CollScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.76      0.77    0.73      0.45 3.3 0.012   67 20     0.42
## 
##  lower alpha upper     95% confidence boundaries
## 0.74 0.76 0.79 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## PP.Ind_3      0.69      0.69    0.61      0.43 2.2    0.017 0.0090  0.38
## PP.Ind_4      0.71      0.70    0.63      0.44 2.4    0.016 0.0138  0.38
## PP.Ind_7      0.70      0.72    0.64      0.46 2.5    0.016 0.0059  0.45
## PP.Ind_8      0.73      0.73    0.65      0.47 2.7    0.014 0.0102  0.45
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## PP.Ind_3  998  0.82  0.79  0.69   0.61   60 31
## PP.Ind_4 1000  0.75  0.77  0.66   0.57   72 24
## PP.Ind_7 1000  0.77  0.76  0.64   0.57   64 27
## PP.Ind_8 1001  0.72  0.75  0.62   0.52   70 24

Meat Consumption

# Beef Consumption Frequency measured with the question, "In the average week, how often do you eat beef?" (1 = Never, 2 = Less than once a week, 3 = 1-2 times a week, 4 = 3-4 times a week, 5 = 5+ times a week)
describe(PP$Beef_Frequency)
## PP$Beef_Frequency 
##        n  missing distinct     Info     Mean      Gmd 
##     1005        0        5    0.902    3.046    1.091 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency     60   219   430   207    89
## Proportion 0.060 0.218 0.428 0.206 0.089
histogram(PP$Beef_Frequency, main = 'Beef Consumption per Week')

# Non-Beef Consumption Frequency measured with the question, "In the average week, how often do you eat meat, not including beef? (i.e. poultry, fish, etc.)" (1 = Never, 2 = Less than once a week, 3 = 1-2 times a week, 4 = 3-4 times a week, 5 = 5+ times a week)
describe(PP$NonBeef_Frequency)
## PP$NonBeef_Frequency 
##        n  missing distinct     Info     Mean      Gmd 
##     1005        0        5    0.924    3.369    1.161 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency     43   156   351   297   158
## Proportion 0.043 0.155 0.349 0.296 0.157
histogram(PP$NonBeef_Frequency, main = 'Non-Beef Consumption per Week')

Naturalness

# Naturalness perception was measured with 4 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Naturalness score calculated by averaging these items.

### Item 1: This is natural.
### Item 2: This involves humans altering naturally occurring processes.
### Item 3: This relies on science-based technology.
### Item 4: This is artificial.

Grain-fed Feedlot Burger (GFFB)

# Defines variables in the naturalness scale and reverse codes items 2, 3, and 4. 
PP$Nat_1_GFFB <- PP$GFFB_Naturalness_30
PP$Nat_2R_GFFB <- (100-PP$GFFB_Naturalness_31)
PP$Nat_3R_GFFB <- (100-PP$GFFB_Naturalness_35)
PP$Nat_4R_GFFB <- (100-PP$GFFB_Naturalness_36)

# Histograms
hist(PP$Nat_1_GFFB, main = '#1: This is natural')

hist(PP$Nat_2R_GFFB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_GFFB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_GFFB, main = '#4(R): This is artificial')

# Scales and Scores
PP$Naturalness_Score_GFFB_Tot <- rowMeans(PP [, c( "Nat_1_GFFB" , "Nat_2R_GFFB", "Nat_3R_GFFB", "Nat_4R_GFFB")], na.rm=TRUE)
describe(PP$Naturalness_Score_GFFB_Tot)
## PP$Naturalness_Score_GFFB_Tot 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      499      506      219        1    49.53    23.65    21.38    25.20 
##      .25      .50      .75      .90      .95 
##    34.75    48.00    62.12    79.30    93.35 
## 
## lowest :   0.00   0.25   1.00   6.25   7.00, highest:  98.25  98.50  99.25  99.50 100.00
sd(PP$Naturalness_Score_GFFB_Tot, na.rm = TRUE)
## [1] 21.26861
PP$Naturalness_Scale_GFFB_Tot <- data.frame(PP$Nat_1_GFFB , PP$Nat_4R_GFFB, PP$Nat_2R_GFFB , PP$Nat_3R_GFFB)
describe(PP$Naturalness_Scale_GFFB_Tot)
## PP$Naturalness_Scale_GFFB_Tot 
## 
##  4  Variables      1005  Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      497      508       94    0.998    58.65     34.6        0       13 
##      .25      .50      .75      .90      .95 
##       35       61       84      100      100 
## 
## lowest :   0   1   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      495      510      100    0.998    50.37    36.65        0        6 
##      .25      .50      .75      .90      .95 
##       26       48       79      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      496      509       96    0.998    42.95       35      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     18.0     39.0     66.0     92.5    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      498      507       97    0.999    46.71    34.94     0.00     6.00 
##      .25      .50      .75      .90      .95 
##    23.00    44.50    68.75    97.30   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------

Grain-fed Pasture Raised Burger (GFPRB)

# Defines Naturalness variables and reverse coding items 2, 3, and 4. 
PP$Nat_1_GFPRB <- PP$GFPRB_Naturalness_30
PP$Nat_2R_GFPRB <- (100-PP$GFPRB_Naturalness_31)
PP$Nat_3R_GFPRB <- (100-PP$GFPRB_Naturalness_35)
PP$Nat_4R_GFPRB <- (100-PP$GFPRB_Naturalness_36)

# Histograms 
hist(PP$Nat_1_GFPRB, main = '#1: This is natural')

hist(PP$Nat_2R_GFPRB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_GFPRB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_GFPRB, main = '#4(R): This is artificial')

#### Score and Scale
PP$Naturalness_Score_GFPRB_Tot <- rowMeans(PP [, c( "Nat_1_GFPRB" , "Nat_4R_GFPRB", "Nat_2R_GFPRB" , "Nat_3R_GFPRB")], na.rm=TRUE)
describe(PP$Naturalness_Score_GFPRB_Tot)
## PP$Naturalness_Score_GFPRB_Tot 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491      240    0.999    62.49    27.37    25.00    32.08 
##      .25      .50      .75      .90      .95 
##    44.81    59.12    81.44    98.75   100.00 
## 
## lowest :   0.00   1.75   7.00  10.75  11.75, highest:  99.00  99.25  99.50  99.75 100.00
sd(PP$Naturalness_Score_GFPRB_Tot, na.rm = TRUE)
## [1] 23.85977
PP$Naturalness_Scale_GFPRB_Tot <- data.frame(PP$Nat_1_GFPRB , PP$Nat_4R_GFPRB, PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB)

Cultured beef burgers (CBB)

#Defines naturalness variables and reverse codes items 2, 3, and 4.
PP$Nat_1_CBB <- PP$CBB_Naturalness_30
PP$Nat_2R_CBB <- (100-PP$CBB_Naturalness_31)
PP$Nat_3R_CBB <- (100-PP$CBB_Naturalness_35)
PP$Nat_4R_CBB <- (100-PP$CBB_Naturalness_36)

# Histogram
hist(PP$Nat_1_CBB, main = '#1: This is natural')

hist(PP$Nat_2R_CBB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_CBB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_CBB, main = '#4(R): This is artificial')

#### Score and Scale
PP$Naturalness_Score_CBB_Tot <- rowMeans(PP [, c( "Nat_1_CBB" ,  "Nat_4R_CBB", "Nat_2R_CBB" , "Nat_3R_CBB")], na.rm=TRUE)
describe(PP$Naturalness_Score_CBB_Tot)
## PP$Naturalness_Score_CBB_Tot 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      516      489      224    0.999    34.32     24.5     0.00     0.75 
##      .25      .50      .75      .90      .95 
##    17.94    35.38    49.00    59.00    67.12 
## 
## lowest :   0.00   0.25   0.50   1.00   1.25, highest:  96.25  98.50  99.50  99.75 100.00
sd(PP$Naturalness_Score_CBB_Tot, na.rm = TRUE)
## [1] 21.71332
PP$Naturalness_Scale_CBB_Tot <- data.frame(PP$Nat_1_CBB ,  PP$Nat_4R_CBB, PP$Nat_2R_CBB , PP$Nat_3R_CBB)
describe(PP$Naturalness_Scale_CBB_Tot)
## PP$Naturalness_Scale_CBB_Tot 
## 
##  4  Variables      1005  Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      515      490       96    0.996    45.56    39.24        0        0 
##      .25      .50      .75      .90      .95 
##       13       47       75       98      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491       93    0.991    32.77    33.56     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     5.25    25.00    49.00    81.70    98.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491       88    0.987    29.75    30.74     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.00    25.00    47.00    73.00    85.35 
## 
## lowest :   0   1   2   3   4, highest:  91  94  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491       89    0.987    29.07    30.45     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.00    24.00    47.00    69.70    84.35 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  99 100
## --------------------------------------------------------------------------------

Plant-based Protein Burger (PBPB)

#Defines naturalness variables and reverse codes items 2, 3 and 4. 
PP$Nat_1_PBPB <- PP$PBPB_Naturalness_30
PP$Nat_2R_PBPB <- (100-PP$PBPB_Naturalness_31)
PP$Nat_3R_PBPB <- (100-PP$PBPB_Naturalness_35)
PP$Nat_4R_PBPB <- (100-PP$PBPB_Naturalness_36)

#Histograms
hist(PP$Nat_1_PBPB, main = '#1: This is natural')

hist(PP$Nat_2R_PBPB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_PBPB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_PBPB, main = '#4(R): This is artificial')

#### Score and Scale
PP$Naturalness_Score_PBPB_Tot <- rowMeans(PP [, c( "Nat_1_PBPB" , "Nat_4R_PBPB", "Nat_2R_PBPB" , "Nat_3R_PBPB")], na.rm=TRUE)
describe(PP$Naturalness_Score_PBPB_Tot)
## PP$Naturalness_Score_PBPB_Tot 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481      236        1    42.37    22.52    2.288   12.900 
##      .25      .50      .75      .90      .95 
##   29.688   44.000   53.750   67.100   74.962 
## 
## lowest :   0.00   0.50   0.75   1.00   1.25, highest:  92.25  96.75  97.00  98.50 100.00
sd(PP$Naturalness_Score_PBPB_Tot, na.rm = TRUE)
## [1] 20.16823
PP$Naturalness_Scale_PBPB_Tot <- data.frame(PP$Nat_1_PBPB , PP$Nat_4R_PBPB, PP$Nat_2R_PBPB , PP$Nat_3R_PBPB)
describe(PP$Naturalness_Scale_PBPB_Tot)
## PP$Naturalness_Scale_PBPB_Tot 
## 
##  4  Variables      1005  Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481       99    0.998    53.99    36.26        0        3 
##      .25      .50      .75      .90      .95 
##       29       58       79       99      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481       97    0.998    43.33    34.89        0        0 
##      .25      .50      .75      .90      .95 
##       20       39       68       87      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      522      483       96    0.998    39.82    33.02      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     18.0     35.0     61.0     83.9     97.0 
## 
## lowest :   0   1   2   3   4, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      522      483       88    0.996    32.13    28.98      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     11.0     29.0     48.0     70.9     82.0 
## 
## lowest :   0   1   2   3   4, highest:  94  97  98  99 100
## --------------------------------------------------------------------------------

Plant-based Fermentation Burger (PBFB)

PP$Nat_1_PBFB <- PP$PBFB_Naturalness_30
PP$Nat_2R_PBFB <- (100-PP$PBFB_Naturalness_31)
PP$Nat_3R_PBFB <- (100-PP$PBFB_Naturalness_35)
PP$Nat_4R_PBFB <- (100-PP$PBFB_Naturalness_36)

#Define Variables
PP$Nat_1_PBFB <- PP$PBFB_Naturalness_30 
PP$Nat_2R_PBFB <- PP$PBFB_Naturalness_31    
PP$Nat_3R_PBFB <- PP$PBFB_Naturalness_35    
PP$Nat_4R_PBFB <- PP$PBFB_Naturalness_36

# Histograms
hist(PP$Nat_1_PBFB, main = '#1: This is natural')

hist(PP$Nat_2R_PBFB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_PBFB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_PBFB, main = '#4(R): This is artificial')

#### Scale and Score
PP$Naturalness_Score_PBFB_Tot <- rowMeans(PP [, c( "Nat_1_PBFB" ,  "Nat_4R_PBFB", "Nat_2R_PBFB" , "Nat_3R_PBFB")], na.rm=TRUE)
describe(PP$Naturalness_Score_PBFB_Tot)
## PP$Naturalness_Score_PBFB_Tot 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      481      524      217        1    62.27    19.97    29.00    41.50 
##      .25      .50      .75      .90      .95 
##    52.00    63.25    75.00    83.25    93.75 
## 
## lowest :   0.00   0.25   2.75   4.25   7.50, highest:  97.50  98.50  99.00  99.75 100.00
sd(PP$Naturalness_Score_PBFB_Tot, na.rm = TRUE)
## [1] 18.3293
PP$Naturalness_Scale_PBFB_Tot <- data.frame(PP$Nat_1_PBFB ,  PP$Nat_4R_PBFB, PP$Nat_2R_PBFB , PP$Nat_3R_PBFB)
describe(PP$Naturalness_Scale_PBFB_Tot)
## PP$Naturalness_Scale_PBFB_Tot 
## 
##  4  Variables      1005  Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      481      524       97    0.998    51.85    38.41        0        0 
##      .25      .50      .75      .90      .95 
##       23       53       81       98      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      480      525       95    0.996    61.33    35.17        0       14 
##      .25      .50      .75      .90      .95 
##       37       66       88      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      480      525       95    0.996    65.55    32.51     6.95    24.00 
##      .25      .50      .75      .90      .95 
##    46.50    71.50    90.00   100.00   100.00 
## 
## lowest :   0   1   2   3   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      478      527       86    0.994    70.53    29.62     8.40    29.00 
##      .25      .50      .75      .90      .95 
##    54.25    75.50    93.75   100.00   100.00 
## 
## lowest :   0   1   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------

Veggie Burger (VB)

#Define variables
PP$Nat_1_VB <- PP$VB_Naturalness_30
PP$Nat_2R_VB <- (100-PP$VB_Naturalness_31)
PP$Nat_3R_VB <- (100-PP$VB_Naturalness_35)
PP$Nat_4R_VB <- (100-PP$VB_Naturalness_36)

# Histograms
hist(PP$Nat_1_VB, main = '#1: This is natural')

hist(PP$Nat_2R_VB, main = '#2(R): Human intervention')

hist(PP$Nat_3R_VB, main = '#3(R): Science-based technology')

hist(PP$Nat_4R_VB, main = '#4(R): This is artificial')

#### Scale and Score
PP$Naturalness_Score_VB_Tot <- rowMeans(PP [, c( "Nat_1_VB" ,  "Nat_4R_VB", "Nat_2R_VB" , "Nat_3R_VB")], na.rm=TRUE)
describe(PP$Naturalness_Score_VB_Tot)
## PP$Naturalness_Score_VB_Tot 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      472      533      237        1    51.39    25.22    16.50    25.00 
##      .25      .50      .75      .90      .95 
##    36.19    49.00    65.50    84.00    96.36 
## 
## lowest :   0.00   1.25   3.00   3.25   4.25, highest:  99.00  99.25  99.50  99.75 100.00
sd(PP$Naturalness_Score_VB_Tot, na.rm = TRUE)
## [1] 22.39438
PP$Naturalness_Scale_VB_Tot <- data.frame(PP$Nat_1_VB ,  PP$Nat_4R_VB, PP$Nat_2R_VB , PP$Nat_3R_VB )
describe(PP$Naturalness_Scale_VB_Tot)
## PP$Naturalness_Scale_VB_Tot 
## 
##  4  Variables      1005  Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      472      533       93    0.996    65.13     32.6     4.55    21.00 
##      .25      .50      .75      .90      .95 
##    50.00    71.00    89.00   100.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      472      533       96    0.998    49.87     37.8        0        4 
##      .25      .50      .75      .90      .95 
##       21       48       80       99      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      472      533       99    0.998    49.76    36.59        0        6 
##      .25      .50      .75      .90      .95 
##       24       48       78       99      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      472      533       91    0.999     40.8    33.64     0.00     2.00 
##      .25      .50      .75      .90      .95 
##    19.00    34.00    61.25    91.80   100.00 
## 
## lowest :   0   1   2   3   4, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
#Scale Alphas  
##Nat Items (ALL) - Reasonable alphas
psych::alpha(data.frame(PP$Nat_1_GFFB , PP$Nat_4R_GFFB, PP$Nat_2R_GFFB , PP$Nat_3R_GFFB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_GFFB, PP$Nat_4R_GFFB, PP$Nat_2R_GFFB, 
##     PP$Nat_3R_GFFB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.63      0.62    0.65      0.29 1.7 0.019   50 21     0.31
## 
##  lower alpha upper     95% confidence boundaries
## 0.59 0.63 0.67 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r med.r
## PP.Nat_1_GFFB       0.76      0.76    0.69      0.52 3.19    0.013 0.0073  0.50
## PP.Nat_4R_GFFB      0.36      0.36    0.39      0.16 0.56    0.035 0.0875  0.18
## PP.Nat_2R_GFFB      0.40      0.39    0.44      0.18 0.64    0.033 0.1042  0.18
## PP.Nat_3R_GFFB      0.59      0.59    0.55      0.32 1.43    0.023 0.0614  0.18
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_GFFB  497  0.44  0.44  0.15  0.088   59 30
## PP.Nat_4R_GFFB 495  0.84  0.83  0.79  0.647   50 32
## PP.Nat_2R_GFFB 496  0.81  0.81  0.75  0.615   43 31
## PP.Nat_3R_GFFB 498  0.66  0.65  0.51  0.361   47 30
psych::alpha(data.frame(PP$Nat_1_GFPRB , PP$Nat_4R_GFPRB, PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_GFPRB, PP$Nat_4R_GFPRB, 
##     PP$Nat_2R_GFPRB, PP$Nat_3R_GFPRB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.75      0.74    0.72      0.41 2.8 0.012   62 24     0.45
## 
##  lower alpha upper     95% confidence boundaries
## 0.72 0.75 0.77 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## PP.Nat_1_GFPRB       0.80      0.80    0.74      0.57 4.0    0.011 0.0088  0.52
## PP.Nat_4R_GFPRB      0.58      0.56    0.50      0.30 1.3    0.022 0.0351  0.25
## PP.Nat_2R_GFPRB      0.63      0.62    0.57      0.35 1.6    0.020 0.0368  0.38
## PP.Nat_3R_GFPRB      0.71      0.70    0.66      0.44 2.3    0.015 0.0470  0.38
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_GFPRB  513  0.55  0.59  0.37   0.31   74 27
## PP.Nat_4R_GFPRB 513  0.87  0.86  0.84   0.73   63 33
## PP.Nat_2R_GFPRB 514  0.83  0.81  0.76   0.65   59 33
## PP.Nat_3R_GFPRB 511  0.74  0.73  0.59   0.51   54 33
psych::alpha(data.frame(PP$Nat_1_CBB ,  PP$Nat_4R_CBB, PP$Nat_2R_CBB , PP$Nat_3R_CBB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_CBB, PP$Nat_4R_CBB, PP$Nat_2R_CBB, 
##     PP$Nat_3R_CBB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7      0.72     0.7      0.39 2.5 0.016   34 22     0.38
## 
##  lower alpha upper     95% confidence boundaries
## 0.67 0.7 0.73 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Nat_1_CBB       0.80      0.81    0.74      0.58 4.1    0.011 0.005  0.62
## PP.Nat_4R_CBB      0.55      0.58    0.56      0.31 1.4    0.026 0.074  0.21
## PP.Nat_2R_CBB      0.53      0.55    0.49      0.29 1.2    0.026 0.040  0.26
## PP.Nat_3R_CBB      0.62      0.63    0.59      0.36 1.7    0.022 0.050  0.26
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_CBB  515  0.58  0.54  0.26   0.23   46 34
## PP.Nat_4R_CBB 514  0.81  0.81  0.73   0.61   33 30
## PP.Nat_2R_CBB 514  0.82  0.84  0.80   0.65   30 28
## PP.Nat_3R_CBB 514  0.73  0.76  0.66   0.51   29 28
psych::alpha(data.frame(PP$Nat_1_PBPB , PP$Nat_4R_PBPB, PP$Nat_2R_PBPB , PP$Nat_3R_PBPB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_PBPB, PP$Nat_4R_PBPB, PP$Nat_2R_PBPB, 
##     PP$Nat_3R_PBPB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.63      0.63    0.61       0.3 1.7 0.019   42 20     0.34
## 
##  lower alpha upper     95% confidence boundaries
## 0.59 0.63 0.66 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r med.r
## PP.Nat_1_PBPB       0.71      0.71    0.62      0.44 2.40    0.016 0.0023  0.45
## PP.Nat_4R_PBPB      0.43      0.45    0.42      0.21 0.80    0.031 0.0554  0.21
## PP.Nat_2R_PBPB      0.45      0.45    0.42      0.22 0.83    0.030 0.0460  0.28
## PP.Nat_3R_PBPB      0.59      0.59    0.52      0.32 1.44    0.023 0.0219  0.28
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_PBPB  524  0.57  0.53  0.27   0.20   54 32
## PP.Nat_4R_PBPB 524  0.79  0.79  0.69   0.56   43 30
## PP.Nat_2R_PBPB 522  0.77  0.78  0.69   0.54   40 29
## PP.Nat_3R_PBPB 522  0.63  0.66  0.51   0.36   32 26
psych::alpha(data.frame(PP$Nat_1_PBFB ,  PP$Nat_4R_PBFB, PP$Nat_2R_PBFB , PP$Nat_3R_PBFB))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(PP$Nat_1_PBFB, PP$Nat_4R_PBFB, PP$Nat_2R_PBFB, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.Nat_1_PBFB ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_PBFB, PP$Nat_4R_PBFB, PP$Nat_2R_PBFB, 
##     PP$Nat_3R_PBFB))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.43      0.48    0.54      0.19 0.91 0.03   62 18     0.22
## 
##  lower alpha upper     95% confidence boundaries
## 0.37 0.43 0.49 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r
## PP.Nat_1_PBFB      0.742      0.74    0.66     0.493 2.91    0.014 0.0019
## PP.Nat_4R_PBFB     0.290      0.34    0.38     0.144 0.51    0.041 0.1167
## PP.Nat_2R_PBFB     0.102      0.16    0.28     0.061 0.19    0.051 0.1294
## PP.Nat_3R_PBFB     0.077      0.12    0.27     0.045 0.14    0.052 0.1581
##                 med.r
## PP.Nat_1_PBFB   0.495
## PP.Nat_4R_PBFB -0.005
## PP.Nat_2R_PBFB -0.005
## PP.Nat_3R_PBFB -0.098
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_PBFB  481  0.30  0.25 -0.15  -0.16   52 33
## PP.Nat_4R_PBFB 480  0.66  0.67  0.56   0.31   61 31
## PP.Nat_2R_PBFB 480  0.76  0.77  0.71   0.48   66 29
## PP.Nat_3R_PBFB 478  0.77  0.79  0.72   0.53   71 27
psych::alpha(data.frame(PP$Nat_1_VB ,  PP$Nat_4R_VB, PP$Nat_2R_VB , PP$Nat_3R_VB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Nat_1_VB, PP$Nat_4R_VB, PP$Nat_2R_VB, 
##     PP$Nat_3R_VB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7      0.69    0.67      0.36 2.2 0.015   51 22     0.37
## 
##  lower alpha upper     95% confidence boundaries
## 0.67 0.7 0.73 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Nat_1_VB       0.75      0.75    0.68      0.50 3.0    0.014 0.010  0.48
## PP.Nat_4R_VB      0.53      0.53    0.47      0.27 1.1    0.025 0.036  0.23
## PP.Nat_2R_VB      0.55      0.54    0.47      0.28 1.2    0.024 0.024  0.33
## PP.Nat_3R_VB      0.66      0.66    0.60      0.39 1.9    0.018 0.037  0.33
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## PP.Nat_1_VB  472  0.56  0.58  0.33   0.28   65 29
## PP.Nat_4R_VB 472  0.82  0.81  0.75   0.63   50 33
## PP.Nat_2R_VB 472  0.81  0.80  0.74   0.62   50 32
## PP.Nat_3R_VB 472  0.69  0.69  0.53   0.44   41 30

Risk Perceptions

# Risk perception was measured with 2 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Risk score calculated by averaging these items.

### Item 1: This is risky to eat.
### Item 2: Producing this is risky for society. 
### Item 3: Producing this is risky for the environment. 
### Item 4: This is frightening.

Grain-fed Feedlot Burger (GFFB)

#GFFB
PP$Risk_1_GFFB <- PP$GFFB_Risk_32
describe(PP$Risk_1_GFFB)
## PP$Risk_1_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      498      507       95    0.998    46.96    36.42        0        0 
##      .25      .50      .75      .90      .95 
##       19       51       74       90      100 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  99 100
range(PP$Risk_1_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_GFFB, main = 'GFFB - This is risky to eat.')

PP$Risk_2_GFFB <- PP$GFFB_Risk_35
describe(PP$Risk_2_GFFB)
## PP$Risk_2_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      496      509       94    0.998    46.85    36.51      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     20.0     50.0     72.0     89.5    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Risk_2_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_GFFB, main = 'GFFB - Producing this is risky for society.')

PP$Risk_3_GFFB <- PP$GFFB_Risk_36
describe(PP$Risk_3_GFFB)
## PP$Risk_3_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      497      508       99    0.999    49.89    36.57      0.0      1.6 
##      .25      .50      .75      .90      .95 
##     24.0     52.0     76.0     94.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Risk_3_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_3_GFFB, main = 'GFFB - Producing this is risky for the environment.')

PP$Risk_4_GFFB <- PP$GFFB_Risk_33
describe(PP$Risk_4_GFFB)
## PP$Risk_4_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      495      510       95    0.997    51.28    38.74      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     22.5     53.0     81.0     99.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  95  96  98  99 100
range(PP$Risk_4_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_4_GFFB, main = 'GFFB - This is frightening.')

#GFFB Risk Scale
PP$Risk_Score_GFFB <- rowMeans(PP [, c("Risk_1_GFFB", "Risk_2_GFFB", "Risk_3_GFFB", "Risk_4_GFFB")], na.rm=TRUE)
PP$Risk_Scale_GFFB <- data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB, PP$Risk_3_GFFB, PP$Risk_4_GFFB)

describe(PP$Risk_Score_GFFB)
## PP$Risk_Score_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      499      506      264        1    48.87    31.98     0.00     5.40 
##      .25      .50      .75      .90      .95 
##    28.00    51.75    68.38    86.05    95.52 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  97.00  98.75  99.00  99.50 100.00
sd(PP$Risk_Score_GFFB, na.rm = TRUE)
## [1] 27.89227
#GFFB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB, PP$Risk_3_GFFB, PP$Risk_4_GFFB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB, PP$Risk_3_GFFB, 
##     PP$Risk_4_GFFB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.89      0.89    0.86      0.67   8 0.0059   49 28     0.66
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.89 0.9 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## PP.Risk_1_GFFB      0.85      0.86    0.81      0.67 6.0   0.0080 0.0050  0.64
## PP.Risk_2_GFFB      0.83      0.83    0.77      0.63 5.1   0.0091 0.0024  0.61
## PP.Risk_3_GFFB      0.85      0.85    0.80      0.65 5.6   0.0085 0.0052  0.64
## PP.Risk_4_GFFB      0.88      0.88    0.84      0.72 7.7   0.0063 0.0011  0.73
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_GFFB 498  0.86  0.87  0.80   0.75   47 32
## PP.Risk_2_GFFB 496  0.90  0.90  0.87   0.81   47 32
## PP.Risk_3_GFFB 497  0.88  0.88  0.83   0.78   50 32
## PP.Risk_4_GFFB 495  0.83  0.82  0.72   0.68   51 34
hist(PP$Risk_Score_GFFB, main = 'GFFB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_GFFB, labels = c('1','2', '3', '4'), main = "Correlation Between GFFB Risk Items")

Grain-fed Pasture Raised Burger (GFPRB)

#GFPRB
PP$Risk_1_GFPRB <- PP$GFPRB_Risk_32
describe(PP$Risk_1_GFPRB)
## PP$Risk_1_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      512      493       99    0.991    36.75    36.32     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     5.00    30.00    63.25    84.00    97.45 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Risk_1_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_GFPRB, main = 'GFPRB - This is risky to eat.')

PP$Risk_2_GFPRB <- PP$GFPRB_Risk_35
describe(PP$Risk_2_GFPRB)
## PP$Risk_2_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      511      494       97    0.996    39.91    36.48      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     36.0     66.5     88.0     99.0 
## 
## lowest :   0   1   2   3   4, highest:  94  97  98  99 100
range(PP$Risk_2_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_GFPRB, main = 'GFPRB - Producing this is risky for society.')

PP$Risk_3_GFPRB <- PP$GFPRB_Risk_36
describe(PP$Risk_3_GFPRB)
## PP$Risk_3_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      510      495      100    0.995    41.19     36.4        0        0 
##      .25      .50      .75      .90      .95 
##       12       38       67       87       97 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Risk_3_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_3_GFPRB, main = 'GFPRB - Producing this is risky for the environment.')

PP$Risk_4_GFPRB <- PP$GFPRB_Risk_33
describe(PP$Risk_4_GFPRB)
## PP$Risk_4_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      511      494       99    0.992       37     37.4      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      4.0     29.0     63.5     88.0     98.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Risk_4_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_4_GFPRB, main = 'GFPRB - This is frightening.')

#GFPRB Risk Scale
PP$Risk_Score_GFPRB <- rowMeans(PP [, c("Risk_1_GFPRB", "Risk_2_GFPRB", "Risk_3_GFPRB", "Risk_4_GFPRB")], na.rm=TRUE)
PP$Risk_Scale_GFPRB <- data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB, PP$Risk_3_GFPRB, PP$Risk_4_GFPRB)

describe(PP$Risk_Score_GFPRB)
## PP$Risk_Score_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      513      492      256    0.999    38.72    31.88     0.00     0.25 
##      .25      .50      .75      .90      .95 
##    14.00    38.50    57.50    77.70    88.55 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  97.00  97.50  98.50  99.75 100.00
sd(PP$Risk_Score_GFPRB, na.rm = TRUE)
## [1] 27.86542
#GFPRB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB, PP$Risk_3_GFPRB, PP$Risk_4_GFPRB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB, 
##     PP$Risk_3_GFPRB, PP$Risk_4_GFPRB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.89      0.89    0.86      0.67   8 0.0058   39 28     0.67
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.89 0.9 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## PP.Risk_1_GFPRB      0.85      0.85    0.80      0.66 5.9   0.0081 0.0049  0.63
## PP.Risk_2_GFPRB      0.85      0.85    0.79      0.65 5.6   0.0083 0.0012  0.66
## PP.Risk_3_GFPRB      0.85      0.85    0.80      0.66 5.9   0.0080 0.0007  0.68
## PP.Risk_4_GFPRB      0.87      0.87    0.82      0.69 6.8   0.0071 0.0018  0.68
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_GFPRB 512  0.87  0.87  0.81   0.76   37 32
## PP.Risk_2_GFPRB 511  0.88  0.88  0.83   0.78   40 32
## PP.Risk_3_GFPRB 510  0.87  0.87  0.81   0.76   41 32
## PP.Risk_4_GFPRB 511  0.85  0.84  0.76   0.72   37 33
hist(PP$Risk_Score_GFPRB, main = 'GFPRB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_GFPRB, labels = c('1','2', '3', '4'), main = "Correlation Between GFPRB Risk Items")

Cultured Beef Burgers (CBB)

#CBB
PP$Risk_1_CBB <- PP$CBB_Risk_32
describe(PP$Risk_1_CBB)
## PP$Risk_1_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      515      490       98    0.998    54.69    37.24        0        6 
##      .25      .50      .75      .90      .95 
##       27       57       82      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Risk_1_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_CBB, main = 'CBB - This is risky to eat.')

PP$Risk_2_CBB <- PP$CBB_Risk_35
describe(PP$Risk_2_CBB)
## PP$Risk_2_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      515      490       96    0.998    55.18    36.39      0.0      5.8 
##      .25      .50      .75      .90      .95 
##     30.0     59.0     81.0    100.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Risk_2_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_CBB, main = 'CBB - Producing this is risky for society.')

PP$Risk_3_CBB <- PP$CBB_Risk_36
describe(PP$Risk_3_CBB)
## PP$Risk_3_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      513      492       97    0.999    50.98     36.4        0        5 
##      .25      .50      .75      .90      .95 
##       26       51       77       97      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(PP$Risk_3_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_3_CBB, main = 'CBB - Producing this is risky for the environment.')

PP$Risk_4_CBB <- PP$CBB_Risk_33
describe(PP$Risk_4_CBB)
## PP$Risk_4_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491       97    0.996    55.98    38.42        0        3 
##      .25      .50      .75      .90      .95 
##       27       60       86      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Risk_4_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_4_CBB, main = 'CBB - This is frightening.')

#CBB Risk Scale
PP$Risk_Score_CBB <- rowMeans(PP [, c("Risk_1_CBB", "Risk_2_CBB", "Risk_3_CBB", "Risk_4_CBB")], na.rm=TRUE)
PP$Risk_Scale_CBB <- data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB, PP$Risk_3_CBB, PP$Risk_4_CBB)

describe(PP$Risk_Score_CBB)
## PP$Risk_Score_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      517      488      267        1     54.2     32.1     2.20    12.65 
##      .25      .50      .75      .90      .95 
##    36.50    53.50    75.00    93.30   100.00 
## 
## lowest :   0.00   0.25   0.50   1.00   1.25, highest:  99.00  99.25  99.50  99.75 100.00
sd(PP$Risk_Score_CBB, na.rm = TRUE)
## [1] 28.05343
#CBB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB, PP$Risk_3_CBB, PP$Risk_4_CBB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB, PP$Risk_3_CBB, 
##     PP$Risk_4_CBB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.89      0.89    0.87      0.68 8.5 0.0055   54 28     0.69
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.89 0.91 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## PP.Risk_1_CBB      0.85      0.85    0.80      0.66 5.8   0.0081 0.00312  0.67
## PP.Risk_2_CBB      0.86      0.86    0.80      0.66 5.9   0.0079 0.00449  0.66
## PP.Risk_3_CBB      0.88      0.88    0.83      0.71 7.2   0.0067 0.00081  0.71
## PP.Risk_4_CBB      0.87      0.87    0.82      0.69 6.8   0.0071 0.00068  0.71
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_CBB 515  0.89  0.89  0.84   0.80   55 32
## PP.Risk_2_CBB 515  0.88  0.89  0.84   0.79   55 32
## PP.Risk_3_CBB 513  0.85  0.85  0.77   0.73   51 32
## PP.Risk_4_CBB 514  0.86  0.86  0.80   0.75   56 33
hist(PP$Risk_Score_CBB, main = 'CBB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_CBB, labels = c('1','2', '3', '4'), main = "Correlation Between CBB Risk Items")

Plant-based Protein Burger (PBPB)

#PBPB
PP$Risk_1_PBPB <- PP$PBPB_Risk_32
describe(PP$Risk_1_PBPB)
## PP$Risk_1_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      523      482       96    0.998    43.28    36.03        0        0 
##      .25      .50      .75      .90      .95 
##       15       43       68       88      100 
## 
## lowest :   0   1   2   3   4, highest:  94  95  97  99 100
range(PP$Risk_1_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_PBPB, main = 'PBPB - This is risky to eat.')

PP$Risk_2_PBPB <- PP$PBPB_Risk_35
describe(PP$Risk_2_PBPB)
## PP$Risk_2_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481      100    0.998    43.06    35.68     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    15.00    41.00    68.00    86.00    98.85 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Risk_2_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_PBPB, main = 'PBPB - Producing this is risky for society.')

PP$Risk_3_PBPB <- PP$PBPB_Risk_36
describe(PP$Risk_3_PBPB)
## PP$Risk_3_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481       98    0.998    40.95    34.56     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    16.00    38.00    64.00    85.00    96.85 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(PP$Risk_3_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_3_PBPB, main = 'PBPB - Producing this is risky for the environment.')

PP$Risk_4_PBPB <- PP$PBPB_Risk_33
describe(PP$Risk_4_PBPB)
## PP$Risk_4_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      522      483       98    0.996    42.61    36.32     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.25    39.00    68.00    87.90   100.00 
## 
## lowest :   0   1   2   3   4, highest:  94  95  98  99 100
range(PP$Risk_4_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_4_PBPB, main = 'PBPB - This is frightening.')

#PBPB Risk Scale
PP$Risk_Score_PBPB <- rowMeans(PP [, c("Risk_1_PBPB", "Risk_2_PBPB", "Risk_3_PBPB", "Risk_4_PBPB")], na.rm=TRUE)
PP$Risk_Scale_PBPB <- data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB, PP$Risk_3_PBPB, PP$Risk_4_PBPB)

describe(PP$Risk_Score_PBPB)
## PP$Risk_Score_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481      258        1    42.48    31.14    0.000    2.325 
##      .25      .50      .75      .90      .95 
##   20.188   44.250   60.250   79.600   90.962 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  98.00  98.25  98.50  99.75 100.00
sd(PP$Risk_Score_PBPB, na.rm = TRUE)
## [1] 27.19177
#PBPB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB, PP$Risk_3_PBPB, PP$Risk_4_PBPB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB, PP$Risk_3_PBPB, 
##     PP$Risk_4_PBPB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##        0.9       0.9    0.87      0.69 8.9 0.0052   42 27      0.7
## 
##  lower alpha upper     95% confidence boundaries
## 0.89 0.9 0.91 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## PP.Risk_1_PBPB      0.87      0.87    0.82      0.68 6.5   0.0073 0.00180  0.69
## PP.Risk_2_PBPB      0.86      0.86    0.81      0.67 6.1   0.0077 0.00306  0.64
## PP.Risk_3_PBPB      0.88      0.88    0.83      0.71 7.4   0.0065 0.00046  0.71
## PP.Risk_4_PBPB      0.87      0.87    0.82      0.69 6.7   0.0071 0.00191  0.71
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_PBPB 523  0.88  0.88  0.83   0.78   43 31
## PP.Risk_2_PBPB 524  0.89  0.89  0.85   0.80   43 31
## PP.Risk_3_PBPB 524  0.85  0.86  0.78   0.74   41 30
## PP.Risk_4_PBPB 522  0.88  0.88  0.82   0.77   43 32
hist(PP$Risk_Score_PBPB, main = 'PBPB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_PBPB, labels = c('1','2', '3', '4'), main = "Correlation Between PBPB Risk Items")

Plant-based Fermentation Burger (PBFB)

#PBFB
PP$Risk_1_PBFB <- PP$PBFB_Risk_32
describe(PP$Risk_1_PBFB)
## PP$Risk_1_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      480      525      100    0.999    49.52    37.36     0.00     2.00 
##      .25      .50      .75      .90      .95 
##    21.75    51.00    76.00    97.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
range(PP$Risk_1_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_PBFB, main = 'PBFB - This is risky to eat.')

PP$Risk_2_PBFB <- PP$PBPB_Risk_35
describe(PP$Risk_2_PBFB)
## PP$Risk_2_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481      100    0.998    43.06    35.68     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    15.00    41.00    68.00    86.00    98.85 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(PP$Risk_2_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_PBFB, main = 'PBFB - Producing this is risky for society.')

PP$Risk_3_PBFB <- PP$PBPB_Risk_36
describe(PP$Risk_3_PBFB)
## PP$Risk_3_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481       98    0.998    40.95    34.56     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    16.00    38.00    64.00    85.00    96.85 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(PP$Risk_3_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_3_PBFB, main = 'PBFB - Producing this is risky for the environment.')

PP$Risk_4_PBFB <- PP$PBPB_Risk_33
describe(PP$Risk_4_PBFB)
## PP$Risk_4_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      522      483       98    0.996    42.61    36.32     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.25    39.00    68.00    87.90   100.00 
## 
## lowest :   0   1   2   3   4, highest:  94  95  98  99 100
range(PP$Risk_4_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_4_PBFB, main = 'PBFB - This is frightening.')

#PBFB Risk Scale
PP$Risk_Score_PBFB <- rowMeans(PP [, c("Risk_1_PBFB", "Risk_2_PBFB", "Risk_3_PBFB", "Risk_4_PBFB")], na.rm=TRUE)
PP$Risk_Scale_PBFB <- data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB, PP$Risk_3_PBFB, PP$Risk_4_PBFB)

describe(PP$Risk_Score_PBFB)
## PP$Risk_Score_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      795      210      317        1    45.56    33.89    0.000    3.133 
##      .25      .50      .75      .90      .95 
##   21.833   47.250   67.000   87.733  100.000 
## 
## lowest :   0.0000000   0.2500000   0.3333333   0.5000000   1.0000000
## highest:  97.0000000  97.6666667  98.0000000  99.6666667 100.0000000
sd(PP$Risk_Score_PBFB, na.rm = TRUE)
## [1] 29.45914
#PBFB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB, PP$Risk_3_PBFB, PP$Risk_4_PBFB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB, PP$Risk_3_PBFB, 
##     PP$Risk_4_PBFB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.84      0.85    0.82      0.58 5.5 0.0081   46 29     0.57
## 
##  lower alpha upper     95% confidence boundaries
## 0.83 0.84 0.86 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## PP.Risk_1_PBFB      0.87      0.87    0.82      0.68 6.5   0.0073 0.0018  0.69
## PP.Risk_2_PBFB      0.77      0.77    0.70      0.52 3.3   0.0129 0.0107  0.49
## PP.Risk_3_PBFB      0.79      0.79    0.73      0.56 3.8   0.0116 0.0133  0.49
## PP.Risk_4_PBFB      0.78      0.79    0.74      0.55 3.7   0.0121 0.0227  0.49
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_PBFB 480  0.91  0.73  0.57   0.53   50 32
## PP.Risk_2_PBFB 524  0.90  0.88  0.84   0.77   43 31
## PP.Risk_3_PBFB 524  0.87  0.85  0.79   0.71   41 30
## PP.Risk_4_PBFB 522  0.87  0.85  0.79   0.73   43 32
hist(PP$Risk_Score_PBFB, main = 'PBFB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_PBFB, labels = c('1','2', '3', '4'), main = "Correlation Between PBFB Risk Items")

Veggie Burger (VB)

#VB
PP$Risk_1_VB <- PP$VB_Risk_32
describe(PP$Risk_1_VB)
## PP$Risk_1_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      471      534       92    0.997     35.1    33.26      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     29.0     56.5     79.0     88.0 
## 
## lowest :   0   1   2   3   4, highest:  91  92  96  99 100
range(PP$Risk_1_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_1_VB, main = 'VB - This is risky to eat.')

PP$Risk_2_VB <- PP$VB_Risk_35
describe(PP$Risk_2_VB)
## PP$Risk_2_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      469      536       91    0.996    37.72    35.36      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     33.0     60.0     86.2    100.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  98 100
range(PP$Risk_2_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_2_VB, main = 'VB - Producing this is risky for society.')

PP$Risk_3_VB <- PP$VB_Risk_36
describe(PP$Risk_3_VB)
## PP$Risk_3_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      471      534       96    0.997    36.56    34.05      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     31.0     58.0     82.0     93.5 
## 
## lowest :   0   1   2   3   4, highest:  94  95  97  98 100
range(PP$Risk_3_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_3_VB, main = 'VB - Producing this is risky for the environment.')

PP$Risk_4_VB <- PP$VB_Risk_33
describe(PP$Risk_4_VB)
## PP$Risk_4_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      470      535       95    0.996    36.27    35.59      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      8.0     28.5     62.0     82.1     95.1 
## 
## lowest :   0   1   2   3   4, highest:  94  96  98  99 100
range(PP$Risk_4_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Risk_4_VB, main = 'VB - This is frightening.')

#VB Risk Scale
PP$Risk_Score_VB <- rowMeans(PP [, c("Risk_1_VB", "Risk_2_VB", "Risk_3_VB", "Risk_4_VB")], na.rm=TRUE)
PP$Risk_Scale_VB <- data.frame(PP$Risk_1_VB, PP$Risk_2_VB, PP$Risk_3_VB, PP$Risk_4_VB)

describe(PP$Risk_Score_VB)
## PP$Risk_Score_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      471      534      247        1    36.41    30.29     0.00     1.25 
##      .25      .50      .75      .90      .95 
##    13.62    32.75    55.00    73.00    84.88 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  95.00  96.50  97.25  99.00 100.00
sd(PP$Risk_Score_VB, na.rm = TRUE)
## [1] 26.56997
#VB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_VB, PP$Risk_2_VB, PP$Risk_3_VB, PP$Risk_4_VB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$Risk_1_VB, PP$Risk_2_VB, PP$Risk_3_VB, 
##     PP$Risk_4_VB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.89      0.89    0.87      0.68 8.5 0.0055   36 27     0.68
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.89 0.91 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## PP.Risk_1_VB      0.86      0.86    0.81      0.67 6.1   0.0078 0.00301  0.65
## PP.Risk_2_VB      0.86      0.86    0.81      0.67 6.2   0.0077 0.00198  0.69
## PP.Risk_3_VB      0.86      0.86    0.81      0.68 6.4   0.0075 0.00072  0.68
## PP.Risk_4_VB      0.87      0.87    0.82      0.70 6.9   0.0069 0.00076  0.69
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_VB 471  0.88  0.88  0.83   0.78   35 29
## PP.Risk_2_VB 469  0.88  0.88  0.82   0.78   38 31
## PP.Risk_3_VB 471  0.87  0.87  0.81   0.77   37 30
## PP.Risk_4_VB 470  0.86  0.86  0.78   0.74   36 31
hist(PP$Risk_Score_VB, main = 'VB Risk Scale Score')

#Correlation
cor.plot(PP$Risk_Scale_VB, labels = c('1','2', '3', '4'), main = "Correlation Between VB Risk Items")

Support

# Willingness to support was measured with 4 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Support score calculated by averaging these items.

### Item 1: I support this.
### Item 2: I would purchase this product.
### Item 3: Society should support this.
### Item 4: Society should purchase this product.

Grain-fed Feedlot Burger (GFFB)

# Behavioral Intent (SUPPORT) Scales and Scores

### Rename Variables
PP$BehavInt1_GFFB <- PP$GFFB_BehavIntent_29
PP$BehavInt2_GFFB <- PP$GFFB_BehavIntent_28
PP$BehavInt3_GFFB <- PP$GFFB_BehavIntent_27
PP$BehavInt4_GFFB <- PP$GFFB_BehavIntent_26

#Describe Items
describe(PP$BehavInt1_GFFB)
## PP$BehavInt1_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      498      507       96    0.997    57.55     36.1      0.0      3.0 
##      .25      .50      .75      .90      .95 
##     35.0     62.5     83.0    100.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(PP$BehavInt2_GFFB)
## PP$BehavInt2_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      498      507       96    0.996       60    35.91        0        7 
##      .25      .50      .75      .90      .95 
##       37       65       87      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(PP$BehavInt3_GFFB)
## PP$BehavInt3_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      497      508       96    0.998    56.74    35.16        0        5 
##      .25      .50      .75      .90      .95 
##       35       60       81      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(PP$BehavInt4_GFFB)
## PP$BehavInt4_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      497      508       96    0.998     57.3    35.04        0        5 
##      .25      .50      .75      .90      .95 
##       36       61       83      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(PP$BehavInt1_GFFB, na.rm= TRUE)
## [1] 31.63923
sd(PP$BehavInt2_GFFB, na.rm= TRUE)
## [1] 31.60034
sd(PP$BehavInt3_GFFB, na.rm= TRUE)
## [1] 30.78336
sd(PP$BehavInt4_GFFB, na.rm= TRUE)
## [1] 30.71115
#Histograms
hist(PP$BehavInt1_GFFB, main = '#1: I support this')

hist(PP$BehavInt2_GFFB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_GFFB, main = '#3: Society should support this')

hist(PP$BehavInt4_GFFB, main = '#4: Society should purchase this product')

#Support Score
PP$Behav_Score_GFFB <- rowMeans(PP [, c("BehavInt1_GFFB", "BehavInt2_GFFB", "BehavInt3_GFFB", "BehavInt4_GFFB")], na.rm=TRUE)
PP$Behav_Scale_GFFB <- data.frame(PP$BehavInt1_GFFB, PP$BehavInt2_GFFB, PP$BehavInt3_GFFB, PP$BehavInt4_GFFB)
describe(PP$Behav_Score_GFFB)
## PP$Behav_Score_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      498      507      242    0.999    57.91     33.2    0.425   11.425 
##      .25      .50      .75      .90      .95 
##   41.500   59.250   80.750   99.250  100.000 
## 
## lowest :   0.00   0.50   0.75   1.25   1.75, highest:  99.00  99.25  99.50  99.75 100.00
sd(PP$Behav_Score_GFFB, na.rm= TRUE)
## [1] 29.21738

Grain-fed Pasture Raised Burger (GFPRB)

##GFPRB
PP$BehavInt1_GFPRB  <- PP$PBPB_BehavIntent_29
PP$BehavInt2_GFPRB  <- PP$PBPB_BehavIntent_28
PP$BehavInt3_GFPRB <- PP$PBPB_BehavIntent_27
PP$BehavInt4_GFPRB <- PP$PBPB_BehavIntent_26

# Histograms
hist(PP$BehavInt1_GFPRB, main = '#1: I support this')

hist(PP$BehavInt2_GFPRB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_GFPRB, main = '#3: Society should support this')

hist(PP$BehavInt4_GFPRB, main = '#4: Society should purchase this product')

#Scales and Scores
PP$Behav_Score_GFPRB <- rowMeans(PP [, c("BehavInt1_GFPRB", "BehavInt2_GFPRB", "BehavInt3_GFPRB", "BehavInt4_GFPRB")], na.rm=TRUE)
PP$Behav_Scale_GFPRB <- data.frame(PP$BehavInt1_GFPRB, PP$BehavInt2_GFPRB, PP$BehavInt3_GFPRB, PP$BehavInt4_GFPRB)
describe(PP$Behav_Score_GFPRB)
## PP$Behav_Score_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      522      483      252    0.999    57.53    33.44   0.5125   9.8000 
##      .25      .50      .75      .90      .95 
##  37.8750  60.0000  80.5000  97.1250 100.0000 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  98.50  98.75  99.25  99.75 100.00
sd(PP$Behav_Score_GFPRB, na.rm= TRUE)
## [1] 29.36235

Cultured Beef Burgers (CBB)

##CBB
PP$BehavInt1_CBB <- PP$CBB_BehavIntent_29
PP$BehavInt2_CBB <- PP$CBB_BehavIntent_28
PP$BehavInt3_CBB <- PP$CBB_BehavIntent_27
PP$BehavInt4_CBB <- PP$CBB_BehavIntent_26

# Histograms
hist(PP$BehavInt1_CBB, main = '#1: I support this')

hist(PP$BehavInt2_CBB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_CBB, main = '#3: Society should support this')

hist(PP$BehavInt4_CBB, main = '#4: Society should purchase this product')

# Scales
PP$Behav_Score_CBB <- rowMeans(PP [, c("BehavInt1_CBB", "BehavInt2_CBB", "BehavInt3_CBB", "BehavInt4_CBB")], na.rm=TRUE)
PP$Behav_Scale_CBB <- data.frame(PP$BehavInt1_CBB, PP$BehavInt2_CBB, PP$BehavInt3_CBB, PP$BehavInt4_CBB)
describe(PP$Behav_Score_CBB)
## PP$Behav_Score_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      516      489      249    0.999    49.36     36.5     0.00     0.25 
##      .25      .50      .75      .90      .95 
##    21.44    52.50    74.81    94.25   100.00 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  99.00  99.25  99.50  99.75 100.00
sd(PP$Behav_Score_CBB, na.rm= TRUE)
## [1] 31.7638

Plant-based Protein Burger (PBPB)

##PBPB
PP$BehavInt1_PBPB <- PP$PBPB_BehavIntent_29
PP$BehavInt2_PBPB <- PP$PBPB_BehavIntent_28
PP$BehavInt3_PBPB <- PP$PBPB_BehavIntent_27
PP$BehavInt4_PBPB <- PP$PBPB_BehavIntent_26

# Histograms
hist(PP$BehavInt1_PBPB, main = '#1: I support this')

hist(PP$BehavInt2_PBPB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_PBPB, main = '#3: Society should support this')

hist(PP$BehavInt4_PBPB, main = '#4: Society should purchase this product')

PP$Behav_Score_PBPB <- rowMeans(PP [, c("BehavInt1_PBPB", "BehavInt2_PBPB", "BehavInt3_PBPB", "BehavInt4_PBPB")], na.rm=TRUE)
PP$Behav_Scale_PBPB <- data.frame(PP$BehavInt1_PBPB, PP$BehavInt2_PBPB, PP$BehavInt3_PBPB, PP$BehavInt4_PBPB)
describe(PP$Behav_Score_PBPB)
## PP$Behav_Score_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      522      483      252    0.999    57.53    33.44   0.5125   9.8000 
##      .25      .50      .75      .90      .95 
##  37.8750  60.0000  80.5000  97.1250 100.0000 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  98.50  98.75  99.25  99.75 100.00
sd(PP$Behav_Score_PBPB, na.rm= TRUE)
## [1] 29.36235

Plant-based Fermentation Burger (PBFB)

##PBFB
PP$BehavInt1_PBFB <- PP$PBFB_BehavIntent_29
PP$BehavInt2_PBFB <- PP$PBFB_BehavIntent_28
PP$BehavInt3_PBFB <- PP$PBFB_BehavIntent_27
PP$BehavInt4_PBFB <- PP$PBFB_BehavIntent_26

# Histograms
hist(PP$BehavInt1_PBFB, main = '#1: I support this')

hist(PP$BehavInt2_PBFB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_PBFB, main = '#3: Society should support this')

hist(PP$BehavInt4_PBFB, main = '#4: Society should purchase this product')

PP$Behav_Score_PBFB <- rowMeans(PP [, c("BehavInt1_PBFB", "BehavInt2_PBFB", "BehavInt3_PBFB", "BehavInt4_PBFB")], na.rm=TRUE)
PP$Behav_Scale_PBFB <- data.frame(PP$BehavInt1_PBFB, PP$BehavInt2_PBFB, PP$BehavInt3_PBFB, PP$BehavInt4_PBFB)
describe(PP$Behav_Score_PBFB)
## PP$Behav_Score_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      479      526      257        1    52.69    35.61     0.00     1.95 
##      .25      .50      .75      .90      .95 
##    29.88    54.25    77.62    93.65    99.75 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  98.25  99.00  99.25  99.75 100.00
sd(PP$Behav_Score_PBFB, na.rm= TRUE)
## [1] 31.0349

Veggie Burger (VB)

##VB
PP$BehavInt1_VB <- PP$VB_BehavIntent_29
PP$BehavInt2_VB <- PP$VB_BehavIntent_28
PP$BehavInt3_VB <- PP$VB_BehavIntent_27
PP$BehavInt4_VB <- PP$VB_BehavIntent_26

# Histograms
hist(PP$BehavInt1_VB, main = '#1: I support this')

hist(PP$BehavInt2_VB, main = '#2: I would purchase this product.')

hist(PP$BehavInt3_VB, main = '#3: Society should support this')

hist(PP$BehavInt4_VB, main = '#4: Society should purchase this product')

PP$Behav_Score_VB <- rowMeans(PP [, c("BehavInt1_VB", "BehavInt2_VB", "BehavInt3_VB", "BehavInt4_VB")], na.rm=TRUE)
PP$Behav_Scale_VB <- data.frame(PP$BehavInt1_VB, PP$BehavInt2_VB, PP$BehavInt3_VB, PP$BehavInt4_VB)
describe(PP$Behav_Score_VB)
## PP$Behav_Score_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      471      534      238    0.999    62.93    30.95    8.375   22.250 
##      .25      .50      .75      .90      .95 
##   47.750   66.000   84.500   99.000  100.000 
## 
## lowest :   0.00   0.25   0.75   1.25   1.50, highest:  99.00  99.25  99.50  99.75 100.00
sd(PP$Behav_Score_VB, na.rm= TRUE)
## [1] 27.38456
#Scale Alphas  
##Behav Items (ALL) - Very good alphas!
psych::alpha(data.frame(PP$BehavInt1_GFFB, PP$BehavInt2_GFFB, PP$BehavInt3_GFFB, PP$BehavInt4_GFFB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$BehavInt1_GFFB, PP$BehavInt2_GFFB, 
##     PP$BehavInt3_GFFB, PP$BehavInt4_GFFB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.95      0.95    0.94      0.84  21 0.0024   58 29     0.85
## 
##  lower alpha upper     95% confidence boundaries
## 0.95 0.95 0.96 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r
## PP.BehavInt1_GFFB      0.93      0.93    0.91      0.82  14   0.0038 2.7e-03
## PP.BehavInt2_GFFB      0.95      0.95    0.93      0.87  21   0.0025 4.3e-05
## PP.BehavInt3_GFFB      0.93      0.93    0.91      0.83  14   0.0036 1.8e-03
## PP.BehavInt4_GFFB      0.94      0.94    0.91      0.83  15   0.0034 1.3e-03
##                   med.r
## PP.BehavInt1_GFFB  0.80
## PP.BehavInt2_GFFB  0.87
## PP.BehavInt3_GFFB  0.83
## PP.BehavInt4_GFFB  0.83
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_GFFB 498  0.95  0.95  0.93   0.91   58 32
## PP.BehavInt2_GFFB 498  0.91  0.91  0.86   0.84   60 32
## PP.BehavInt3_GFFB 497  0.95  0.95  0.93   0.90   57 31
## PP.BehavInt4_GFFB 497  0.94  0.94  0.92   0.89   57 31
psych::alpha(data.frame(PP$BehavInt1_GFPRB, PP$BehavInt2_GFPRB, PP$BehavInt3_GFPRB, PP$BehavInt4_GFPRB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$BehavInt1_GFPRB, PP$BehavInt2_GFPRB, 
##     PP$BehavInt3_GFPRB, PP$BehavInt4_GFPRB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.95      0.95    0.94      0.83  20 0.0025   58 29     0.84
## 
##  lower alpha upper     95% confidence boundaries
## 0.95 0.95 0.96 
## 
##  Reliability if an item is dropped:
##                    raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r
## PP.BehavInt1_GFPRB      0.93      0.93    0.91      0.83  14   0.0038 0.00231
## PP.BehavInt2_GFPRB      0.95      0.95    0.93      0.86  19   0.0028 0.00032
## PP.BehavInt3_GFPRB      0.93      0.93    0.91      0.83  14   0.0036 0.00039
## PP.BehavInt4_GFPRB      0.93      0.93    0.91      0.83  14   0.0037 0.00124
##                    med.r
## PP.BehavInt1_GFPRB  0.81
## PP.BehavInt2_GFPRB  0.86
## PP.BehavInt3_GFPRB  0.83
## PP.BehavInt4_GFPRB  0.83
## 
##  Item statistics 
##                      n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_GFPRB 522  0.94  0.94  0.92   0.90   57 32
## PP.BehavInt2_GFPRB 521  0.92  0.91  0.87   0.85   54 34
## PP.BehavInt3_GFPRB 521  0.94  0.94  0.92   0.90   60 29
## PP.BehavInt4_GFPRB 521  0.94  0.94  0.92   0.89   59 30
psych::alpha(data.frame(PP$BehavInt1_CBB, PP$BehavInt2_CBB, PP$BehavInt3_CBB, PP$BehavInt4_CBB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$BehavInt1_CBB, PP$BehavInt2_CBB, 
##     PP$BehavInt3_CBB, PP$BehavInt4_CBB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.96      0.96    0.95      0.86  25 0.002   49 32     0.87
## 
##  lower alpha upper     95% confidence boundaries
## 0.96 0.96 0.97 
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r
## PP.BehavInt1_CBB      0.94      0.94    0.92      0.85  17   0.0031 0.00040
## PP.BehavInt2_CBB      0.95      0.95    0.93      0.87  21   0.0025 0.00017
## PP.BehavInt3_CBB      0.95      0.95    0.93      0.86  19   0.0028 0.00077
## PP.BehavInt4_CBB      0.95      0.95    0.93      0.87  21   0.0026 0.00066
##                  med.r
## PP.BehavInt1_CBB  0.84
## PP.BehavInt2_CBB  0.87
## PP.BehavInt3_CBB  0.86
## PP.BehavInt4_CBB  0.89
## 
##  Item statistics 
##                    n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_CBB 516  0.96  0.96  0.95   0.93   49 34
## PP.BehavInt2_CBB 515  0.94  0.94  0.91   0.89   47 35
## PP.BehavInt3_CBB 515  0.95  0.95  0.93   0.91   51 33
## PP.BehavInt4_CBB 516  0.94  0.94  0.91   0.89   50 32
psych::alpha(data.frame(PP$BehavInt1_PBPB, PP$BehavInt2_PBPB, PP$BehavInt3_PBPB, PP$BehavInt4_PBPB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$BehavInt1_PBPB, PP$BehavInt2_PBPB, 
##     PP$BehavInt3_PBPB, PP$BehavInt4_PBPB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.95      0.95    0.94      0.83  20 0.0025   58 29     0.84
## 
##  lower alpha upper     95% confidence boundaries
## 0.95 0.95 0.96 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r
## PP.BehavInt1_PBPB      0.93      0.93    0.91      0.83  14   0.0038 0.00231
## PP.BehavInt2_PBPB      0.95      0.95    0.93      0.86  19   0.0028 0.00032
## PP.BehavInt3_PBPB      0.93      0.93    0.91      0.83  14   0.0036 0.00039
## PP.BehavInt4_PBPB      0.93      0.93    0.91      0.83  14   0.0037 0.00124
##                   med.r
## PP.BehavInt1_PBPB  0.81
## PP.BehavInt2_PBPB  0.86
## PP.BehavInt3_PBPB  0.83
## PP.BehavInt4_PBPB  0.83
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_PBPB 522  0.94  0.94  0.92   0.90   57 32
## PP.BehavInt2_PBPB 521  0.92  0.91  0.87   0.85   54 34
## PP.BehavInt3_PBPB 521  0.94  0.94  0.92   0.90   60 29
## PP.BehavInt4_PBPB 521  0.94  0.94  0.92   0.89   59 30
psych::alpha(data.frame(PP$BehavInt1_PBFB, PP$BehavInt2_PBFB, PP$BehavInt3_PBFB, PP$BehavInt4_PBFB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$BehavInt1_PBFB, PP$BehavInt2_PBFB, 
##     PP$BehavInt3_PBFB, PP$BehavInt4_PBFB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.95      0.95    0.94      0.83  20 0.0026   53 31     0.82
## 
##  lower alpha upper     95% confidence boundaries
## 0.94 0.95 0.95 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r
## PP.BehavInt1_PBFB      0.93      0.94    0.91      0.83  14   0.0038 3.7e-03
## PP.BehavInt2_PBFB      0.95      0.95    0.93      0.86  18   0.0029 1.2e-03
## PP.BehavInt3_PBFB      0.93      0.93    0.90      0.82  13   0.0038 7.1e-05
## PP.BehavInt4_PBFB      0.93      0.93    0.90      0.82  13   0.0039 1.4e-03
##                   med.r
## PP.BehavInt1_PBFB  0.81
## PP.BehavInt2_PBFB  0.85
## PP.BehavInt3_PBFB  0.82
## PP.BehavInt4_PBFB  0.82
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_PBFB 479  0.94  0.94  0.91   0.88   53 34
## PP.BehavInt2_PBFB 478  0.92  0.91  0.86   0.84   48 36
## PP.BehavInt3_PBFB 478  0.94  0.94  0.93   0.90   56 32
## PP.BehavInt4_PBFB 479  0.94  0.94  0.93   0.90   54 32
psych::alpha(data.frame(PP$BehavInt1_VB, PP$BehavInt2_VB, PP$BehavInt3_VB, PP$BehavInt4_VB))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(PP$BehavInt1_VB, PP$BehavInt2_VB, 
##     PP$BehavInt3_VB, PP$BehavInt4_VB))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.93      0.93    0.92      0.77  13 0.0038   63 27     0.77
## 
##  lower alpha upper     95% confidence boundaries
## 0.92 0.93 0.93 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se   var.r
## PP.BehavInt1_VB      0.89      0.90    0.87      0.74  8.6   0.0062 0.00841
## PP.BehavInt2_VB      0.94      0.94    0.91      0.83 14.7   0.0035 0.00089
## PP.BehavInt3_VB      0.90      0.91    0.88      0.77  9.8   0.0053 0.00554
## PP.BehavInt4_VB      0.89      0.90    0.86      0.74  8.5   0.0059 0.00360
##                 med.r
## PP.BehavInt1_VB  0.70
## PP.BehavInt2_VB  0.85
## PP.BehavInt3_VB  0.75
## PP.BehavInt4_VB  0.75
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## PP.BehavInt1_VB 470  0.93  0.93  0.91   0.87   64 30
## PP.BehavInt2_VB 471  0.87  0.86  0.78   0.75   59 33
## PP.BehavInt3_VB 471  0.91  0.91  0.88   0.84   65 29
## PP.BehavInt4_VB 471  0.93  0.93  0.92   0.88   64 28

Understanding

# Understanding was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). 

### Item 1: I understand how this works.

Grain-fed Feedlot Burger (GFFB)

PP$Understanding_GFFB <- PP$GFFB_Risk_30
length(PP$Understanding_GFFB)
## [1] 1005
describe(PP$Understanding_GFFB)
## PP$Understanding_GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      497      508       94    0.994    69.54    29.72       16       29 
##      .25      .50      .75      .90      .95 
##       53       74       93      100      100 
## 
## lowest :   0   1   2   4   6, highest:  96  97  98  99 100
sd(PP$Understanding_GFFB, na.rm=TRUE)
## [1] 26.81107
range(PP$Understanding_GFFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Understanding_GFFB, main = 'GFFB - I understand how this works.')

Grain-fed Pasture Raised Burger (GFPRB)

PP$Understanding_GFPRB <- PP$GFPRB_Risk_30
length(PP$Understanding_GFPRB)
## [1] 1005
describe(PP$Understanding_GFPRB)
## PP$Understanding_GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      512      493       89    0.987    72.88    29.17     19.0     32.1 
##      .25      .50      .75      .90      .95 
##     56.0     79.0     98.0    100.0    100.0 
## 
## lowest :   0   1   2   5   8, highest:  96  97  98  99 100
sd(PP$Understanding_GFPRB, na.rm=TRUE)
## [1] 26.7755
range(PP$Understanding_GFPRB, na.rm=TRUE)
## [1]   0 100
hist(PP$Understanding_GFPRB, main = 'GFPRB - I understand how this works.')

Cultured Beef Burgers (CBB)

PP$Understanding_CBB <- PP$CBB_Risk_30
length(PP$Understanding_CBB)
## [1] 1005
describe(PP$Understanding_CBB)
## PP$Understanding_CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      515      490       99    0.998    57.91    35.57        0       10 
##      .25      .50      .75      .90      .95 
##       33       62       84      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(PP$Understanding_CBB, na.rm=TRUE)
## [1] 31.06378
range(PP$Understanding_CBB, na.rm=TRUE)
## [1]   0 100
hist(PP$Understanding_CBB, main = 'CBB - I understand how this works.')

Plant-based Protein Burger (PBPB)

PP$Understanding_PBPB <- PP$PBPB_Risk_30
length(PP$Understanding_PBPB)
## [1] 1005
describe(PP$Understanding_PBPB)
## PP$Understanding_PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481       90    0.997    63.28    31.66    10.00    24.00 
##      .25      .50      .75      .90      .95 
##    44.75    67.00    86.00   100.00   100.00 
## 
## lowest :   0   1   3   4   5, highest:  95  97  98  99 100
sd(PP$Understanding_PBPB, na.rm=TRUE)
## [1] 27.92296
range(PP$Understanding_PBPB, na.rm=TRUE)
## [1]   0 100
hist(PP$Understanding_PBPB, main = 'PBPB - I understand how this works.')

Plant-based Fermentation Burger (PBFB)

PP$Understanding_PBFB <- PP$PBFB_Risk_30
length(PP$Understanding_PBFB)
## [1] 1005
describe(PP$Understanding_PBFB)
## PP$Understanding_PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      480      525       97    0.998    57.91    35.23     0.00    10.00 
##      .25      .50      .75      .90      .95 
##    33.75    64.00    82.00   100.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(PP$Understanding_PBFB, na.rm=TRUE)
## [1] 30.87369
range(PP$Understanding_PBFB, na.rm=TRUE)
## [1]   0 100
hist(PP$Understanding_PBFB, main = 'PBFB - I understand how this works.')

#VB
PP$Understanding_VB <- PP$VB_Risk_30
length(PP$Understanding_VB)
## [1] 1005
describe(PP$Understanding_VB)
## PP$Understanding_VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      471      534       90    0.993    68.59    30.32       17       27 
##      .25      .50      .75      .90      .95 
##       52       75       90      100      100 
## 
## lowest :   0   1   3   5   8, highest:  96  97  98  99 100
sd(PP$Understanding_VB, na.rm=TRUE)
## [1] 27.18276
range(PP$Understanding_VB, na.rm=TRUE)
## [1]   0 100
hist(PP$Understanding_VB, main = 'VB - I understand how this works.')

write.csv(PP, "PP_Ag.csv")

Difference Benefit/Risk Scores

#Difference Score
PP$BRDiff.GFFB <- (PP$Ben_Score_GFFB - PP$Risk_Score_GFFB) 
PP$BRDiff.GFPRB <- (PP$Ben_Score_GFPRB - PP$Risk_Score_GFPRB) 
PP$BRDiff.CBB <- (PP$Ben_Score_CBB - PP$Risk_Score_CBB)
PP$BRDiff.PBPB <- (PP$Ben_Score_PBPB - PP$Risk_Score_PBPB)
PP$BRDiff.PBFB <- (PP$Ben_Score_PBFB - PP$Risk_Score_PBFB)
PP$BRDiff.VB <- (PP$Ben_Score_VB - PP$Risk_Score_VB)

#Descriptives
describe(PP$BRDiff.GFFB)
## PP$BRDiff.GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      497      508      408        1    7.513     45.2  -73.467  -41.500 
##      .25      .50      .75      .90      .95 
##   -9.167    3.417   26.667   66.017   91.367 
## 
## lowest : -100.00000  -99.33333  -94.50000  -94.08333  -92.25000
## highest:   97.50000   98.75000   99.50000   99.75000  100.00000
describe(PP$BRDiff.GFPRB)
## PP$BRDiff.GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      513      492      419        1    28.56    45.18 -25.0333 -11.9000 
##      .25      .50      .75      .90      .95 
##   0.1667  18.0833  62.0833  92.8000  99.8500 
## 
## lowest : -100.00000  -97.66667  -97.16667  -95.75000  -82.25000
## highest:   99.25000   99.33333   99.50000   99.75000  100.00000
describe(PP$BRDiff.CBB)
## PP$BRDiff.CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      514      491      430        1   -1.617    47.28 -81.7792 -68.8583 
##      .25      .50      .75      .90      .95 
## -19.6667  -0.3333  17.4167  56.9333  77.4042 
## 
## lowest : -100.00000  -99.33333  -99.00000  -97.00000  -96.00000
## highest:   97.75000   98.00000   99.50000   99.75000  100.00000
describe(PP$BRDiff.PBPB)
## PP$BRDiff.PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      520      485      434        1    19.09    47.23   -57.13   -25.43 
##      .25      .50      .75      .90      .95 
##    -4.25    10.21    47.23    80.68    95.00 
## 
## lowest : -100.00000  -99.75000  -98.00000  -95.00000  -92.33333
## highest:   99.00000   99.25000   99.50000   99.75000  100.00000
describe(PP$BRDiff.PBFB)
## PP$BRDiff.PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      479      526      382        1    9.299    53.27  -83.367  -48.867 
##      .25      .50      .75      .90      .95 
##  -12.083    4.333   42.875   76.467   91.467 
## 
## lowest : -100.00000  -99.66667  -99.33333  -98.66667  -98.33333
## highest:   98.75000   99.00000   99.16667   99.75000  100.00000
describe(PP$BRDiff.VB)
## PP$BRDiff.VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      470      535      385        1    31.52    44.86  -21.758   -8.508 
##      .25      .50      .75      .90      .95 
##    0.000   24.875   63.250   91.050   99.500 
## 
## lowest : -100.00000  -75.25000  -75.00000  -73.00000  -60.08333
## highest:   98.83333   99.25000   99.50000   99.66667  100.00000
#Histograms
hist(PP$BRDiff.GFFB)

hist(PP$BRDiff.GFPRB)

hist(PP$BRDiff.CBB)

hist(PP$BRDiff.PBPB)

hist(PP$BRDiff.PBFB)

hist(PP$BRDiff.VB)

#SD
sd(PP$BRDiff.GFFB, na.rm = TRUE)
## [1] 41.7335
sd(PP$BRDiff.GFPRB, na.rm = TRUE)
## [1] 40.47018
sd(PP$BRDiff.CBB, na.rm = TRUE)
## [1] 43.23648
sd(PP$BRDiff.PBPB, na.rm = TRUE)
## [1] 42.67171
sd(PP$BRDiff.PBFB, na.rm = TRUE)
## [1] 47.76765
sd(PP$BRDiff.VB, na.rm = TRUE)
## [1] 39.7248

Combo Fam/Risk Mean Scores

#Combo Mean Score
PP$FR.GFFB <- rowMeans(PP [, c("Familiarity_GFFB", "Understanding_GFFB")], na.rm=TRUE)
PP$FR.GFPRB <- rowMeans(PP [, c("Familiarity_GFPRB", "Understanding_GFPRB")], na.rm=TRUE)
PP$FR.CBB <- rowMeans(PP [, c("Familiarity_CBB", "Understanding_CBB")], na.rm=TRUE)
PP$FR.PBPB <- rowMeans(PP [, c("Familiarity_PBPB", "Understanding_PBPB")], na.rm=TRUE)
PP$FR.PBFB <- rowMeans(PP [, c("Familiarity_PBFB", "Understanding_PBFB")], na.rm=TRUE)
PP$FR.VB <- rowMeans(PP [, c("Familiarity_VB", "Understanding_VB")], na.rm=TRUE)

#Descriptives
describe(PP$FR.GFFB)
## PP$FR.GFFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      498      507      156    0.998    66.18    28.02    18.85    33.35 
##      .25      .50      .75      .90      .95 
##    50.00    67.25    86.50   100.00   100.00 
## 
## lowest :   0.0   1.5   7.0   8.0  10.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(PP$FR.GFPRB)
## PP$FR.GFPRB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      513      492      141    0.996    73.05    26.21     31.3     44.6 
##      .25      .50      .75      .90      .95 
##     54.0     77.5     93.5    100.0    100.0 
## 
## lowest :   0.0   4.5   9.0  13.0  14.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(PP$FR.CBB)
## PP$FR.CBB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      516      489      175        1    52.09    32.26    1.375   11.500 
##      .25      .50      .75      .90      .95 
##   33.875   51.750   73.125   93.500  100.000 
## 
## lowest :   0.0   0.5   1.0   1.5   2.5, highest:  98.0  98.5  99.0  99.5 100.0
describe(PP$FR.PBPB)
## PP$FR.PBPB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      524      481      160        1    58.87    27.62    17.65    25.50 
##      .25      .50      .75      .90      .95 
##    45.88    57.50    77.62    91.85   100.00 
## 
## lowest :   0.0   0.5   1.5   2.5   3.5, highest:  96.0  96.5  98.0  99.5 100.0
describe(PP$FR.PBFB)
## PP$FR.PBFB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      481      524      165        1    52.95    32.09      0.5     10.5 
##      .25      .50      .75      .90      .95 
##     33.5     53.0     76.0     90.0     95.5 
## 
## lowest :   0.0   0.5   1.0   1.5   3.0, highest:  95.0  95.5  96.5  99.0 100.0
describe(PP$FR.VB)
## PP$FR.VB 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      472      533      155    0.999    65.33    26.92    22.05    36.50 
##      .25      .50      .75      .90      .95 
##    50.00    66.50    84.12    99.00   100.00 
## 
## lowest :   0.0   1.0   2.5   6.0   7.5, highest:  98.0  98.5  99.0  99.5 100.0
#SD
sd(PP$FR.GFFB, na.rm = TRUE)
## [1] 24.79544
sd(PP$FR.GFPRB, na.rm = TRUE)
## [1] 23.67885
sd(PP$FR.CBB, na.rm = TRUE)
## [1] 28.1976
sd(PP$FR.PBPB, na.rm = TRUE)
## [1] 24.35105
sd(PP$FR.PBFB, na.rm = TRUE)
## [1] 28.00067
sd(PP$FR.VB, na.rm = TRUE)
## [1] 23.84396
#Histograms
hist(PP$FR.GFFB)

hist(PP$FR.GFPRB)

hist(PP$FR.CBB)

hist(PP$FR.PBPB)

hist(PP$FR.PBFB)

hist(PP$FR.VB)

#Scales
PP$FR_Scale_GFFB <- data.frame(PP$Familiarity_GFFB, PP$Understanding_GFFB)
PP$FR_Scale_GFPRB <- data.frame(PP$Familiarity_GFPRB, PP$Understanding_GFPRB)
PP$FR_Scale_CBB <- data.frame(PP$Familiarity_CBB, PP$Understanding_CBB)
PP$FR_Scale_PBPB <- data.frame(PP$Familiarity_PBPB, PP$Understanding_PBPB)
PP$FR_Scale_PBFB <- data.frame(PP$Familiarity_PBFB, PP$Understanding_PBFB)
PP$FR_Scale_VB <- data.frame(PP$Familiarity_VB, PP$Understanding_VB)

#Alphas
psych::alpha(PP$FR_Scale_GFFB)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$FR_Scale_GFFB)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.66      0.66     0.5       0.5   2 0.021   66 25      0.5
## 
##  lower alpha upper     95% confidence boundaries
## 0.62 0.66 0.7 
## 
##  Reliability if an item is dropped:
##                       raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r
## PP.Familiarity_GFFB        0.56       0.5    0.25       0.5 0.98       NA     0
## PP.Understanding_GFFB      0.44       0.5    0.25       0.5 0.98       NA     0
##                       med.r
## PP.Familiarity_GFFB     0.5
## PP.Understanding_GFFB   0.5
## 
##  Item statistics 
##                         n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_GFFB   493  0.88  0.86  0.61    0.5   63 30
## PP.Understanding_GFFB 497  0.85  0.86  0.61    0.5   70 27
psych::alpha(PP$FR_Scale_GFPRB)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$FR_Scale_GFPRB)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.76      0.76    0.62      0.62 3.2 0.015   73 24     0.62
## 
##  lower alpha upper     95% confidence boundaries
## 0.73 0.76 0.79 
## 
##  Reliability if an item is dropped:
##                        raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_GFPRB        0.59      0.62    0.38      0.62 1.6       NA     0
## PP.Understanding_GFPRB      0.64      0.62    0.38      0.62 1.6       NA     0
##                        med.r
## PP.Familiarity_GFPRB    0.62
## PP.Understanding_GFPRB  0.62
## 
##  Item statistics 
##                          n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_GFPRB   511   0.9   0.9  0.71   0.62   73 26
## PP.Understanding_GFPRB 512   0.9   0.9  0.71   0.62   73 27
psych::alpha(PP$FR_Scale_CBB)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$FR_Scale_CBB)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.69      0.69    0.53      0.53 2.2 0.019   52 28     0.53
## 
##  lower alpha upper     95% confidence boundaries
## 0.65 0.69 0.73 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_CBB        0.57      0.53    0.28      0.53 1.1       NA     0
## PP.Understanding_CBB      0.49      0.53    0.28      0.53 1.1       NA     0
##                      med.r
## PP.Familiarity_CBB    0.53
## PP.Understanding_CBB  0.53
## 
##  Item statistics 
##                        n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_CBB   515  0.88  0.87  0.64   0.53   46 34
## PP.Understanding_CBB 515  0.86  0.87  0.64   0.53   58 31
psych::alpha(PP$FR_Scale_PBPB)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$FR_Scale_PBPB)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.57      0.57     0.4       0.4 1.3 0.027   59 24      0.4
## 
##  lower alpha upper     95% confidence boundaries
## 0.52 0.57 0.62 
## 
##  Reliability if an item is dropped:
##                       raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r
## PP.Familiarity_PBPB        0.43       0.4    0.16       0.4 0.66       NA     0
## PP.Understanding_PBPB      0.37       0.4    0.16       0.4 0.66       NA     0
##                       med.r
## PP.Familiarity_PBPB     0.4
## PP.Understanding_PBPB   0.4
## 
##  Item statistics 
##                         n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_PBPB   524  0.85  0.84  0.53    0.4   54 30
## PP.Understanding_PBPB 524  0.82  0.84  0.53    0.4   63 28
psych::alpha(PP$FR_Scale_PBFB)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$FR_Scale_PBFB)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7       0.7    0.54      0.54 2.3 0.019   53 28     0.54
## 
##  lower alpha upper     95% confidence boundaries
## 0.66 0.7 0.74 
## 
##  Reliability if an item is dropped:
##                       raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_PBFB        0.58      0.54    0.29      0.54 1.2       NA     0
## PP.Understanding_PBFB      0.51      0.54    0.29      0.54 1.2       NA     0
##                       med.r
## PP.Familiarity_PBFB    0.54
## PP.Understanding_PBFB  0.54
## 
##  Item statistics 
##                         n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_PBFB   481  0.89  0.88  0.64   0.54   48 33
## PP.Understanding_PBFB 480  0.87  0.88  0.64   0.54   58 31
psych::alpha(PP$FR_Scale_VB)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = PP$FR_Scale_VB)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.6       0.6    0.43      0.43 1.5 0.025   65 24     0.43
## 
##  lower alpha upper     95% confidence boundaries
## 0.55 0.6 0.65 
## 
##  Reliability if an item is dropped:
##                     raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r
## PP.Familiarity_VB        0.46      0.43    0.18      0.43 0.75       NA     0
## PP.Understanding_VB      0.40      0.43    0.18      0.43 0.75       NA     0
##                     med.r
## PP.Familiarity_VB    0.43
## PP.Understanding_VB  0.43
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_VB   472  0.86  0.85  0.55   0.43   62 29
## PP.Understanding_VB 471  0.83  0.85  0.55   0.43   69 27

Correlations

Scale Correlations

#Individual Differences
PP$corID <- data.frame(PP$AW_Scale, PP$ATNS_Scale,PP$CCB_Scale, PP$CNS_Scale, PP$DS_Scale, PP$IndScale, PP$CollScale, PP$PI_Orientation, PP$PP_Party)

mydata.cor9 = cor(PP$corID, use = "pairwise.complete.obs")
head(round(mydata.cor9,2))
##            PP.AW_1 PP.AW_2 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3 PP.ATNS_4 PP.ATNS_5
## PP.AW_1       1.00    0.69      0.14       0.00      0.19      0.33      0.21
## PP.AW_2       0.69    1.00      0.18      -0.02      0.26      0.33      0.21
## PP.ATNS_1     0.14    0.18      1.00      -0.10      0.43      0.36      0.43
## PP.ATNS_2R    0.00   -0.02     -0.10       1.00      0.01      0.02      0.01
## PP.ATNS_3     0.19    0.26      0.43       0.01      1.00      0.52      0.52
## PP.ATNS_4     0.33    0.33      0.36       0.02      0.52      1.00      0.48
##            PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51 PP.CNS_1 PP.CNS_2 PP.CNS_3
## PP.AW_1         0.32      0.33      0.33      0.35     0.33     0.38     0.37
## PP.AW_2         0.38      0.38      0.39      0.41     0.38     0.42     0.42
## PP.ATNS_1       0.10      0.12      0.11      0.09     0.31     0.30     0.26
## PP.ATNS_2R      0.03      0.03      0.00     -0.03    -0.06    -0.01     0.01
## PP.ATNS_3       0.13      0.17      0.18      0.15     0.33     0.30     0.24
## PP.ATNS_4       0.28      0.26      0.31      0.24     0.35     0.37     0.35
##            PP.DS_1D PP.DS_2R PP.DS_3D PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.AW_1        0.11    -0.12     0.14     0.30     0.26     0.27     0.23
## PP.AW_2        0.12    -0.08     0.13     0.34     0.29     0.33     0.27
## PP.ATNS_1      0.11    -0.12     0.19     0.18     0.17     0.18     0.22
## PP.ATNS_2R    -0.05     0.21    -0.13     0.07     0.07     0.02     0.03
## PP.ATNS_3      0.16    -0.06     0.24     0.20     0.22     0.21     0.23
## PP.ATNS_4      0.17    -0.08     0.16     0.25     0.21     0.24     0.20
##            PP.Ind_3 PP.Ind_4 PP.Ind_7 PP.Ind_8 PP.PI_Orientation PP.PP_Party
## PP.AW_1        0.14     0.26     0.20     0.22              0.07        0.03
## PP.AW_2        0.13     0.20     0.17     0.22              0.15        0.08
## PP.ATNS_1      0.22     0.23     0.23     0.21             -0.08       -0.07
## PP.ATNS_2R    -0.13     0.00    -0.14    -0.03              0.00        0.03
## PP.ATNS_3      0.24     0.23     0.22     0.23             -0.01       -0.06
## PP.ATNS_4      0.15     0.21     0.20     0.18              0.07        0.00
library("Hmisc")
mydata.rcorr9 = rcorr(as.matrix(mydata.cor9))
mydata.rcorr9
##                   PP.AW_1 PP.AW_2 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3 PP.ATNS_4
## PP.AW_1              1.00    0.91      0.13      -0.26      0.18      0.42
## PP.AW_2              0.91    1.00      0.14      -0.29      0.19      0.42
## PP.ATNS_1            0.13    0.14      1.00      -0.40      0.70      0.57
## PP.ATNS_2R          -0.26   -0.29     -0.40       1.00     -0.28     -0.26
## PP.ATNS_3            0.18    0.19      0.70      -0.28      1.00      0.73
## PP.ATNS_4            0.42    0.42      0.57      -0.26      0.73      1.00
## PP.ATNS_5            0.20    0.18      0.69      -0.27      0.78      0.71
## PP.CCB_48            0.43    0.51     -0.13      -0.15     -0.10      0.20
## PP.CCB_49            0.44    0.53     -0.09      -0.15     -0.06      0.21
## PP.CCB_50            0.46    0.55     -0.08      -0.19     -0.03      0.27
## PP.CCB_51            0.50    0.59     -0.08      -0.23     -0.04      0.23
## PP.CNS_1             0.53    0.56      0.47      -0.37      0.45      0.53
## PP.CNS_2             0.58    0.61      0.42      -0.31      0.37      0.52
## PP.CNS_3             0.59    0.63      0.32      -0.28      0.27      0.47
## PP.DS_1D            -0.09   -0.13      0.05      -0.26      0.08      0.02
## PP.DS_2R            -0.50   -0.49     -0.44       0.41     -0.40     -0.48
## PP.DS_3D             0.02   -0.02      0.30      -0.46      0.31      0.13
## PP.Ind_1             0.39    0.41      0.16      -0.14      0.13      0.20
## PP.Ind_2             0.35    0.36      0.19      -0.12      0.18      0.20
## PP.Ind_5             0.37    0.40      0.19      -0.23      0.16      0.21
## PP.Ind_6             0.26    0.27      0.27      -0.22      0.21      0.16
## PP.Ind_3             0.04   -0.03      0.38      -0.46      0.31      0.11
## PP.Ind_4             0.23    0.13      0.35      -0.28      0.28      0.17
## PP.Ind_7             0.16    0.08      0.39      -0.50      0.31      0.19
## PP.Ind_8             0.21    0.15      0.32      -0.32      0.26      0.14
## PP.PI_Orientation    0.04    0.16     -0.41      -0.02     -0.34     -0.11
## PP.PP_Party         -0.14   -0.07     -0.41       0.05     -0.41     -0.27
##                   PP.ATNS_5 PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51 PP.CNS_1
## PP.AW_1                0.20      0.43      0.44      0.46      0.50     0.53
## PP.AW_2                0.18      0.51      0.53      0.55      0.59     0.56
## PP.ATNS_1              0.69     -0.13     -0.09     -0.08     -0.08     0.47
## PP.ATNS_2R            -0.27     -0.15     -0.15     -0.19     -0.23    -0.37
## PP.ATNS_3              0.78     -0.10     -0.06     -0.03     -0.04     0.45
## PP.ATNS_4              0.71      0.20      0.21      0.27      0.23     0.53
## PP.ATNS_5              1.00      0.02      0.06      0.07      0.07     0.44
## PP.CCB_48              0.02      1.00      0.97      0.96      0.91     0.30
## PP.CCB_49              0.06      0.97      1.00      0.94      0.93     0.33
## PP.CCB_50              0.07      0.96      0.94      1.00      0.91     0.37
## PP.CCB_51              0.07      0.91      0.93      0.91      1.00     0.38
## PP.CNS_1               0.44      0.30      0.33      0.37      0.38     1.00
## PP.CNS_2               0.40      0.40      0.44      0.43      0.46     0.83
## PP.CNS_3               0.32      0.49      0.52      0.54      0.55     0.80
## PP.DS_1D               0.03     -0.23     -0.27     -0.24     -0.22    -0.19
## PP.DS_2R              -0.42     -0.34     -0.37     -0.40     -0.39    -0.64
## PP.DS_3D               0.22     -0.23     -0.23     -0.22     -0.15     0.12
## PP.Ind_1               0.16      0.26      0.28      0.27      0.26     0.49
## PP.Ind_2               0.17      0.17      0.20      0.18      0.16     0.48
## PP.Ind_5               0.16      0.23      0.25      0.26      0.23     0.49
## PP.Ind_6               0.20      0.09      0.10      0.09      0.09     0.41
## PP.Ind_3               0.27     -0.32     -0.31     -0.27     -0.24     0.28
## PP.Ind_4               0.31     -0.08     -0.07     -0.06     -0.04     0.43
## PP.Ind_7               0.33     -0.16     -0.15     -0.12     -0.10     0.31
## PP.Ind_8               0.25     -0.05     -0.04     -0.02     -0.03     0.35
## PP.PI_Orientation     -0.33      0.53      0.52      0.51      0.48    -0.11
## PP.PP_Party           -0.38      0.20      0.18      0.17      0.12    -0.34
##                   PP.CNS_2 PP.CNS_3 PP.DS_1D PP.DS_2R PP.DS_3D PP.Ind_1
## PP.AW_1               0.58     0.59    -0.09    -0.50     0.02     0.39
## PP.AW_2               0.61     0.63    -0.13    -0.49    -0.02     0.41
## PP.ATNS_1             0.42     0.32     0.05    -0.44     0.30     0.16
## PP.ATNS_2R           -0.31    -0.28    -0.26     0.41    -0.46    -0.14
## PP.ATNS_3             0.37     0.27     0.08    -0.40     0.31     0.13
## PP.ATNS_4             0.52     0.47     0.02    -0.48     0.13     0.20
## PP.ATNS_5             0.40     0.32     0.03    -0.42     0.22     0.16
## PP.CCB_48             0.40     0.49    -0.23    -0.34    -0.23     0.26
## PP.CCB_49             0.44     0.52    -0.27    -0.37    -0.23     0.28
## PP.CCB_50             0.43     0.54    -0.24    -0.40    -0.22     0.27
## PP.CCB_51             0.46     0.55    -0.22    -0.39    -0.15     0.26
## PP.CNS_1              0.83     0.80    -0.19    -0.64     0.12     0.49
## PP.CNS_2              1.00     0.84    -0.19    -0.59     0.01     0.49
## PP.CNS_3              0.84     1.00    -0.20    -0.57     0.02     0.56
## PP.DS_1D             -0.19    -0.20     1.00     0.10     0.39    -0.06
## PP.DS_2R             -0.59    -0.57     0.10     1.00    -0.25    -0.36
## PP.DS_3D              0.01     0.02     0.39    -0.25     1.00    -0.03
## PP.Ind_1              0.49     0.56    -0.06    -0.36    -0.03     1.00
## PP.Ind_2              0.47     0.51    -0.10    -0.39     0.03     0.81
## PP.Ind_5              0.50     0.51    -0.07    -0.40     0.04     0.83
## PP.Ind_6              0.42     0.42     0.05    -0.32     0.13     0.70
## PP.Ind_3              0.18     0.12     0.23    -0.30     0.47     0.21
## PP.Ind_4              0.41     0.36     0.08    -0.26     0.21     0.55
## PP.Ind_7              0.29     0.21     0.18    -0.40     0.37     0.32
## PP.Ind_8              0.38     0.34     0.10    -0.32     0.24     0.53
## PP.PI_Orientation    -0.03     0.05    -0.23    -0.11    -0.37    -0.16
## PP.PP_Party          -0.32    -0.28    -0.27     0.02    -0.32    -0.32
##                   PP.Ind_2 PP.Ind_5 PP.Ind_6 PP.Ind_3 PP.Ind_4 PP.Ind_7
## PP.AW_1               0.35     0.37     0.26     0.04     0.23     0.16
## PP.AW_2               0.36     0.40     0.27    -0.03     0.13     0.08
## PP.ATNS_1             0.19     0.19     0.27     0.38     0.35     0.39
## PP.ATNS_2R           -0.12    -0.23    -0.22    -0.46    -0.28    -0.50
## PP.ATNS_3             0.18     0.16     0.21     0.31     0.28     0.31
## PP.ATNS_4             0.20     0.21     0.16     0.11     0.17     0.19
## PP.ATNS_5             0.17     0.16     0.20     0.27     0.31     0.33
## PP.CCB_48             0.17     0.23     0.09    -0.32    -0.08    -0.16
## PP.CCB_49             0.20     0.25     0.10    -0.31    -0.07    -0.15
## PP.CCB_50             0.18     0.26     0.09    -0.27    -0.06    -0.12
## PP.CCB_51             0.16     0.23     0.09    -0.24    -0.04    -0.10
## PP.CNS_1              0.48     0.49     0.41     0.28     0.43     0.31
## PP.CNS_2              0.47     0.50     0.42     0.18     0.41     0.29
## PP.CNS_3              0.51     0.51     0.42     0.12     0.36     0.21
## PP.DS_1D             -0.10    -0.07     0.05     0.23     0.08     0.18
## PP.DS_2R             -0.39    -0.40    -0.32    -0.30    -0.26    -0.40
## PP.DS_3D              0.03     0.04     0.13     0.47     0.21     0.37
## PP.Ind_1              0.81     0.83     0.70     0.21     0.55     0.32
## PP.Ind_2              1.00     0.78     0.66     0.16     0.45     0.28
## PP.Ind_5              0.78     1.00     0.66     0.23     0.49     0.34
## PP.Ind_6              0.66     0.66     1.00     0.38     0.60     0.46
## PP.Ind_3              0.16     0.23     0.38     1.00     0.68     0.84
## PP.Ind_4              0.45     0.49     0.60     0.68     1.00     0.63
## PP.Ind_7              0.28     0.34     0.46     0.84     0.63     1.00
## PP.Ind_8              0.47     0.53     0.62     0.62     0.81     0.62
## PP.PI_Orientation    -0.14    -0.12    -0.28    -0.56    -0.52    -0.47
## PP.PP_Party          -0.36    -0.30    -0.42    -0.48    -0.57    -0.44
##                   PP.Ind_8 PP.PI_Orientation PP.PP_Party
## PP.AW_1               0.21              0.04       -0.14
## PP.AW_2               0.15              0.16       -0.07
## PP.ATNS_1             0.32             -0.41       -0.41
## PP.ATNS_2R           -0.32             -0.02        0.05
## PP.ATNS_3             0.26             -0.34       -0.41
## PP.ATNS_4             0.14             -0.11       -0.27
## PP.ATNS_5             0.25             -0.33       -0.38
## PP.CCB_48            -0.05              0.53        0.20
## PP.CCB_49            -0.04              0.52        0.18
## PP.CCB_50            -0.02              0.51        0.17
## PP.CCB_51            -0.03              0.48        0.12
## PP.CNS_1              0.35             -0.11       -0.34
## PP.CNS_2              0.38             -0.03       -0.32
## PP.CNS_3              0.34              0.05       -0.28
## PP.DS_1D              0.10             -0.23       -0.27
## PP.DS_2R             -0.32             -0.11        0.02
## PP.DS_3D              0.24             -0.37       -0.32
## PP.Ind_1              0.53             -0.16       -0.32
## PP.Ind_2              0.47             -0.14       -0.36
## PP.Ind_5              0.53             -0.12       -0.30
## PP.Ind_6              0.62             -0.28       -0.42
## PP.Ind_3              0.62             -0.56       -0.48
## PP.Ind_4              0.81             -0.52       -0.57
## PP.Ind_7              0.62             -0.47       -0.44
## PP.Ind_8              1.00             -0.45       -0.49
## PP.PI_Orientation    -0.45              1.00        0.42
## PP.PP_Party          -0.49              0.42        1.00
## 
## n= 27 
## 
## 
## P
##                   PP.AW_1 PP.AW_2 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3 PP.ATNS_4
## PP.AW_1                   0.0000  0.5131    0.1849     0.3807    0.0284   
## PP.AW_2           0.0000          0.4969    0.1382     0.3392    0.0300   
## PP.ATNS_1         0.5131  0.4969            0.0381     0.0000    0.0020   
## PP.ATNS_2R        0.1849  0.1382  0.0381               0.1635    0.1928   
## PP.ATNS_3         0.3807  0.3392  0.0000    0.1635               0.0000   
## PP.ATNS_4         0.0284  0.0300  0.0020    0.1928     0.0000             
## PP.ATNS_5         0.3082  0.3646  0.0000    0.1769     0.0000    0.0000   
## PP.CCB_48         0.0267  0.0061  0.5160    0.4619     0.6069    0.3128   
## PP.CCB_49         0.0206  0.0046  0.6450    0.4409     0.7698    0.2843   
## PP.CCB_50         0.0159  0.0030  0.6814    0.3398     0.8772    0.1801   
## PP.CCB_51         0.0076  0.0013  0.6881    0.2482     0.8549    0.2551   
## PP.CNS_1          0.0042  0.0022  0.0125    0.0604     0.0183    0.0044   
## PP.CNS_2          0.0014  0.0007  0.0300    0.1162     0.0553    0.0050   
## PP.CNS_3          0.0013  0.0004  0.0983    0.1549     0.1694    0.0130   
## PP.DS_1D          0.6389  0.5143  0.7897    0.1867     0.6796    0.9138   
## PP.DS_2R          0.0084  0.0092  0.0203    0.0345     0.0413    0.0119   
## PP.DS_3D          0.9101  0.9098  0.1309    0.0156     0.1117    0.5103   
## PP.Ind_1          0.0437  0.0328  0.4128    0.4778     0.5090    0.3086   
## PP.Ind_2          0.0767  0.0639  0.3332    0.5541     0.3569    0.3209   
## PP.Ind_5          0.0606  0.0387  0.3480    0.2582     0.4179    0.2982   
## PP.Ind_6          0.1842  0.1763  0.1776    0.2602     0.2851    0.4354   
## PP.Ind_3          0.8304  0.8689  0.0528    0.0154     0.1115    0.5838   
## PP.Ind_4          0.2427  0.5037  0.0729    0.1524     0.1631    0.3917   
## PP.Ind_7          0.4324  0.7079  0.0440    0.0083     0.1179    0.3483   
## PP.Ind_8          0.2856  0.4434  0.1065    0.1016     0.1898    0.4813   
## PP.PI_Orientation 0.8438  0.4395  0.0347    0.9090     0.0810    0.5794   
## PP.PP_Party       0.5007  0.7390  0.0326    0.7909     0.0333    0.1690   
##                   PP.ATNS_5 PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51 PP.CNS_1
## PP.AW_1           0.3082    0.0267    0.0206    0.0159    0.0076    0.0042  
## PP.AW_2           0.3646    0.0061    0.0046    0.0030    0.0013    0.0022  
## PP.ATNS_1         0.0000    0.5160    0.6450    0.6814    0.6881    0.0125  
## PP.ATNS_2R        0.1769    0.4619    0.4409    0.3398    0.2482    0.0604  
## PP.ATNS_3         0.0000    0.6069    0.7698    0.8772    0.8549    0.0183  
## PP.ATNS_4         0.0000    0.3128    0.2843    0.1801    0.2551    0.0044  
## PP.ATNS_5                   0.9318    0.7807    0.7446    0.7166    0.0228  
## PP.CCB_48         0.9318              0.0000    0.0000    0.0000    0.1295  
## PP.CCB_49         0.7807    0.0000              0.0000    0.0000    0.0898  
## PP.CCB_50         0.7446    0.0000    0.0000              0.0000    0.0590  
## PP.CCB_51         0.7166    0.0000    0.0000    0.0000              0.0515  
## PP.CNS_1          0.0228    0.1295    0.0898    0.0590    0.0515            
## PP.CNS_2          0.0406    0.0381    0.0229    0.0237    0.0169    0.0000  
## PP.CNS_3          0.1006    0.0094    0.0051    0.0035    0.0031    0.0000  
## PP.DS_1D          0.8976    0.2530    0.1749    0.2344    0.2685    0.3497  
## PP.DS_2R          0.0280    0.0786    0.0586    0.0394    0.0423    0.0003  
## PP.DS_3D          0.2654    0.2397    0.2397    0.2687    0.4427    0.5641  
## PP.Ind_1          0.4221    0.1922    0.1586    0.1696    0.1925    0.0092  
## PP.Ind_2          0.4031    0.3901    0.3213    0.3618    0.4210    0.0107  
## PP.Ind_5          0.4147    0.2435    0.2152    0.1950    0.2509    0.0092  
## PP.Ind_6          0.3167    0.6701    0.6064    0.6384    0.6404    0.0348  
## PP.Ind_3          0.1682    0.0986    0.1097    0.1726    0.2312    0.1564  
## PP.Ind_4          0.1181    0.6857    0.7109    0.7772    0.8251    0.0244  
## PP.Ind_7          0.0887    0.4209    0.4462    0.5376    0.6156    0.1210  
## PP.Ind_8          0.2156    0.8023    0.8246    0.9121    0.8801    0.0728  
## PP.PI_Orientation 0.0963    0.0044    0.0058    0.0060    0.0113    0.5736  
## PP.PP_Party       0.0533    0.3110    0.3598    0.3860    0.5554    0.0862  
##                   PP.CNS_2 PP.CNS_3 PP.DS_1D PP.DS_2R PP.DS_3D PP.Ind_1
## PP.AW_1           0.0014   0.0013   0.6389   0.0084   0.9101   0.0437  
## PP.AW_2           0.0007   0.0004   0.5143   0.0092   0.9098   0.0328  
## PP.ATNS_1         0.0300   0.0983   0.7897   0.0203   0.1309   0.4128  
## PP.ATNS_2R        0.1162   0.1549   0.1867   0.0345   0.0156   0.4778  
## PP.ATNS_3         0.0553   0.1694   0.6796   0.0413   0.1117   0.5090  
## PP.ATNS_4         0.0050   0.0130   0.9138   0.0119   0.5103   0.3086  
## PP.ATNS_5         0.0406   0.1006   0.8976   0.0280   0.2654   0.4221  
## PP.CCB_48         0.0381   0.0094   0.2530   0.0786   0.2397   0.1922  
## PP.CCB_49         0.0229   0.0051   0.1749   0.0586   0.2397   0.1586  
## PP.CCB_50         0.0237   0.0035   0.2344   0.0394   0.2687   0.1696  
## PP.CCB_51         0.0169   0.0031   0.2685   0.0423   0.4427   0.1925  
## PP.CNS_1          0.0000   0.0000   0.3497   0.0003   0.5641   0.0092  
## PP.CNS_2                   0.0000   0.3359   0.0011   0.9684   0.0096  
## PP.CNS_3          0.0000            0.3206   0.0018   0.9232   0.0024  
## PP.DS_1D          0.3359   0.3206            0.6111   0.0452   0.7833  
## PP.DS_2R          0.0011   0.0018   0.6111            0.2126   0.0673  
## PP.DS_3D          0.9684   0.9232   0.0452   0.2126            0.8926  
## PP.Ind_1          0.0096   0.0024   0.7833   0.0673   0.8926           
## PP.Ind_2          0.0136   0.0070   0.6214   0.0455   0.8713   0.0000  
## PP.Ind_5          0.0076   0.0060   0.7164   0.0406   0.8499   0.0000  
## PP.Ind_6          0.0282   0.0303   0.7967   0.0982   0.5121   0.0000  
## PP.Ind_3          0.3618   0.5460   0.2552   0.1245   0.0133   0.2871  
## PP.Ind_4          0.0347   0.0652   0.7005   0.1933   0.2890   0.0032  
## PP.Ind_7          0.1443   0.2970   0.3760   0.0394   0.0584   0.1018  
## PP.Ind_8          0.0531   0.0848   0.6372   0.1005   0.2258   0.0046  
## PP.PI_Orientation 0.8902   0.8181   0.2410   0.5687   0.0546   0.4148  
## PP.PP_Party       0.0987   0.1520   0.1753   0.9202   0.1088   0.0990  
##                   PP.Ind_2 PP.Ind_5 PP.Ind_6 PP.Ind_3 PP.Ind_4 PP.Ind_7
## PP.AW_1           0.0767   0.0606   0.1842   0.8304   0.2427   0.4324  
## PP.AW_2           0.0639   0.0387   0.1763   0.8689   0.5037   0.7079  
## PP.ATNS_1         0.3332   0.3480   0.1776   0.0528   0.0729   0.0440  
## PP.ATNS_2R        0.5541   0.2582   0.2602   0.0154   0.1524   0.0083  
## PP.ATNS_3         0.3569   0.4179   0.2851   0.1115   0.1631   0.1179  
## PP.ATNS_4         0.3209   0.2982   0.4354   0.5838   0.3917   0.3483  
## PP.ATNS_5         0.4031   0.4147   0.3167   0.1682   0.1181   0.0887  
## PP.CCB_48         0.3901   0.2435   0.6701   0.0986   0.6857   0.4209  
## PP.CCB_49         0.3213   0.2152   0.6064   0.1097   0.7109   0.4462  
## PP.CCB_50         0.3618   0.1950   0.6384   0.1726   0.7772   0.5376  
## PP.CCB_51         0.4210   0.2509   0.6404   0.2312   0.8251   0.6156  
## PP.CNS_1          0.0107   0.0092   0.0348   0.1564   0.0244   0.1210  
## PP.CNS_2          0.0136   0.0076   0.0282   0.3618   0.0347   0.1443  
## PP.CNS_3          0.0070   0.0060   0.0303   0.5460   0.0652   0.2970  
## PP.DS_1D          0.6214   0.7164   0.7967   0.2552   0.7005   0.3760  
## PP.DS_2R          0.0455   0.0406   0.0982   0.1245   0.1933   0.0394  
## PP.DS_3D          0.8713   0.8499   0.5121   0.0133   0.2890   0.0584  
## PP.Ind_1          0.0000   0.0000   0.0000   0.2871   0.0032   0.1018  
## PP.Ind_2                   0.0000   0.0002   0.4251   0.0196   0.1552  
## PP.Ind_5          0.0000            0.0002   0.2383   0.0095   0.0817  
## PP.Ind_6          0.0002   0.0002            0.0537   0.0008   0.0162  
## PP.Ind_3          0.4251   0.2383   0.0537            0.0000   0.0000  
## PP.Ind_4          0.0196   0.0095   0.0008   0.0000            0.0004  
## PP.Ind_7          0.1552   0.0817   0.0162   0.0000   0.0004           
## PP.Ind_8          0.0144   0.0047   0.0006   0.0005   0.0000   0.0006  
## PP.PI_Orientation 0.4796   0.5375   0.1616   0.0023   0.0058   0.0128  
## PP.PP_Party       0.0681   0.1344   0.0287   0.0114   0.0019   0.0204  
##                   PP.Ind_8 PP.PI_Orientation PP.PP_Party
## PP.AW_1           0.2856   0.8438            0.5007     
## PP.AW_2           0.4434   0.4395            0.7390     
## PP.ATNS_1         0.1065   0.0347            0.0326     
## PP.ATNS_2R        0.1016   0.9090            0.7909     
## PP.ATNS_3         0.1898   0.0810            0.0333     
## PP.ATNS_4         0.4813   0.5794            0.1690     
## PP.ATNS_5         0.2156   0.0963            0.0533     
## PP.CCB_48         0.8023   0.0044            0.3110     
## PP.CCB_49         0.8246   0.0058            0.3598     
## PP.CCB_50         0.9121   0.0060            0.3860     
## PP.CCB_51         0.8801   0.0113            0.5554     
## PP.CNS_1          0.0728   0.5736            0.0862     
## PP.CNS_2          0.0531   0.8902            0.0987     
## PP.CNS_3          0.0848   0.8181            0.1520     
## PP.DS_1D          0.6372   0.2410            0.1753     
## PP.DS_2R          0.1005   0.5687            0.9202     
## PP.DS_3D          0.2258   0.0546            0.1088     
## PP.Ind_1          0.0046   0.4148            0.0990     
## PP.Ind_2          0.0144   0.4796            0.0681     
## PP.Ind_5          0.0047   0.5375            0.1344     
## PP.Ind_6          0.0006   0.1616            0.0287     
## PP.Ind_3          0.0005   0.0023            0.0114     
## PP.Ind_4          0.0000   0.0058            0.0019     
## PP.Ind_7          0.0006   0.0128            0.0204     
## PP.Ind_8                   0.0190            0.0092     
## PP.PI_Orientation 0.0190                     0.0302     
## PP.PP_Party       0.0092   0.0302
library(corrplot)
## corrplot 0.92 loaded
corrplot(mydata.cor9, method="color")

corrplot(mydata.cor9, addCoef.col = 1,  number.cex = 0.3, method = 'number')

#Environmental Measures
PP$corID <- data.frame(PP$AW_Score, PP$ATNS_Score, PP$CCBelief_Score, PP$CNS_Score, PP$Ideology)

mydata.corID = cor(PP$corID, use = "pairwise.complete.obs")
head(round(mydata.corID,2))
##                   PP.AW_Score PP.ATNS_Score PP.CCBelief_Score PP.CNS_Score
## PP.AW_Score              1.00          0.30              0.44         0.31
## PP.ATNS_Score            0.30          1.00              0.26         0.29
## PP.CCBelief_Score        0.44          0.26              1.00         0.38
## PP.CNS_Score             0.31          0.29              0.38         1.00
## PP.Ideology              0.00          0.03             -0.04         0.05
##                   PP.Ideology
## PP.AW_Score              0.00
## PP.ATNS_Score            0.03
## PP.CCBelief_Score       -0.04
## PP.CNS_Score             0.05
## PP.Ideology              1.00
library("Hmisc")
mydata.rcorrID = rcorr(as.matrix(mydata.corID))
mydata.rcorrID
##                   PP.AW_Score PP.ATNS_Score PP.CCBelief_Score PP.CNS_Score
## PP.AW_Score              1.00          0.06              0.44         0.07
## PP.ATNS_Score            0.06          1.00             -0.02         0.01
## PP.CCBelief_Score        0.44         -0.02              1.00         0.26
## PP.CNS_Score             0.07          0.01              0.26         1.00
## PP.Ideology             -0.65         -0.50             -0.71        -0.52
##                   PP.Ideology
## PP.AW_Score             -0.65
## PP.ATNS_Score           -0.50
## PP.CCBelief_Score       -0.71
## PP.CNS_Score            -0.52
## PP.Ideology              1.00
## 
## n= 5 
## 
## 
## P
##                   PP.AW_Score PP.ATNS_Score PP.CCBelief_Score PP.CNS_Score
## PP.AW_Score                   0.9214        0.4595            0.9075      
## PP.ATNS_Score     0.9214                    0.9780            0.9871      
## PP.CCBelief_Score 0.4595      0.9780                          0.6785      
## PP.CNS_Score      0.9075      0.9871        0.6785                        
## PP.Ideology       0.2382      0.3930        0.1820            0.3726      
##                   PP.Ideology
## PP.AW_Score       0.2382     
## PP.ATNS_Score     0.3930     
## PP.CCBelief_Score 0.1820     
## PP.CNS_Score      0.3726     
## PP.Ideology
library(corrplot)
corrplot(mydata.corID, method="color")

corrplot(mydata.corID, addCoef.col = 1,  number.cex = 0.3, method = 'number')

#Naturalness Scales (TOTAL SCALE)
PP$corNScales <- data.frame(PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot)

mydata.cor5 = cor(PP$corNScales, use = "pairwise.complete.obs")
head(round(mydata.cor5,2))
##                 PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB            1.00           0.18           0.18          -0.15
## PP.Nat_4R_GFFB           0.18           1.00           0.61           0.50
## PP.Nat_2R_GFFB           0.18           0.61           1.00           0.44
## PP.Nat_3R_GFFB          -0.15           0.50           0.44           1.00
## PP.Nat_1_GFPRB           0.42           0.15           0.07           0.01
## PP.Nat_4R_GFPRB          0.04           0.47           0.21           0.33
##                 PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB             0.42            0.04           -0.03           -0.04
## PP.Nat_4R_GFFB            0.15            0.47            0.49            0.38
## PP.Nat_2R_GFFB            0.07            0.21            0.29            0.17
## PP.Nat_3R_GFFB            0.01            0.33            0.34            0.49
## PP.Nat_1_GFPRB            1.00            0.38            0.25            0.14
## PP.Nat_4R_GFPRB           0.38            1.00            0.68            0.52
##                 PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB           0.35         -0.01          0.04          0.00
## PP.Nat_4R_GFFB         -0.36          0.20          0.14          0.05
## PP.Nat_2R_GFFB         -0.32          0.13          0.22          0.21
## PP.Nat_3R_GFFB         -0.41          0.08          0.07          0.01
## PP.Nat_1_GFPRB         -0.10         -0.05         -0.13         -0.13
## PP.Nat_4R_GFPRB        -0.34          0.11         -0.06         -0.06
##                 PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB            0.14          -0.21          -0.26          -0.17
## PP.Nat_4R_GFFB          -0.23           0.08           0.00          -0.04
## PP.Nat_2R_GFFB          -0.27           0.15           0.04           0.06
## PP.Nat_3R_GFFB          -0.36           0.09           0.14           0.10
## PP.Nat_1_GFPRB          -0.04           0.03           0.05          -0.33
## PP.Nat_4R_GFPRB         -0.23           0.20           0.11          -0.12
##                 PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB            0.17           0.24           0.28           0.29
## PP.Nat_4R_GFFB          -0.35          -0.07           0.03           0.05
## PP.Nat_2R_GFFB          -0.33           0.05          -0.11          -0.07
## PP.Nat_3R_GFFB          -0.37          -0.11          -0.11          -0.15
## PP.Nat_1_GFPRB          -0.06           0.23           0.20           0.28
## PP.Nat_4R_GFPRB         -0.35          -0.01          -0.04           0.05
##                 PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB          0.09        -0.21        -0.22        -0.24
## PP.Nat_4R_GFFB        -0.13         0.25         0.13         0.05
## PP.Nat_2R_GFFB        -0.09         0.15         0.12         0.12
## PP.Nat_3R_GFFB        -0.04         0.27         0.22         0.20
## PP.Nat_1_GFPRB         0.09         0.02         0.07         0.06
## PP.Nat_4R_GFPRB       -0.11         0.32         0.39         0.25
library("Hmisc")
mydata.rcorr5 = rcorr(as.matrix(mydata.cor5))
mydata.rcorr5
##                 PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB            1.00          -0.08          -0.10          -0.45
## PP.Nat_4R_GFFB          -0.08           1.00           0.86           0.81
## PP.Nat_2R_GFFB          -0.10           0.86           1.00           0.76
## PP.Nat_3R_GFFB          -0.45           0.81           0.76           1.00
## PP.Nat_1_GFPRB           0.50           0.24           0.08           0.02
## PP.Nat_4R_GFPRB         -0.24           0.76           0.54           0.70
## PP.Nat_2R_GFPRB         -0.21           0.79           0.58           0.72
## PP.Nat_3R_GFPRB         -0.30           0.74           0.55           0.81
## PP.Nat_1_CBB             0.47          -0.71          -0.64          -0.81
## PP.Nat_4R_CBB           -0.21           0.08           0.15           0.03
## PP.Nat_2R_CBB           -0.17           0.03           0.21           0.03
## PP.Nat_3R_CBB           -0.18           0.01           0.21           0.02
## PP.Nat_1_PBPB            0.14          -0.70          -0.69          -0.72
## PP.Nat_4R_PBPB          -0.65           0.01           0.08           0.17
## PP.Nat_2R_PBPB          -0.69          -0.05           0.07           0.20
## PP.Nat_3R_PBPB          -0.63          -0.05           0.14           0.23
## PP.Nat_1_PBFB            0.21          -0.78          -0.72          -0.77
## PP.Nat_4R_PBFB           0.51           0.03           0.01          -0.14
## PP.Nat_2R_PBFB           0.61          -0.06          -0.22          -0.29
## PP.Nat_3R_PBFB           0.63          -0.03          -0.20          -0.32
## PP.Nat_1_VB              0.03          -0.50          -0.49          -0.39
## PP.Nat_4R_VB            -0.68           0.30           0.24           0.50
## PP.Nat_2R_VB            -0.68           0.33           0.28           0.55
## PP.Nat_3R_VB            -0.66           0.27           0.29           0.54
##                 PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB             0.50           -0.24           -0.21           -0.30
## PP.Nat_4R_GFFB            0.24            0.76            0.79            0.74
## PP.Nat_2R_GFFB            0.08            0.54            0.58            0.55
## PP.Nat_3R_GFFB            0.02            0.70            0.72            0.81
## PP.Nat_1_GFPRB            1.00            0.47            0.42            0.25
## PP.Nat_4R_GFPRB           0.47            1.00            0.94            0.85
## PP.Nat_2R_GFPRB           0.42            0.94            1.00            0.86
## PP.Nat_3R_GFPRB           0.25            0.85            0.86            1.00
## PP.Nat_1_CBB             -0.23           -0.77           -0.78           -0.81
## PP.Nat_4R_CBB            -0.41           -0.10           -0.18           -0.16
## PP.Nat_2R_CBB            -0.49           -0.23           -0.27           -0.20
## PP.Nat_3R_CBB            -0.48           -0.22           -0.26           -0.14
## PP.Nat_1_PBPB            -0.24           -0.66           -0.72           -0.74
## PP.Nat_4R_PBPB           -0.32            0.12           -0.04           -0.05
## PP.Nat_2R_PBPB           -0.37            0.05           -0.09           -0.03
## PP.Nat_3R_PBPB           -0.62           -0.09           -0.18            0.02
## PP.Nat_1_PBFB            -0.28           -0.76           -0.81           -0.78
## PP.Nat_4R_PBFB            0.52            0.04            0.16            0.07
## PP.Nat_2R_PBFB            0.50           -0.07            0.05           -0.06
## PP.Nat_3R_PBFB            0.57           -0.02            0.07           -0.09
## PP.Nat_1_VB              -0.04           -0.38           -0.43           -0.47
## PP.Nat_4R_VB             -0.13            0.48            0.38            0.40
## PP.Nat_2R_VB             -0.03            0.60            0.53            0.54
## PP.Nat_3R_VB             -0.09            0.50            0.47            0.51
##                 PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB           0.47         -0.21         -0.17         -0.18
## PP.Nat_4R_GFFB         -0.71          0.08          0.03          0.01
## PP.Nat_2R_GFFB         -0.64          0.15          0.21          0.21
## PP.Nat_3R_GFFB         -0.81          0.03          0.03          0.02
## PP.Nat_1_GFPRB         -0.23         -0.41         -0.49         -0.48
## PP.Nat_4R_GFPRB        -0.77         -0.10         -0.23         -0.22
## PP.Nat_2R_GFPRB        -0.78         -0.18         -0.27         -0.26
## PP.Nat_3R_GFPRB        -0.81         -0.16         -0.20         -0.14
## PP.Nat_1_CBB            1.00          0.29          0.28          0.22
## PP.Nat_4R_CBB           0.29          1.00          0.89          0.81
## PP.Nat_2R_CBB           0.28          0.89          1.00          0.92
## PP.Nat_3R_CBB           0.22          0.81          0.92          1.00
## PP.Nat_1_PBPB           0.71          0.08          0.03         -0.02
## PP.Nat_4R_PBPB         -0.18          0.30          0.21          0.14
## PP.Nat_2R_PBPB         -0.19          0.39          0.45          0.41
## PP.Nat_3R_PBPB         -0.17          0.30          0.41          0.41
## PP.Nat_1_PBFB           0.83          0.19          0.16          0.14
## PP.Nat_4R_PBFB         -0.13         -0.58         -0.50         -0.44
## PP.Nat_2R_PBFB          0.08         -0.64         -0.65         -0.63
## PP.Nat_3R_PBFB          0.09         -0.49         -0.56         -0.53
## PP.Nat_1_VB             0.34         -0.24         -0.31         -0.34
## PP.Nat_4R_VB           -0.54          0.03         -0.11         -0.13
## PP.Nat_2R_VB           -0.68         -0.04         -0.12         -0.13
## PP.Nat_3R_VB           -0.61         -0.08         -0.12         -0.13
##                 PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB            0.14          -0.65          -0.69          -0.63
## PP.Nat_4R_GFFB          -0.70           0.01          -0.05          -0.05
## PP.Nat_2R_GFFB          -0.69           0.08           0.07           0.14
## PP.Nat_3R_GFFB          -0.72           0.17           0.20           0.23
## PP.Nat_1_GFPRB          -0.24          -0.32          -0.37          -0.62
## PP.Nat_4R_GFPRB         -0.66           0.12           0.05          -0.09
## PP.Nat_2R_GFPRB         -0.72          -0.04          -0.09          -0.18
## PP.Nat_3R_GFPRB         -0.74          -0.05          -0.03           0.02
## PP.Nat_1_CBB             0.71          -0.18          -0.19          -0.17
## PP.Nat_4R_CBB            0.08           0.30           0.39           0.30
## PP.Nat_2R_CBB            0.03           0.21           0.45           0.41
## PP.Nat_3R_CBB           -0.02           0.14           0.41           0.41
## PP.Nat_1_PBPB            1.00           0.25           0.14          -0.02
## PP.Nat_4R_PBPB           0.25           1.00           0.79           0.66
## PP.Nat_2R_PBPB           0.14           0.79           1.00           0.77
## PP.Nat_3R_PBPB          -0.02           0.66           0.77           1.00
## PP.Nat_1_PBFB            0.91           0.06           0.05          -0.04
## PP.Nat_4R_PBFB          -0.38          -0.67          -0.63          -0.58
## PP.Nat_2R_PBFB          -0.04          -0.63          -0.80          -0.76
## PP.Nat_3R_PBFB          -0.01          -0.59          -0.74          -0.86
## PP.Nat_1_VB              0.74           0.21           0.03          -0.12
## PP.Nat_4R_VB            -0.04           0.70           0.56           0.46
## PP.Nat_2R_VB            -0.29           0.48           0.49           0.40
## PP.Nat_3R_VB            -0.39           0.44           0.43           0.56
##                 PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB            0.21           0.51           0.61           0.63
## PP.Nat_4R_GFFB          -0.78           0.03          -0.06          -0.03
## PP.Nat_2R_GFFB          -0.72           0.01          -0.22          -0.20
## PP.Nat_3R_GFFB          -0.77          -0.14          -0.29          -0.32
## PP.Nat_1_GFPRB          -0.28           0.52           0.50           0.57
## PP.Nat_4R_GFPRB         -0.76           0.04          -0.07          -0.02
## PP.Nat_2R_GFPRB         -0.81           0.16           0.05           0.07
## PP.Nat_3R_GFPRB         -0.78           0.07          -0.06          -0.09
## PP.Nat_1_CBB             0.83          -0.13           0.08           0.09
## PP.Nat_4R_CBB            0.19          -0.58          -0.64          -0.49
## PP.Nat_2R_CBB            0.16          -0.50          -0.65          -0.56
## PP.Nat_3R_CBB            0.14          -0.44          -0.63          -0.53
## PP.Nat_1_PBPB            0.91          -0.38          -0.04          -0.01
## PP.Nat_4R_PBPB           0.06          -0.67          -0.63          -0.59
## PP.Nat_2R_PBPB           0.05          -0.63          -0.80          -0.74
## PP.Nat_3R_PBPB          -0.04          -0.58          -0.76          -0.86
## PP.Nat_1_PBFB            1.00          -0.36          -0.09          -0.04
## PP.Nat_4R_PBFB          -0.36           1.00           0.81           0.77
## PP.Nat_2R_PBFB          -0.09           0.81           1.00           0.89
## PP.Nat_3R_PBFB          -0.04           0.77           0.89           1.00
## PP.Nat_1_VB              0.67          -0.31           0.02           0.02
## PP.Nat_4R_VB            -0.20          -0.58          -0.57          -0.52
## PP.Nat_2R_VB            -0.35          -0.39          -0.51          -0.48
## PP.Nat_3R_VB            -0.41          -0.36          -0.50          -0.59
##                 PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB          0.03        -0.68        -0.68        -0.66
## PP.Nat_4R_GFFB        -0.50         0.30         0.33         0.27
## PP.Nat_2R_GFFB        -0.49         0.24         0.28         0.29
## PP.Nat_3R_GFFB        -0.39         0.50         0.55         0.54
## PP.Nat_1_GFPRB        -0.04        -0.13        -0.03        -0.09
## PP.Nat_4R_GFPRB       -0.38         0.48         0.60         0.50
## PP.Nat_2R_GFPRB       -0.43         0.38         0.53         0.47
## PP.Nat_3R_GFPRB       -0.47         0.40         0.54         0.51
## PP.Nat_1_CBB           0.34        -0.54        -0.68        -0.61
## PP.Nat_4R_CBB         -0.24         0.03        -0.04        -0.08
## PP.Nat_2R_CBB         -0.31        -0.11        -0.12        -0.12
## PP.Nat_3R_CBB         -0.34        -0.13        -0.13        -0.13
## PP.Nat_1_PBPB          0.74        -0.04        -0.29        -0.39
## PP.Nat_4R_PBPB         0.21         0.70         0.48         0.44
## PP.Nat_2R_PBPB         0.03         0.56         0.49         0.43
## PP.Nat_3R_PBPB        -0.12         0.46         0.40         0.56
## PP.Nat_1_PBFB          0.67        -0.20        -0.35        -0.41
## PP.Nat_4R_PBFB        -0.31        -0.58        -0.39        -0.36
## PP.Nat_2R_PBFB         0.02        -0.57        -0.51        -0.50
## PP.Nat_3R_PBFB         0.02        -0.52        -0.48        -0.59
## PP.Nat_1_VB            1.00         0.27         0.11        -0.02
## PP.Nat_4R_VB           0.27         1.00         0.88         0.74
## PP.Nat_2R_VB           0.11         0.88         1.00         0.83
## PP.Nat_3R_VB          -0.02         0.74         0.83         1.00
## 
## n= 24 
## 
## 
## P
##                 PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB                 0.7143         0.6268         0.0272        
## PP.Nat_4R_GFFB  0.7143                       0.0000         0.0000        
## PP.Nat_2R_GFFB  0.6268        0.0000                        0.0000        
## PP.Nat_3R_GFFB  0.0272        0.0000         0.0000                       
## PP.Nat_1_GFPRB  0.0123        0.2510         0.7250         0.9127        
## PP.Nat_4R_GFPRB 0.2573        0.0000         0.0064         0.0001        
## PP.Nat_2R_GFPRB 0.3209        0.0000         0.0029         0.0000        
## PP.Nat_3R_GFPRB 0.1555        0.0000         0.0056         0.0000        
## PP.Nat_1_CBB    0.0212        0.0001         0.0008         0.0000        
## PP.Nat_4R_CBB   0.3174        0.7213         0.4809         0.8717        
## PP.Nat_2R_CBB   0.4345        0.8920         0.3142         0.8936        
## PP.Nat_3R_CBB   0.4118        0.9786         0.3193         0.9251        
## PP.Nat_1_PBPB   0.5045        0.0002         0.0002         0.0000        
## PP.Nat_4R_PBPB  0.0006        0.9735         0.7138         0.4183        
## PP.Nat_2R_PBPB  0.0002        0.8025         0.7423         0.3375        
## PP.Nat_3R_PBPB  0.0009        0.8024         0.5044         0.2765        
## PP.Nat_1_PBFB   0.3200        0.0000         0.0000         0.0000        
## PP.Nat_4R_PBFB  0.0104        0.9044         0.9695         0.5111        
## PP.Nat_2R_PBFB  0.0015        0.7727         0.3059         0.1745        
## PP.Nat_3R_PBFB  0.0010        0.8836         0.3478         0.1321        
## PP.Nat_1_VB     0.9003        0.0131         0.0140         0.0564        
## PP.Nat_4R_VB    0.0003        0.1478         0.2496         0.0129        
## PP.Nat_2R_VB    0.0003        0.1127         0.1771         0.0051        
## PP.Nat_3R_VB    0.0004        0.2013         0.1629         0.0064        
##                 PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB   0.0123         0.2573          0.3209          0.1555         
## PP.Nat_4R_GFFB  0.2510         0.0000          0.0000          0.0000         
## PP.Nat_2R_GFFB  0.7250         0.0064          0.0029          0.0056         
## PP.Nat_3R_GFFB  0.9127         0.0001          0.0000          0.0000         
## PP.Nat_1_GFPRB                 0.0220          0.0400          0.2314         
## PP.Nat_4R_GFPRB 0.0220                         0.0000          0.0000         
## PP.Nat_2R_GFPRB 0.0400         0.0000                          0.0000         
## PP.Nat_3R_GFPRB 0.2314         0.0000          0.0000                         
## PP.Nat_1_CBB    0.2716         0.0000          0.0000          0.0000         
## PP.Nat_4R_CBB   0.0464         0.6545          0.3930          0.4410         
## PP.Nat_2R_CBB   0.0156         0.2854          0.1986          0.3388         
## PP.Nat_3R_CBB   0.0180         0.3051          0.2256          0.5111         
## PP.Nat_1_PBPB   0.2618         0.0005          0.0000          0.0000         
## PP.Nat_4R_PBPB  0.1301         0.5838          0.8461          0.8048         
## PP.Nat_2R_PBPB  0.0781         0.8204          0.6922          0.8861         
## PP.Nat_3R_PBPB  0.0011         0.6804          0.3948          0.9416         
## PP.Nat_1_PBFB   0.1809         0.0000          0.0000          0.0000         
## PP.Nat_4R_PBFB  0.0092         0.8393          0.4665          0.7390         
## PP.Nat_2R_PBFB  0.0120         0.7449          0.8058          0.7634         
## PP.Nat_3R_PBFB  0.0033         0.9304          0.7524          0.6762         
## PP.Nat_1_VB     0.8623         0.0670          0.0359          0.0201         
## PP.Nat_4R_VB    0.5410         0.0179          0.0686          0.0557         
## PP.Nat_2R_VB    0.9038         0.0018          0.0074          0.0069         
## PP.Nat_3R_VB    0.6801         0.0121          0.0220          0.0106         
##                 PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB   0.0212       0.3174        0.4345        0.4118       
## PP.Nat_4R_GFFB  0.0001       0.7213        0.8920        0.9786       
## PP.Nat_2R_GFFB  0.0008       0.4809        0.3142        0.3193       
## PP.Nat_3R_GFFB  0.0000       0.8717        0.8936        0.9251       
## PP.Nat_1_GFPRB  0.2716       0.0464        0.0156        0.0180       
## PP.Nat_4R_GFPRB 0.0000       0.6545        0.2854        0.3051       
## PP.Nat_2R_GFPRB 0.0000       0.3930        0.1986        0.2256       
## PP.Nat_3R_GFPRB 0.0000       0.4410        0.3388        0.5111       
## PP.Nat_1_CBB                 0.1712        0.1817        0.2925       
## PP.Nat_4R_CBB   0.1712                     0.0000        0.0000       
## PP.Nat_2R_CBB   0.1817       0.0000                      0.0000       
## PP.Nat_3R_CBB   0.2925       0.0000        0.0000                     
## PP.Nat_1_PBPB   0.0000       0.7181        0.9029        0.9195       
## PP.Nat_4R_PBPB  0.3959       0.1535        0.3356        0.5218       
## PP.Nat_2R_PBPB  0.3627       0.0599        0.0281        0.0445       
## PP.Nat_3R_PBPB  0.4294       0.1611        0.0465        0.0493       
## PP.Nat_1_PBFB   0.0000       0.3778        0.4682        0.5058       
## PP.Nat_4R_PBFB  0.5297       0.0029        0.0135        0.0297       
## PP.Nat_2R_PBFB  0.7010       0.0008        0.0006        0.0010       
## PP.Nat_3R_PBFB  0.6696       0.0147        0.0044        0.0075       
## PP.Nat_1_VB     0.1041       0.2611        0.1418        0.1023       
## PP.Nat_4R_VB    0.0059       0.8914        0.6126        0.5513       
## PP.Nat_2R_VB    0.0003       0.8406        0.5631        0.5376       
## PP.Nat_3R_VB    0.0014       0.7138        0.5793        0.5443       
##                 PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB   0.5045        0.0006         0.0002         0.0009        
## PP.Nat_4R_GFFB  0.0002        0.9735         0.8025         0.8024        
## PP.Nat_2R_GFFB  0.0002        0.7138         0.7423         0.5044        
## PP.Nat_3R_GFFB  0.0000        0.4183         0.3375         0.2765        
## PP.Nat_1_GFPRB  0.2618        0.1301         0.0781         0.0011        
## PP.Nat_4R_GFPRB 0.0005        0.5838         0.8204         0.6804        
## PP.Nat_2R_GFPRB 0.0000        0.8461         0.6922         0.3948        
## PP.Nat_3R_GFPRB 0.0000        0.8048         0.8861         0.9416        
## PP.Nat_1_CBB    0.0000        0.3959         0.3627         0.4294        
## PP.Nat_4R_CBB   0.7181        0.1535         0.0599         0.1611        
## PP.Nat_2R_CBB   0.9029        0.3356         0.0281         0.0465        
## PP.Nat_3R_CBB   0.9195        0.5218         0.0445         0.0493        
## PP.Nat_1_PBPB                 0.2340         0.5054         0.9323        
## PP.Nat_4R_PBPB  0.2340                       0.0000         0.0004        
## PP.Nat_2R_PBPB  0.5054        0.0000                        0.0000        
## PP.Nat_3R_PBPB  0.9323        0.0004         0.0000                       
## PP.Nat_1_PBFB   0.0000        0.7858         0.8112         0.8419        
## PP.Nat_4R_PBFB  0.0705        0.0003         0.0010         0.0033        
## PP.Nat_2R_PBFB  0.8426        0.0009         0.0000         0.0000        
## PP.Nat_3R_PBFB  0.9692        0.0024         0.0000         0.0000        
## PP.Nat_1_VB     0.0000        0.3339         0.8868         0.5869        
## PP.Nat_4R_VB    0.8526        0.0001         0.0046         0.0248        
## PP.Nat_2R_VB    0.1736        0.0164         0.0143         0.0554        
## PP.Nat_3R_VB    0.0603        0.0319         0.0380         0.0045        
##                 PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB   0.3200        0.0104         0.0015         0.0010        
## PP.Nat_4R_GFFB  0.0000        0.9044         0.7727         0.8836        
## PP.Nat_2R_GFFB  0.0000        0.9695         0.3059         0.3478        
## PP.Nat_3R_GFFB  0.0000        0.5111         0.1745         0.1321        
## PP.Nat_1_GFPRB  0.1809        0.0092         0.0120         0.0033        
## PP.Nat_4R_GFPRB 0.0000        0.8393         0.7449         0.9304        
## PP.Nat_2R_GFPRB 0.0000        0.4665         0.8058         0.7524        
## PP.Nat_3R_GFPRB 0.0000        0.7390         0.7634         0.6762        
## PP.Nat_1_CBB    0.0000        0.5297         0.7010         0.6696        
## PP.Nat_4R_CBB   0.3778        0.0029         0.0008         0.0147        
## PP.Nat_2R_CBB   0.4682        0.0135         0.0006         0.0044        
## PP.Nat_3R_CBB   0.5058        0.0297         0.0010         0.0075        
## PP.Nat_1_PBPB   0.0000        0.0705         0.8426         0.9692        
## PP.Nat_4R_PBPB  0.7858        0.0003         0.0009         0.0024        
## PP.Nat_2R_PBPB  0.8112        0.0010         0.0000         0.0000        
## PP.Nat_3R_PBPB  0.8419        0.0033         0.0000         0.0000        
## PP.Nat_1_PBFB                 0.0878         0.6673         0.8615        
## PP.Nat_4R_PBFB  0.0878                       0.0000         0.0000        
## PP.Nat_2R_PBFB  0.6673        0.0000                        0.0000        
## PP.Nat_3R_PBFB  0.8615        0.0000         0.0000                       
## PP.Nat_1_VB     0.0004        0.1462         0.9201         0.9170        
## PP.Nat_4R_VB    0.3540        0.0027         0.0035         0.0092        
## PP.Nat_2R_VB    0.0897        0.0594         0.0113         0.0184        
## PP.Nat_3R_VB    0.0438        0.0848         0.0136         0.0023        
##                 PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB   0.9003      0.0003       0.0003       0.0004      
## PP.Nat_4R_GFFB  0.0131      0.1478       0.1127       0.2013      
## PP.Nat_2R_GFFB  0.0140      0.2496       0.1771       0.1629      
## PP.Nat_3R_GFFB  0.0564      0.0129       0.0051       0.0064      
## PP.Nat_1_GFPRB  0.8623      0.5410       0.9038       0.6801      
## PP.Nat_4R_GFPRB 0.0670      0.0179       0.0018       0.0121      
## PP.Nat_2R_GFPRB 0.0359      0.0686       0.0074       0.0220      
## PP.Nat_3R_GFPRB 0.0201      0.0557       0.0069       0.0106      
## PP.Nat_1_CBB    0.1041      0.0059       0.0003       0.0014      
## PP.Nat_4R_CBB   0.2611      0.8914       0.8406       0.7138      
## PP.Nat_2R_CBB   0.1418      0.6126       0.5631       0.5793      
## PP.Nat_3R_CBB   0.1023      0.5513       0.5376       0.5443      
## PP.Nat_1_PBPB   0.0000      0.8526       0.1736       0.0603      
## PP.Nat_4R_PBPB  0.3339      0.0001       0.0164       0.0319      
## PP.Nat_2R_PBPB  0.8868      0.0046       0.0143       0.0380      
## PP.Nat_3R_PBPB  0.5869      0.0248       0.0554       0.0045      
## PP.Nat_1_PBFB   0.0004      0.3540       0.0897       0.0438      
## PP.Nat_4R_PBFB  0.1462      0.0027       0.0594       0.0848      
## PP.Nat_2R_PBFB  0.9201      0.0035       0.0113       0.0136      
## PP.Nat_3R_PBFB  0.9170      0.0092       0.0184       0.0023      
## PP.Nat_1_VB                 0.1949       0.6137       0.9263      
## PP.Nat_4R_VB    0.1949                   0.0000       0.0000      
## PP.Nat_2R_VB    0.6137      0.0000                    0.0000      
## PP.Nat_3R_VB    0.9263      0.0000       0.0000
library(corrplot)
corrplot(mydata.cor5, method="color")

corrplot(mydata.cor5, addCoef.col = 1,  number.cex = 0.3, method = 'number')

#Naturalness (TOTAL SCALE) and Support Scales
PP$corNSScales <- data.frame(PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot, PP$Behav_Scale_GFFB, PP$Behav_Scale_GFPRB, PP$Behav_Scale_CBB, PP$Behav_Scale_PBPB, PP$Behav_Scale_PBFB, PP$Behav_Scale_VB) 

mydata.cor4 = cor(PP$corNSScales, use = "pairwise.complete.obs")
head(round(mydata.cor4,2))
##                 PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB            1.00           0.18           0.18          -0.15
## PP.Nat_4R_GFFB           0.18           1.00           0.61           0.50
## PP.Nat_2R_GFFB           0.18           0.61           1.00           0.44
## PP.Nat_3R_GFFB          -0.15           0.50           0.44           1.00
## PP.Nat_1_GFPRB           0.42           0.15           0.07           0.01
## PP.Nat_4R_GFPRB          0.04           0.47           0.21           0.33
##                 PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB             0.42            0.04           -0.03           -0.04
## PP.Nat_4R_GFFB            0.15            0.47            0.49            0.38
## PP.Nat_2R_GFFB            0.07            0.21            0.29            0.17
## PP.Nat_3R_GFFB            0.01            0.33            0.34            0.49
## PP.Nat_1_GFPRB            1.00            0.38            0.25            0.14
## PP.Nat_4R_GFPRB           0.38            1.00            0.68            0.52
##                 PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB           0.35         -0.01          0.04          0.00
## PP.Nat_4R_GFFB         -0.36          0.20          0.14          0.05
## PP.Nat_2R_GFFB         -0.32          0.13          0.22          0.21
## PP.Nat_3R_GFFB         -0.41          0.08          0.07          0.01
## PP.Nat_1_GFPRB         -0.10         -0.05         -0.13         -0.13
## PP.Nat_4R_GFPRB        -0.34          0.11         -0.06         -0.06
##                 PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB            0.14          -0.21          -0.26          -0.17
## PP.Nat_4R_GFFB          -0.23           0.08           0.00          -0.04
## PP.Nat_2R_GFFB          -0.27           0.15           0.04           0.06
## PP.Nat_3R_GFFB          -0.36           0.09           0.14           0.10
## PP.Nat_1_GFPRB          -0.04           0.03           0.05          -0.33
## PP.Nat_4R_GFPRB         -0.23           0.20           0.11          -0.12
##                 PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB            0.17           0.24           0.28           0.29
## PP.Nat_4R_GFFB          -0.35          -0.07           0.03           0.05
## PP.Nat_2R_GFFB          -0.33           0.05          -0.11          -0.07
## PP.Nat_3R_GFFB          -0.37          -0.11          -0.11          -0.15
## PP.Nat_1_GFPRB          -0.06           0.23           0.20           0.28
## PP.Nat_4R_GFPRB         -0.35          -0.01          -0.04           0.05
##                 PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB          0.09        -0.21        -0.22        -0.24
## PP.Nat_4R_GFFB        -0.13         0.25         0.13         0.05
## PP.Nat_2R_GFFB        -0.09         0.15         0.12         0.12
## PP.Nat_3R_GFFB        -0.04         0.27         0.22         0.20
## PP.Nat_1_GFPRB         0.09         0.02         0.07         0.06
## PP.Nat_4R_GFPRB       -0.11         0.32         0.39         0.25
##                 PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Nat_1_GFFB                0.59              0.52              0.58
## PP.Nat_4R_GFFB               0.13              0.18              0.10
## PP.Nat_2R_GFFB               0.16              0.16              0.12
## PP.Nat_3R_GFFB              -0.19             -0.09             -0.21
## PP.Nat_1_GFPRB               0.27              0.31              0.24
## PP.Nat_4R_GFPRB             -0.04              0.05             -0.03
##                 PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Nat_1_GFFB                0.59               0.08               0.03
## PP.Nat_4R_GFFB               0.15              -0.19              -0.24
## PP.Nat_2R_GFFB               0.14              -0.29              -0.31
## PP.Nat_3R_GFFB              -0.17              -0.20              -0.23
## PP.Nat_1_GFPRB               0.26               0.15               0.04
## PP.Nat_4R_GFPRB             -0.05              -0.04              -0.13
##                 PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Nat_1_GFFB                 0.02               0.02             0.26
## PP.Nat_4R_GFFB               -0.22              -0.29            -0.26
## PP.Nat_2R_GFFB               -0.34              -0.33            -0.27
## PP.Nat_3R_GFFB               -0.22              -0.22            -0.29
## PP.Nat_1_GFPRB                0.08               0.07            -0.02
## PP.Nat_4R_GFPRB              -0.10              -0.05            -0.27
##                 PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Nat_1_GFFB               0.35             0.29             0.31
## PP.Nat_4R_GFFB             -0.29            -0.29            -0.26
## PP.Nat_2R_GFFB             -0.25            -0.28            -0.28
## PP.Nat_3R_GFFB             -0.29            -0.32            -0.33
## PP.Nat_1_GFPRB             -0.03            -0.06            -0.03
## PP.Nat_4R_GFPRB            -0.34            -0.33            -0.30
##                 PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Nat_1_GFFB                0.08              0.03              0.02
## PP.Nat_4R_GFFB              -0.19             -0.24             -0.22
## PP.Nat_2R_GFFB              -0.29             -0.31             -0.34
## PP.Nat_3R_GFFB              -0.20             -0.23             -0.22
## PP.Nat_1_GFPRB               0.15              0.04              0.08
## PP.Nat_4R_GFPRB             -0.04             -0.13             -0.10
##                 PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Nat_1_GFFB                0.02              0.03              0.16
## PP.Nat_4R_GFFB              -0.29             -0.38             -0.38
## PP.Nat_2R_GFFB              -0.33             -0.37             -0.29
## PP.Nat_3R_GFFB              -0.22             -0.34             -0.39
## PP.Nat_1_GFPRB               0.07             -0.10             -0.04
## PP.Nat_4R_GFPRB             -0.05             -0.27             -0.28
##                 PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Nat_1_GFFB                0.08              0.12            0.05
## PP.Nat_4R_GFFB              -0.37             -0.35           -0.14
## PP.Nat_2R_GFFB              -0.36             -0.31           -0.17
## PP.Nat_3R_GFFB              -0.38             -0.41           -0.11
## PP.Nat_1_GFPRB              -0.01              0.05            0.10
## PP.Nat_4R_GFPRB             -0.22             -0.20           -0.08
##                 PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Nat_1_GFFB              0.04            0.05            0.05
## PP.Nat_4R_GFFB            -0.17           -0.17           -0.15
## PP.Nat_2R_GFFB            -0.12           -0.18           -0.18
## PP.Nat_3R_GFFB            -0.09           -0.10           -0.09
## PP.Nat_1_GFPRB             0.03            0.17            0.13
## PP.Nat_4R_GFPRB           -0.21           -0.03           -0.12
library("Hmisc")
mydata.rcorr4 = rcorr(as.matrix(mydata.cor4))
mydata.rcorr4
##                    PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB               1.00           0.00           0.02          -0.39
## PP.Nat_4R_GFFB              0.00           1.00           0.92           0.85
## PP.Nat_2R_GFFB              0.02           0.92           1.00           0.81
## PP.Nat_3R_GFFB             -0.39           0.85           0.81           1.00
## PP.Nat_1_GFPRB              0.46           0.34           0.22           0.12
## PP.Nat_4R_GFPRB            -0.25           0.82           0.67           0.80
## PP.Nat_2R_GFPRB            -0.20           0.83           0.68           0.78
## PP.Nat_3R_GFPRB            -0.29           0.81           0.69           0.87
## PP.Nat_1_CBB                0.48          -0.74          -0.69          -0.86
## PP.Nat_4R_CBB              -0.26           0.04           0.07           0.07
## PP.Nat_2R_CBB              -0.11           0.12           0.24           0.10
## PP.Nat_3R_CBB              -0.14           0.17           0.31           0.16
## PP.Nat_1_PBPB               0.00          -0.82          -0.83          -0.76
## PP.Nat_4R_PBPB             -0.72          -0.02          -0.01           0.22
## PP.Nat_2R_PBPB             -0.79          -0.03           0.01           0.27
## PP.Nat_3R_PBPB             -0.59           0.19           0.32           0.42
## PP.Nat_1_PBFB               0.12          -0.88          -0.85          -0.84
## PP.Nat_4R_PBFB              0.55           0.26           0.27           0.03
## PP.Nat_2R_PBFB              0.61          -0.02          -0.11          -0.26
## PP.Nat_3R_PBFB              0.57          -0.07          -0.18          -0.32
## PP.Nat_1_VB                -0.12          -0.63          -0.66          -0.50
## PP.Nat_4R_VB               -0.73           0.26           0.19           0.50
## PP.Nat_2R_VB               -0.71           0.39           0.33           0.62
## PP.Nat_3R_VB               -0.67           0.39           0.39           0.64
## PP.BehavInt1_GFFB           0.92          -0.03           0.00          -0.41
## PP.BehavInt2_GFFB           0.89           0.05           0.06          -0.32
## PP.BehavInt3_GFFB           0.91          -0.08          -0.04          -0.45
## PP.BehavInt4_GFFB           0.91           0.00           0.03          -0.38
## PP.BehavInt1_GFPRB         -0.12          -0.76          -0.84          -0.65
## PP.BehavInt2_GFPRB         -0.12          -0.81          -0.86          -0.69
## PP.BehavInt3_GFPRB         -0.10          -0.79          -0.86          -0.68
## PP.BehavInt4_GFPRB         -0.11          -0.79          -0.86          -0.67
## PP.BehavInt1_CBB            0.37          -0.77          -0.75          -0.83
## PP.BehavInt2_CBB            0.43          -0.75          -0.72          -0.84
## PP.BehavInt3_CBB            0.39          -0.77          -0.74          -0.84
## PP.BehavInt4_CBB            0.40          -0.75          -0.74          -0.84
## PP.BehavInt1_PBPB          -0.12          -0.76          -0.84          -0.65
## PP.BehavInt2_PBPB          -0.12          -0.81          -0.86          -0.69
## PP.BehavInt3_PBPB          -0.10          -0.79          -0.86          -0.68
## PP.BehavInt4_PBPB          -0.11          -0.79          -0.86          -0.67
## PP.BehavInt1_PBFB          -0.01          -0.87          -0.88          -0.79
## PP.BehavInt2_PBFB           0.06          -0.88          -0.86          -0.82
## PP.BehavInt3_PBFB           0.04          -0.87          -0.88          -0.80
## PP.BehavInt4_PBFB           0.05          -0.87          -0.87          -0.81
## PP.BehavInt1_VB            -0.14          -0.67          -0.72          -0.54
## PP.BehavInt2_VB            -0.17          -0.71          -0.72          -0.56
## PP.BehavInt3_VB            -0.15          -0.66          -0.73          -0.52
## PP.BehavInt4_VB            -0.15          -0.68          -0.73          -0.53
##                    PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB                0.46           -0.25           -0.20
## PP.Nat_4R_GFFB               0.34            0.82            0.83
## PP.Nat_2R_GFFB               0.22            0.67            0.68
## PP.Nat_3R_GFFB               0.12            0.80            0.78
## PP.Nat_1_GFPRB               1.00            0.48            0.44
## PP.Nat_4R_GFPRB              0.48            1.00            0.95
## PP.Nat_2R_GFPRB              0.44            0.95            1.00
## PP.Nat_3R_GFPRB              0.31            0.90            0.90
## PP.Nat_1_CBB                -0.26           -0.82           -0.78
## PP.Nat_4R_CBB               -0.45           -0.05           -0.08
## PP.Nat_2R_CBB               -0.46           -0.09           -0.10
## PP.Nat_3R_CBB               -0.43           -0.03           -0.04
## PP.Nat_1_PBPB               -0.28           -0.71           -0.75
## PP.Nat_4R_PBPB              -0.29            0.16            0.03
## PP.Nat_2R_PBPB              -0.35            0.15            0.05
## PP.Nat_3R_PBPB              -0.48            0.16            0.07
## PP.Nat_1_PBFB               -0.33           -0.82           -0.83
## PP.Nat_4R_PBFB               0.55            0.16            0.24
## PP.Nat_2R_PBFB               0.51           -0.08            0.02
## PP.Nat_3R_PBFB               0.56           -0.07           -0.01
## PP.Nat_1_VB                 -0.09           -0.46           -0.52
## PP.Nat_4R_VB                -0.07            0.50            0.39
## PP.Nat_2R_VB                 0.02            0.65            0.57
## PP.Nat_3R_VB                -0.03            0.60            0.54
## PP.BehavInt1_GFFB            0.37           -0.28           -0.22
## PP.BehavInt2_GFFB            0.45           -0.17           -0.11
## PP.BehavInt3_GFFB            0.34           -0.31           -0.26
## PP.BehavInt4_GFFB            0.37           -0.25           -0.20
## PP.BehavInt1_GFPRB          -0.17           -0.54           -0.56
## PP.BehavInt2_GFPRB          -0.25           -0.62           -0.63
## PP.BehavInt3_GFPRB          -0.19           -0.59           -0.61
## PP.BehavInt4_GFPRB          -0.17           -0.57           -0.59
## PP.BehavInt1_CBB            -0.24           -0.79           -0.73
## PP.BehavInt2_CBB            -0.23           -0.81           -0.76
## PP.BehavInt3_CBB            -0.24           -0.80           -0.74
## PP.BehavInt4_CBB            -0.23           -0.79           -0.74
## PP.BehavInt1_PBPB           -0.17           -0.54           -0.56
## PP.BehavInt2_PBPB           -0.25           -0.62           -0.63
## PP.BehavInt3_PBPB           -0.19           -0.59           -0.61
## PP.BehavInt4_PBPB           -0.17           -0.57           -0.59
## PP.BehavInt1_PBFB           -0.29           -0.73           -0.74
## PP.BehavInt2_PBFB           -0.29           -0.77           -0.78
## PP.BehavInt3_PBFB           -0.24           -0.72           -0.75
## PP.BehavInt4_PBFB           -0.24           -0.73           -0.76
## PP.BehavInt1_VB             -0.08           -0.47           -0.53
## PP.BehavInt2_VB             -0.18           -0.55           -0.62
## PP.BehavInt3_VB             -0.05           -0.44           -0.50
## PP.BehavInt4_VB             -0.08           -0.48           -0.53
##                    PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB                -0.29         0.48         -0.26         -0.11
## PP.Nat_4R_GFFB                0.81        -0.74          0.04          0.12
## PP.Nat_2R_GFFB                0.69        -0.69          0.07          0.24
## PP.Nat_3R_GFFB                0.87        -0.86          0.07          0.10
## PP.Nat_1_GFPRB                0.31        -0.26         -0.45         -0.46
## PP.Nat_4R_GFPRB               0.90        -0.82         -0.05         -0.09
## PP.Nat_2R_GFPRB               0.90        -0.78         -0.08         -0.10
## PP.Nat_3R_GFPRB               1.00        -0.85         -0.09         -0.06
## PP.Nat_1_CBB                 -0.85         1.00          0.19          0.16
## PP.Nat_4R_CBB                -0.09         0.19          1.00          0.87
## PP.Nat_2R_CBB                -0.06         0.16          0.87          1.00
## PP.Nat_3R_CBB                 0.05         0.04          0.79          0.92
## PP.Nat_1_PBPB                -0.77         0.69         -0.01         -0.17
## PP.Nat_4R_PBPB                0.06        -0.28          0.27          0.10
## PP.Nat_2R_PBPB                0.12        -0.32          0.40          0.34
## PP.Nat_3R_PBPB                0.26        -0.39          0.28          0.39
## PP.Nat_1_PBFB                -0.84         0.82          0.10         -0.03
## PP.Nat_4R_PBFB                0.19        -0.16         -0.53         -0.35
## PP.Nat_2R_PBFB               -0.08         0.13         -0.63         -0.60
## PP.Nat_3R_PBFB               -0.13         0.15         -0.52         -0.56
## PP.Nat_1_VB                  -0.52         0.37         -0.27         -0.44
## PP.Nat_4R_VB                  0.45        -0.61          0.01         -0.16
## PP.Nat_2R_VB                  0.61        -0.75         -0.01         -0.10
## PP.Nat_3R_VB                  0.61        -0.73         -0.02         -0.05
## PP.BehavInt1_GFFB            -0.31         0.49         -0.36         -0.18
## PP.BehavInt2_GFFB            -0.23         0.39         -0.40         -0.23
## PP.BehavInt3_GFFB            -0.35         0.53         -0.35         -0.17
## PP.BehavInt4_GFFB            -0.27         0.47         -0.36         -0.17
## PP.BehavInt1_GFPRB           -0.62         0.55         -0.04         -0.27
## PP.BehavInt2_GFPRB           -0.67         0.60         -0.01         -0.22
## PP.BehavInt3_GFPRB           -0.65         0.58         -0.04         -0.26
## PP.BehavInt4_GFPRB           -0.63         0.56         -0.09         -0.32
## PP.BehavInt1_CBB             -0.83         0.93          0.17          0.08
## PP.BehavInt2_CBB             -0.85         0.96          0.17          0.11
## PP.BehavInt3_CBB             -0.85         0.94          0.16          0.09
## PP.BehavInt4_CBB             -0.84         0.94          0.18          0.09
## PP.BehavInt1_PBPB            -0.62         0.55         -0.04         -0.27
## PP.BehavInt2_PBPB            -0.67         0.60         -0.01         -0.22
## PP.BehavInt3_PBPB            -0.65         0.58         -0.04         -0.26
## PP.BehavInt4_PBPB            -0.63         0.56         -0.09         -0.32
## PP.BehavInt1_PBFB            -0.77         0.70          0.01         -0.16
## PP.BehavInt2_PBFB            -0.82         0.75          0.04         -0.11
## PP.BehavInt3_PBFB            -0.78         0.70         -0.02         -0.18
## PP.BehavInt4_PBFB            -0.80         0.72          0.00         -0.15
## PP.BehavInt1_VB              -0.54         0.37         -0.25         -0.46
## PP.BehavInt2_VB              -0.60         0.40         -0.21         -0.39
## PP.BehavInt3_VB              -0.50         0.34         -0.28         -0.50
## PP.BehavInt4_VB              -0.53         0.36         -0.26         -0.46
##                    PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB              -0.14          0.00          -0.72          -0.79
## PP.Nat_4R_GFFB              0.17         -0.82          -0.02          -0.03
## PP.Nat_2R_GFFB              0.31         -0.83          -0.01           0.01
## PP.Nat_3R_GFFB              0.16         -0.76           0.22           0.27
## PP.Nat_1_GFPRB             -0.43         -0.28          -0.29          -0.35
## PP.Nat_4R_GFPRB            -0.03         -0.71           0.16           0.15
## PP.Nat_2R_GFPRB            -0.04         -0.75           0.03           0.05
## PP.Nat_3R_GFPRB             0.05         -0.77           0.06           0.12
## PP.Nat_1_CBB                0.04          0.69          -0.28          -0.32
## PP.Nat_4R_CBB               0.79         -0.01           0.27           0.40
## PP.Nat_2R_CBB               0.92         -0.17           0.10           0.34
## PP.Nat_3R_CBB               1.00         -0.25           0.07           0.34
## PP.Nat_1_PBPB              -0.25          1.00           0.24           0.12
## PP.Nat_4R_PBPB              0.07          0.24           1.00           0.83
## PP.Nat_2R_PBPB              0.34          0.12           0.83           1.00
## PP.Nat_3R_PBPB              0.43         -0.23           0.62           0.72
## PP.Nat_1_PBFB              -0.10          0.93           0.03          -0.02
## PP.Nat_4R_PBFB             -0.29         -0.48          -0.66          -0.62
## PP.Nat_2R_PBFB             -0.58         -0.04          -0.62          -0.77
## PP.Nat_3R_PBFB             -0.54          0.07          -0.54          -0.68
## PP.Nat_1_VB                -0.48          0.84           0.28           0.10
## PP.Nat_4R_VB               -0.12         -0.02           0.75           0.65
## PP.Nat_2R_VB               -0.05         -0.30           0.56           0.58
## PP.Nat_3R_VB               -0.01         -0.43           0.49           0.51
## PP.BehavInt1_GFFB          -0.21          0.02          -0.70          -0.82
## PP.BehavInt2_GFFB          -0.26         -0.06          -0.68          -0.83
## PP.BehavInt3_GFFB          -0.20          0.06          -0.68          -0.80
## PP.BehavInt4_GFFB          -0.19          0.00          -0.68          -0.80
## PP.BehavInt1_GFPRB         -0.36          0.92           0.27           0.15
## PP.BehavInt2_GFPRB         -0.30          0.93           0.25           0.14
## PP.BehavInt3_GFPRB         -0.33          0.93           0.23           0.12
## PP.BehavInt4_GFPRB         -0.39          0.92           0.22           0.10
## PP.BehavInt1_CBB           -0.06          0.74          -0.24          -0.28
## PP.BehavInt2_CBB           -0.03          0.72          -0.26          -0.30
## PP.BehavInt3_CBB           -0.04          0.73          -0.24          -0.28
## PP.BehavInt4_CBB           -0.04          0.74          -0.23          -0.28
## PP.BehavInt1_PBPB          -0.36          0.92           0.27           0.15
## PP.BehavInt2_PBPB          -0.30          0.93           0.25           0.14
## PP.BehavInt3_PBPB          -0.33          0.93           0.23           0.12
## PP.BehavInt4_PBPB          -0.39          0.92           0.22           0.10
## PP.BehavInt1_PBFB          -0.25          0.92           0.10           0.02
## PP.BehavInt2_PBFB          -0.19          0.93           0.08           0.00
## PP.BehavInt3_PBFB          -0.27          0.92           0.06          -0.02
## PP.BehavInt4_PBFB          -0.24          0.93           0.07           0.00
## PP.BehavInt1_VB            -0.49          0.86           0.28           0.10
## PP.BehavInt2_VB            -0.43          0.88           0.35           0.19
## PP.BehavInt3_VB            -0.53          0.85           0.28           0.11
## PP.BehavInt4_VB            -0.50          0.86           0.29           0.13
##                    PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB               -0.59          0.12           0.55           0.61
## PP.Nat_4R_GFFB               0.19         -0.88           0.26          -0.02
## PP.Nat_2R_GFFB               0.32         -0.85           0.27          -0.11
## PP.Nat_3R_GFFB               0.42         -0.84           0.03          -0.26
## PP.Nat_1_GFPRB              -0.48         -0.33           0.55           0.51
## PP.Nat_4R_GFPRB              0.16         -0.82           0.16          -0.08
## PP.Nat_2R_GFPRB              0.07         -0.83           0.24           0.02
## PP.Nat_3R_GFPRB              0.26         -0.84           0.19          -0.08
## PP.Nat_1_CBB                -0.39          0.82          -0.16           0.13
## PP.Nat_4R_CBB                0.28          0.10          -0.53          -0.63
## PP.Nat_2R_CBB                0.39         -0.03          -0.35          -0.60
## PP.Nat_3R_CBB                0.43         -0.10          -0.29          -0.58
## PP.Nat_1_PBPB               -0.23          0.93          -0.48          -0.04
## PP.Nat_4R_PBPB               0.62          0.03          -0.66          -0.62
## PP.Nat_2R_PBPB               0.72         -0.02          -0.62          -0.77
## PP.Nat_3R_PBPB               1.00         -0.29          -0.41          -0.71
## PP.Nat_1_PBFB               -0.29          1.00          -0.44          -0.06
## PP.Nat_4R_PBFB              -0.41         -0.44           1.00           0.78
## PP.Nat_2R_PBFB              -0.71         -0.06           0.78           1.00
## PP.Nat_3R_PBFB              -0.81          0.05           0.69           0.88
## PP.Nat_1_VB                 -0.23          0.73          -0.43           0.01
## PP.Nat_4R_VB                 0.50         -0.22          -0.52          -0.53
## PP.Nat_2R_VB                 0.50         -0.42          -0.32          -0.49
## PP.Nat_3R_VB                 0.64         -0.50          -0.27          -0.49
## PP.BehavInt1_GFFB           -0.56          0.14           0.53           0.59
## PP.BehavInt2_GFFB           -0.57          0.06           0.57           0.62
## PP.BehavInt3_GFFB           -0.54          0.18           0.52           0.58
## PP.BehavInt4_GFFB           -0.52          0.11           0.53           0.57
## PP.BehavInt1_GFPRB          -0.29          0.86          -0.49          -0.06
## PP.BehavInt2_GFPRB          -0.27          0.88          -0.48          -0.05
## PP.BehavInt3_GFPRB          -0.32          0.87          -0.46          -0.02
## PP.BehavInt4_GFPRB          -0.33          0.86          -0.43           0.00
## PP.BehavInt1_CBB            -0.49          0.88          -0.22           0.12
## PP.BehavInt2_CBB            -0.47          0.86          -0.19           0.13
## PP.BehavInt3_CBB            -0.48          0.87          -0.20           0.12
## PP.BehavInt4_CBB            -0.47          0.86          -0.21           0.12
## PP.BehavInt1_PBPB           -0.29          0.86          -0.49          -0.06
## PP.BehavInt2_PBPB           -0.27          0.88          -0.48          -0.05
## PP.BehavInt3_PBPB           -0.32          0.87          -0.46          -0.02
## PP.BehavInt4_PBPB           -0.33          0.86          -0.43           0.00
## PP.BehavInt1_PBFB           -0.32          0.94          -0.43          -0.03
## PP.BehavInt2_PBFB           -0.31          0.95          -0.42          -0.03
## PP.BehavInt3_PBFB           -0.36          0.95          -0.40           0.00
## PP.BehavInt4_PBFB           -0.35          0.95          -0.41          -0.02
## PP.BehavInt1_VB             -0.28          0.74          -0.42           0.03
## PP.BehavInt2_VB             -0.14          0.77          -0.43          -0.04
## PP.BehavInt3_VB             -0.27          0.73          -0.40           0.03
## PP.BehavInt4_VB             -0.26          0.73          -0.40           0.04
##                    PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB                0.57       -0.12        -0.73        -0.71
## PP.Nat_4R_GFFB              -0.07       -0.63         0.26         0.39
## PP.Nat_2R_GFFB              -0.18       -0.66         0.19         0.33
## PP.Nat_3R_GFFB              -0.32       -0.50         0.50         0.62
## PP.Nat_1_GFPRB               0.56       -0.09        -0.07         0.02
## PP.Nat_4R_GFPRB             -0.07       -0.46         0.50         0.65
## PP.Nat_2R_GFPRB             -0.01       -0.52         0.39         0.57
## PP.Nat_3R_GFPRB             -0.13       -0.52         0.45         0.61
## PP.Nat_1_CBB                 0.15        0.37        -0.61        -0.75
## PP.Nat_4R_CBB               -0.52       -0.27         0.01        -0.01
## PP.Nat_2R_CBB               -0.56       -0.44        -0.16        -0.10
## PP.Nat_3R_CBB               -0.54       -0.48        -0.12        -0.05
## PP.Nat_1_PBPB                0.07        0.84        -0.02        -0.30
## PP.Nat_4R_PBPB              -0.54        0.28         0.75         0.56
## PP.Nat_2R_PBPB              -0.68        0.10         0.65         0.58
## PP.Nat_3R_PBPB              -0.81       -0.23         0.50         0.50
## PP.Nat_1_PBFB                0.05        0.73        -0.22        -0.42
## PP.Nat_4R_PBFB               0.69       -0.43        -0.52        -0.32
## PP.Nat_2R_PBFB               0.88        0.01        -0.53        -0.49
## PP.Nat_3R_PBFB               1.00        0.10        -0.44        -0.45
## PP.Nat_1_VB                  0.10        1.00         0.27         0.04
## PP.Nat_4R_VB                -0.44        0.27         1.00         0.89
## PP.Nat_2R_VB                -0.45        0.04         0.89         1.00
## PP.Nat_3R_VB                -0.56       -0.11         0.77         0.87
## PP.BehavInt1_GFFB            0.54       -0.07        -0.68        -0.67
## PP.BehavInt2_GFFB            0.56       -0.10        -0.64        -0.59
## PP.BehavInt3_GFFB            0.52       -0.05        -0.70        -0.69
## PP.BehavInt4_GFFB            0.51       -0.10        -0.67        -0.66
## PP.BehavInt1_GFPRB           0.09        0.84         0.10        -0.15
## PP.BehavInt2_GFPRB           0.07        0.83         0.05        -0.20
## PP.BehavInt3_GFPRB           0.13        0.85         0.04        -0.21
## PP.BehavInt4_GFPRB           0.16        0.86         0.07        -0.18
## PP.BehavInt1_CBB             0.17        0.45        -0.54        -0.67
## PP.BehavInt2_CBB             0.18        0.42        -0.58        -0.71
## PP.BehavInt3_CBB             0.17        0.43        -0.57        -0.69
## PP.BehavInt4_CBB             0.17        0.42        -0.55        -0.70
## PP.BehavInt1_PBPB            0.09        0.84         0.10        -0.15
## PP.BehavInt2_PBPB            0.07        0.83         0.05        -0.20
## PP.BehavInt3_PBPB            0.13        0.85         0.04        -0.21
## PP.BehavInt4_PBPB            0.16        0.86         0.07        -0.18
## PP.BehavInt1_PBFB            0.10        0.78        -0.11        -0.32
## PP.BehavInt2_PBFB            0.09        0.75        -0.16        -0.37
## PP.BehavInt3_PBFB            0.14        0.78        -0.13        -0.34
## PP.BehavInt4_PBFB            0.13        0.78        -0.13        -0.34
## PP.BehavInt1_VB              0.16        0.92         0.21        -0.04
## PP.BehavInt2_VB              0.09        0.89         0.20        -0.06
## PP.BehavInt3_VB              0.16        0.91         0.24        -0.01
## PP.BehavInt4_VB              0.15        0.91         0.21        -0.04
##                    PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB             -0.67              0.92              0.89
## PP.Nat_4R_GFFB             0.39             -0.03              0.05
## PP.Nat_2R_GFFB             0.39              0.00              0.06
## PP.Nat_3R_GFFB             0.64             -0.41             -0.32
## PP.Nat_1_GFPRB            -0.03              0.37              0.45
## PP.Nat_4R_GFPRB            0.60             -0.28             -0.17
## PP.Nat_2R_GFPRB            0.54             -0.22             -0.11
## PP.Nat_3R_GFPRB            0.61             -0.31             -0.23
## PP.Nat_1_CBB              -0.73              0.49              0.39
## PP.Nat_4R_CBB             -0.02             -0.36             -0.40
## PP.Nat_2R_CBB             -0.05             -0.18             -0.23
## PP.Nat_3R_CBB             -0.01             -0.21             -0.26
## PP.Nat_1_PBPB             -0.43              0.02             -0.06
## PP.Nat_4R_PBPB             0.49             -0.70             -0.68
## PP.Nat_2R_PBPB             0.51             -0.82             -0.83
## PP.Nat_3R_PBPB             0.64             -0.56             -0.57
## PP.Nat_1_PBFB             -0.50              0.14              0.06
## PP.Nat_4R_PBFB            -0.27              0.53              0.57
## PP.Nat_2R_PBFB            -0.49              0.59              0.62
## PP.Nat_3R_PBFB            -0.56              0.54              0.56
## PP.Nat_1_VB               -0.11             -0.07             -0.10
## PP.Nat_4R_VB               0.77             -0.68             -0.64
## PP.Nat_2R_VB               0.87             -0.67             -0.59
## PP.Nat_3R_VB               1.00             -0.63             -0.57
## PP.BehavInt1_GFFB         -0.63              1.00              0.98
## PP.BehavInt2_GFFB         -0.57              0.98              1.00
## PP.BehavInt3_GFFB         -0.65              0.99              0.97
## PP.BehavInt4_GFFB         -0.61              0.99              0.97
## PP.BehavInt1_GFPRB        -0.28             -0.11             -0.15
## PP.BehavInt2_GFPRB        -0.32             -0.10             -0.16
## PP.BehavInt3_GFPRB        -0.35             -0.08             -0.13
## PP.BehavInt4_GFPRB        -0.32             -0.08             -0.13
## PP.BehavInt1_CBB          -0.71              0.39              0.31
## PP.BehavInt2_CBB          -0.73              0.44              0.36
## PP.BehavInt3_CBB          -0.72              0.40              0.33
## PP.BehavInt4_CBB          -0.73              0.40              0.32
## PP.BehavInt1_PBPB         -0.28             -0.11             -0.15
## PP.BehavInt2_PBPB         -0.32             -0.10             -0.16
## PP.BehavInt3_PBPB         -0.35             -0.08             -0.13
## PP.BehavInt4_PBPB         -0.32             -0.08             -0.13
## PP.BehavInt1_PBFB         -0.40              0.02             -0.05
## PP.BehavInt2_PBFB         -0.45              0.08              0.00
## PP.BehavInt3_PBFB         -0.43              0.07              0.00
## PP.BehavInt4_PBFB         -0.44              0.07              0.01
## PP.BehavInt1_VB           -0.18             -0.11             -0.14
## PP.BehavInt2_VB           -0.18             -0.14             -0.18
## PP.BehavInt3_VB           -0.15             -0.11             -0.13
## PP.BehavInt4_VB           -0.18             -0.13             -0.16
##                    PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB                   0.91              0.91              -0.12
## PP.Nat_4R_GFFB                 -0.08              0.00              -0.76
## PP.Nat_2R_GFFB                 -0.04              0.03              -0.84
## PP.Nat_3R_GFFB                 -0.45             -0.38              -0.65
## PP.Nat_1_GFPRB                  0.34              0.37              -0.17
## PP.Nat_4R_GFPRB                -0.31             -0.25              -0.54
## PP.Nat_2R_GFPRB                -0.26             -0.20              -0.56
## PP.Nat_3R_GFPRB                -0.35             -0.27              -0.62
## PP.Nat_1_CBB                    0.53              0.47               0.55
## PP.Nat_4R_CBB                  -0.35             -0.36              -0.04
## PP.Nat_2R_CBB                  -0.17             -0.17              -0.27
## PP.Nat_3R_CBB                  -0.20             -0.19              -0.36
## PP.Nat_1_PBPB                   0.06              0.00               0.92
## PP.Nat_4R_PBPB                 -0.68             -0.68               0.27
## PP.Nat_2R_PBPB                 -0.80             -0.80               0.15
## PP.Nat_3R_PBPB                 -0.54             -0.52              -0.29
## PP.Nat_1_PBFB                   0.18              0.11               0.86
## PP.Nat_4R_PBFB                  0.52              0.53              -0.49
## PP.Nat_2R_PBFB                  0.58              0.57              -0.06
## PP.Nat_3R_PBFB                  0.52              0.51               0.09
## PP.Nat_1_VB                    -0.05             -0.10               0.84
## PP.Nat_4R_VB                   -0.70             -0.67               0.10
## PP.Nat_2R_VB                   -0.69             -0.66              -0.15
## PP.Nat_3R_VB                   -0.65             -0.61              -0.28
## PP.BehavInt1_GFFB               0.99              0.99              -0.11
## PP.BehavInt2_GFFB               0.97              0.97              -0.15
## PP.BehavInt3_GFFB               1.00              0.99              -0.08
## PP.BehavInt4_GFFB               0.99              1.00              -0.14
## PP.BehavInt1_GFPRB             -0.08             -0.14               1.00
## PP.BehavInt2_GFPRB             -0.07             -0.14               0.98
## PP.BehavInt3_GFPRB             -0.04             -0.11               0.99
## PP.BehavInt4_GFPRB             -0.04             -0.11               0.99
## PP.BehavInt1_CBB                0.42              0.36               0.69
## PP.BehavInt2_CBB                0.48              0.41               0.64
## PP.BehavInt3_CBB                0.44              0.37               0.67
## PP.BehavInt4_CBB                0.44              0.38               0.66
## PP.BehavInt1_PBPB              -0.08             -0.14               1.00
## PP.BehavInt2_PBPB              -0.07             -0.14               0.98
## PP.BehavInt3_PBPB              -0.04             -0.11               0.99
## PP.BehavInt4_PBPB              -0.04             -0.11               0.99
## PP.BehavInt1_PBFB               0.05             -0.01               0.95
## PP.BehavInt2_PBFB               0.11              0.04               0.92
## PP.BehavInt3_PBFB               0.10              0.03               0.94
## PP.BehavInt4_PBFB               0.10              0.04               0.93
## PP.BehavInt1_VB                -0.09             -0.14               0.92
## PP.BehavInt2_VB                -0.11             -0.16               0.91
## PP.BehavInt3_VB                -0.09             -0.14               0.92
## PP.BehavInt4_VB                -0.10             -0.16               0.92
##                    PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB                   -0.12              -0.10              -0.11
## PP.Nat_4R_GFFB                  -0.81              -0.79              -0.79
## PP.Nat_2R_GFFB                  -0.86              -0.86              -0.86
## PP.Nat_3R_GFFB                  -0.69              -0.68              -0.67
## PP.Nat_1_GFPRB                  -0.25              -0.19              -0.17
## PP.Nat_4R_GFPRB                 -0.62              -0.59              -0.57
## PP.Nat_2R_GFPRB                 -0.63              -0.61              -0.59
## PP.Nat_3R_GFPRB                 -0.67              -0.65              -0.63
## PP.Nat_1_CBB                     0.60               0.58               0.56
## PP.Nat_4R_CBB                   -0.01              -0.04              -0.09
## PP.Nat_2R_CBB                   -0.22              -0.26              -0.32
## PP.Nat_3R_CBB                   -0.30              -0.33              -0.39
## PP.Nat_1_PBPB                    0.93               0.93               0.92
## PP.Nat_4R_PBPB                   0.25               0.23               0.22
## PP.Nat_2R_PBPB                   0.14               0.12               0.10
## PP.Nat_3R_PBPB                  -0.27              -0.32              -0.33
## PP.Nat_1_PBFB                    0.88               0.87               0.86
## PP.Nat_4R_PBFB                  -0.48              -0.46              -0.43
## PP.Nat_2R_PBFB                  -0.05              -0.02               0.00
## PP.Nat_3R_PBFB                   0.07               0.13               0.16
## PP.Nat_1_VB                      0.83               0.85               0.86
## PP.Nat_4R_VB                     0.05               0.04               0.07
## PP.Nat_2R_VB                    -0.20              -0.21              -0.18
## PP.Nat_3R_VB                    -0.32              -0.35              -0.32
## PP.BehavInt1_GFFB               -0.10              -0.08              -0.08
## PP.BehavInt2_GFFB               -0.16              -0.13              -0.13
## PP.BehavInt3_GFFB               -0.07              -0.04              -0.04
## PP.BehavInt4_GFFB               -0.14              -0.11              -0.11
## PP.BehavInt1_GFPRB               0.98               0.99               0.99
## PP.BehavInt2_GFPRB               1.00               0.98               0.98
## PP.BehavInt3_GFPRB               0.98               1.00               0.99
## PP.BehavInt4_GFPRB               0.98               0.99               1.00
## PP.BehavInt1_CBB                 0.72               0.71               0.69
## PP.BehavInt2_CBB                 0.69               0.67               0.65
## PP.BehavInt3_CBB                 0.70               0.70               0.67
## PP.BehavInt4_CBB                 0.70               0.70               0.66
## PP.BehavInt1_PBPB                0.98               0.99               0.99
## PP.BehavInt2_PBPB                1.00               0.98               0.98
## PP.BehavInt3_PBPB                0.98               1.00               0.99
## PP.BehavInt4_PBPB                0.98               0.99               1.00
## PP.BehavInt1_PBFB                0.96               0.95               0.95
## PP.BehavInt2_PBFB                0.95               0.92               0.91
## PP.BehavInt3_PBFB                0.94               0.95               0.94
## PP.BehavInt4_PBFB                0.94               0.95               0.94
## PP.BehavInt1_VB                  0.91               0.92               0.93
## PP.BehavInt2_VB                  0.91               0.92               0.92
## PP.BehavInt3_VB                  0.89               0.92               0.93
## PP.BehavInt4_VB                  0.91               0.92               0.93
##                    PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB                  0.37             0.43             0.39
## PP.Nat_4R_GFFB                -0.77            -0.75            -0.77
## PP.Nat_2R_GFFB                -0.75            -0.72            -0.74
## PP.Nat_3R_GFFB                -0.83            -0.84            -0.84
## PP.Nat_1_GFPRB                -0.24            -0.23            -0.24
## PP.Nat_4R_GFPRB               -0.79            -0.81            -0.80
## PP.Nat_2R_GFPRB               -0.73            -0.76            -0.74
## PP.Nat_3R_GFPRB               -0.83            -0.85            -0.85
## PP.Nat_1_CBB                   0.93             0.96             0.94
## PP.Nat_4R_CBB                  0.17             0.17             0.16
## PP.Nat_2R_CBB                  0.08             0.11             0.09
## PP.Nat_3R_CBB                 -0.06            -0.03            -0.04
## PP.Nat_1_PBPB                  0.74             0.72             0.73
## PP.Nat_4R_PBPB                -0.24            -0.26            -0.24
## PP.Nat_2R_PBPB                -0.28            -0.30            -0.28
## PP.Nat_3R_PBPB                -0.49            -0.47            -0.48
## PP.Nat_1_PBFB                  0.88             0.86             0.87
## PP.Nat_4R_PBFB                -0.22            -0.19            -0.20
## PP.Nat_2R_PBFB                 0.12             0.13             0.12
## PP.Nat_3R_PBFB                 0.17             0.18             0.17
## PP.Nat_1_VB                    0.45             0.42             0.43
## PP.Nat_4R_VB                  -0.54            -0.58            -0.57
## PP.Nat_2R_VB                  -0.67            -0.71            -0.69
## PP.Nat_3R_VB                  -0.71            -0.73            -0.72
## PP.BehavInt1_GFFB              0.39             0.44             0.40
## PP.BehavInt2_GFFB              0.31             0.36             0.33
## PP.BehavInt3_GFFB              0.42             0.48             0.44
## PP.BehavInt4_GFFB              0.36             0.41             0.37
## PP.BehavInt1_GFPRB             0.69             0.64             0.67
## PP.BehavInt2_GFPRB             0.72             0.69             0.70
## PP.BehavInt3_GFPRB             0.71             0.67             0.70
## PP.BehavInt4_GFPRB             0.69             0.65             0.67
## PP.BehavInt1_CBB               1.00             0.99             0.99
## PP.BehavInt2_CBB               0.99             1.00             0.99
## PP.BehavInt3_CBB               0.99             0.99             1.00
## PP.BehavInt4_CBB               0.99             0.99             0.99
## PP.BehavInt1_PBPB              0.69             0.64             0.67
## PP.BehavInt2_PBPB              0.72             0.69             0.70
## PP.BehavInt3_PBPB              0.71             0.67             0.70
## PP.BehavInt4_PBPB              0.69             0.65             0.67
## PP.BehavInt1_PBFB              0.81             0.78             0.80
## PP.BehavInt2_PBFB              0.83             0.81             0.82
## PP.BehavInt3_PBFB              0.81             0.78             0.80
## PP.BehavInt4_PBFB              0.82             0.79             0.81
## PP.BehavInt1_VB                0.49             0.46             0.48
## PP.BehavInt2_VB                0.50             0.48             0.48
## PP.BehavInt3_VB                0.48             0.43             0.46
## PP.BehavInt4_VB                0.49             0.45             0.47
##                    PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB                  0.40             -0.12             -0.12
## PP.Nat_4R_GFFB                -0.75             -0.76             -0.81
## PP.Nat_2R_GFFB                -0.74             -0.84             -0.86
## PP.Nat_3R_GFFB                -0.84             -0.65             -0.69
## PP.Nat_1_GFPRB                -0.23             -0.17             -0.25
## PP.Nat_4R_GFPRB               -0.79             -0.54             -0.62
## PP.Nat_2R_GFPRB               -0.74             -0.56             -0.63
## PP.Nat_3R_GFPRB               -0.84             -0.62             -0.67
## PP.Nat_1_CBB                   0.94              0.55              0.60
## PP.Nat_4R_CBB                  0.18             -0.04             -0.01
## PP.Nat_2R_CBB                  0.09             -0.27             -0.22
## PP.Nat_3R_CBB                 -0.04             -0.36             -0.30
## PP.Nat_1_PBPB                  0.74              0.92              0.93
## PP.Nat_4R_PBPB                -0.23              0.27              0.25
## PP.Nat_2R_PBPB                -0.28              0.15              0.14
## PP.Nat_3R_PBPB                -0.47             -0.29             -0.27
## PP.Nat_1_PBFB                  0.86              0.86              0.88
## PP.Nat_4R_PBFB                -0.21             -0.49             -0.48
## PP.Nat_2R_PBFB                 0.12             -0.06             -0.05
## PP.Nat_3R_PBFB                 0.17              0.09              0.07
## PP.Nat_1_VB                    0.42              0.84              0.83
## PP.Nat_4R_VB                  -0.55              0.10              0.05
## PP.Nat_2R_VB                  -0.70             -0.15             -0.20
## PP.Nat_3R_VB                  -0.73             -0.28             -0.32
## PP.BehavInt1_GFFB              0.40             -0.11             -0.10
## PP.BehavInt2_GFFB              0.32             -0.15             -0.16
## PP.BehavInt3_GFFB              0.44             -0.08             -0.07
## PP.BehavInt4_GFFB              0.38             -0.14             -0.14
## PP.BehavInt1_GFPRB             0.66              1.00              0.98
## PP.BehavInt2_GFPRB             0.70              0.98              1.00
## PP.BehavInt3_GFPRB             0.70              0.99              0.98
## PP.BehavInt4_GFPRB             0.66              0.99              0.98
## PP.BehavInt1_CBB               0.99              0.69              0.72
## PP.BehavInt2_CBB               0.99              0.64              0.69
## PP.BehavInt3_CBB               0.99              0.67              0.70
## PP.BehavInt4_CBB               1.00              0.66              0.70
## PP.BehavInt1_PBPB              0.66              1.00              0.98
## PP.BehavInt2_PBPB              0.70              0.98              1.00
## PP.BehavInt3_PBPB              0.70              0.99              0.98
## PP.BehavInt4_PBPB              0.66              0.99              0.98
## PP.BehavInt1_PBFB              0.79              0.95              0.96
## PP.BehavInt2_PBFB              0.82              0.92              0.95
## PP.BehavInt3_PBFB              0.80              0.94              0.94
## PP.BehavInt4_PBFB              0.81              0.93              0.94
## PP.BehavInt1_VB                0.48              0.92              0.91
## PP.BehavInt2_VB                0.48              0.91              0.91
## PP.BehavInt3_VB                0.46              0.92              0.89
## PP.BehavInt4_VB                0.47              0.92              0.91
##                    PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB                  -0.10             -0.11             -0.01
## PP.Nat_4R_GFFB                 -0.79             -0.79             -0.87
## PP.Nat_2R_GFFB                 -0.86             -0.86             -0.88
## PP.Nat_3R_GFFB                 -0.68             -0.67             -0.79
## PP.Nat_1_GFPRB                 -0.19             -0.17             -0.29
## PP.Nat_4R_GFPRB                -0.59             -0.57             -0.73
## PP.Nat_2R_GFPRB                -0.61             -0.59             -0.74
## PP.Nat_3R_GFPRB                -0.65             -0.63             -0.77
## PP.Nat_1_CBB                    0.58              0.56              0.70
## PP.Nat_4R_CBB                  -0.04             -0.09              0.01
## PP.Nat_2R_CBB                  -0.26             -0.32             -0.16
## PP.Nat_3R_CBB                  -0.33             -0.39             -0.25
## PP.Nat_1_PBPB                   0.93              0.92              0.92
## PP.Nat_4R_PBPB                  0.23              0.22              0.10
## PP.Nat_2R_PBPB                  0.12              0.10              0.02
## PP.Nat_3R_PBPB                 -0.32             -0.33             -0.32
## PP.Nat_1_PBFB                   0.87              0.86              0.94
## PP.Nat_4R_PBFB                 -0.46             -0.43             -0.43
## PP.Nat_2R_PBFB                 -0.02              0.00             -0.03
## PP.Nat_3R_PBFB                  0.13              0.16              0.10
## PP.Nat_1_VB                     0.85              0.86              0.78
## PP.Nat_4R_VB                    0.04              0.07             -0.11
## PP.Nat_2R_VB                   -0.21             -0.18             -0.32
## PP.Nat_3R_VB                   -0.35             -0.32             -0.40
## PP.BehavInt1_GFFB              -0.08             -0.08              0.02
## PP.BehavInt2_GFFB              -0.13             -0.13             -0.05
## PP.BehavInt3_GFFB              -0.04             -0.04              0.05
## PP.BehavInt4_GFFB              -0.11             -0.11             -0.01
## PP.BehavInt1_GFPRB              0.99              0.99              0.95
## PP.BehavInt2_GFPRB              0.98              0.98              0.96
## PP.BehavInt3_GFPRB              1.00              0.99              0.95
## PP.BehavInt4_GFPRB              0.99              1.00              0.95
## PP.BehavInt1_CBB                0.71              0.69              0.81
## PP.BehavInt2_CBB                0.67              0.65              0.78
## PP.BehavInt3_CBB                0.70              0.67              0.80
## PP.BehavInt4_CBB                0.70              0.66              0.79
## PP.BehavInt1_PBPB               0.99              0.99              0.95
## PP.BehavInt2_PBPB               0.98              0.98              0.96
## PP.BehavInt3_PBPB               1.00              0.99              0.95
## PP.BehavInt4_PBPB               0.99              1.00              0.95
## PP.BehavInt1_PBFB               0.95              0.95              1.00
## PP.BehavInt2_PBFB               0.92              0.91              0.99
## PP.BehavInt3_PBFB               0.95              0.94              0.99
## PP.BehavInt4_PBFB               0.95              0.94              0.99
## PP.BehavInt1_VB                 0.92              0.93              0.86
## PP.BehavInt2_VB                 0.92              0.92              0.87
## PP.BehavInt3_VB                 0.92              0.93              0.85
## PP.BehavInt4_VB                 0.92              0.93              0.85
##                    PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB                   0.06              0.04              0.05
## PP.Nat_4R_GFFB                 -0.88             -0.87             -0.87
## PP.Nat_2R_GFFB                 -0.86             -0.88             -0.87
## PP.Nat_3R_GFFB                 -0.82             -0.80             -0.81
## PP.Nat_1_GFPRB                 -0.29             -0.24             -0.24
## PP.Nat_4R_GFPRB                -0.77             -0.72             -0.73
## PP.Nat_2R_GFPRB                -0.78             -0.75             -0.76
## PP.Nat_3R_GFPRB                -0.82             -0.78             -0.80
## PP.Nat_1_CBB                    0.75              0.70              0.72
## PP.Nat_4R_CBB                   0.04             -0.02              0.00
## PP.Nat_2R_CBB                  -0.11             -0.18             -0.15
## PP.Nat_3R_CBB                  -0.19             -0.27             -0.24
## PP.Nat_1_PBPB                   0.93              0.92              0.93
## PP.Nat_4R_PBPB                  0.08              0.06              0.07
## PP.Nat_2R_PBPB                  0.00             -0.02              0.00
## PP.Nat_3R_PBPB                 -0.31             -0.36             -0.35
## PP.Nat_1_PBFB                   0.95              0.95              0.95
## PP.Nat_4R_PBFB                 -0.42             -0.40             -0.41
## PP.Nat_2R_PBFB                 -0.03              0.00             -0.02
## PP.Nat_3R_PBFB                  0.09              0.14              0.13
## PP.Nat_1_VB                     0.75              0.78              0.78
## PP.Nat_4R_VB                   -0.16             -0.13             -0.13
## PP.Nat_2R_VB                   -0.37             -0.34             -0.34
## PP.Nat_3R_VB                   -0.45             -0.43             -0.44
## PP.BehavInt1_GFFB               0.08              0.07              0.07
## PP.BehavInt2_GFFB               0.00              0.00              0.01
## PP.BehavInt3_GFFB               0.11              0.10              0.10
## PP.BehavInt4_GFFB               0.04              0.03              0.04
## PP.BehavInt1_GFPRB              0.92              0.94              0.93
## PP.BehavInt2_GFPRB              0.95              0.94              0.94
## PP.BehavInt3_GFPRB              0.92              0.95              0.95
## PP.BehavInt4_GFPRB              0.91              0.94              0.94
## PP.BehavInt1_CBB                0.83              0.81              0.82
## PP.BehavInt2_CBB                0.81              0.78              0.79
## PP.BehavInt3_CBB                0.82              0.80              0.81
## PP.BehavInt4_CBB                0.82              0.80              0.81
## PP.BehavInt1_PBPB               0.92              0.94              0.93
## PP.BehavInt2_PBPB               0.95              0.94              0.94
## PP.BehavInt3_PBPB               0.92              0.95              0.95
## PP.BehavInt4_PBPB               0.91              0.94              0.94
## PP.BehavInt1_PBFB               0.99              0.99              0.99
## PP.BehavInt2_PBFB               1.00              0.98              0.98
## PP.BehavInt3_PBFB               0.98              1.00              1.00
## PP.BehavInt4_PBFB               0.98              1.00              1.00
## PP.BehavInt1_VB                 0.83              0.86              0.85
## PP.BehavInt2_VB                 0.86              0.86              0.86
## PP.BehavInt3_VB                 0.81              0.86              0.85
## PP.BehavInt4_VB                 0.83              0.86              0.85
##                    PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB                -0.14           -0.17           -0.15
## PP.Nat_4R_GFFB               -0.67           -0.71           -0.66
## PP.Nat_2R_GFFB               -0.72           -0.72           -0.73
## PP.Nat_3R_GFFB               -0.54           -0.56           -0.52
## PP.Nat_1_GFPRB               -0.08           -0.18           -0.05
## PP.Nat_4R_GFPRB              -0.47           -0.55           -0.44
## PP.Nat_2R_GFPRB              -0.53           -0.62           -0.50
## PP.Nat_3R_GFPRB              -0.54           -0.60           -0.50
## PP.Nat_1_CBB                  0.37            0.40            0.34
## PP.Nat_4R_CBB                -0.25           -0.21           -0.28
## PP.Nat_2R_CBB                -0.46           -0.39           -0.50
## PP.Nat_3R_CBB                -0.49           -0.43           -0.53
## PP.Nat_1_PBPB                 0.86            0.88            0.85
## PP.Nat_4R_PBPB                0.28            0.35            0.28
## PP.Nat_2R_PBPB                0.10            0.19            0.11
## PP.Nat_3R_PBPB               -0.28           -0.14           -0.27
## PP.Nat_1_PBFB                 0.74            0.77            0.73
## PP.Nat_4R_PBFB               -0.42           -0.43           -0.40
## PP.Nat_2R_PBFB                0.03           -0.04            0.03
## PP.Nat_3R_PBFB                0.16            0.09            0.16
## PP.Nat_1_VB                   0.92            0.89            0.91
## PP.Nat_4R_VB                  0.21            0.20            0.24
## PP.Nat_2R_VB                 -0.04           -0.06           -0.01
## PP.Nat_3R_VB                 -0.18           -0.18           -0.15
## PP.BehavInt1_GFFB            -0.11           -0.14           -0.11
## PP.BehavInt2_GFFB            -0.14           -0.18           -0.13
## PP.BehavInt3_GFFB            -0.09           -0.11           -0.09
## PP.BehavInt4_GFFB            -0.14           -0.16           -0.14
## PP.BehavInt1_GFPRB            0.92            0.91            0.92
## PP.BehavInt2_GFPRB            0.91            0.91            0.89
## PP.BehavInt3_GFPRB            0.92            0.92            0.92
## PP.BehavInt4_GFPRB            0.93            0.92            0.93
## PP.BehavInt1_CBB              0.49            0.50            0.48
## PP.BehavInt2_CBB              0.46            0.48            0.43
## PP.BehavInt3_CBB              0.48            0.48            0.46
## PP.BehavInt4_CBB              0.48            0.48            0.46
## PP.BehavInt1_PBPB             0.92            0.91            0.92
## PP.BehavInt2_PBPB             0.91            0.91            0.89
## PP.BehavInt3_PBPB             0.92            0.92            0.92
## PP.BehavInt4_PBPB             0.93            0.92            0.93
## PP.BehavInt1_PBFB             0.86            0.87            0.85
## PP.BehavInt2_PBFB             0.83            0.86            0.81
## PP.BehavInt3_PBFB             0.86            0.86            0.86
## PP.BehavInt4_PBFB             0.85            0.86            0.85
## PP.BehavInt1_VB               1.00            0.97            0.99
## PP.BehavInt2_VB               0.97            1.00            0.95
## PP.BehavInt3_VB               0.99            0.95            1.00
## PP.BehavInt4_VB               0.99            0.97            0.99
##                    PP.BehavInt4_VB
## PP.Nat_1_GFFB                -0.15
## PP.Nat_4R_GFFB               -0.68
## PP.Nat_2R_GFFB               -0.73
## PP.Nat_3R_GFFB               -0.53
## PP.Nat_1_GFPRB               -0.08
## PP.Nat_4R_GFPRB              -0.48
## PP.Nat_2R_GFPRB              -0.53
## PP.Nat_3R_GFPRB              -0.53
## PP.Nat_1_CBB                  0.36
## PP.Nat_4R_CBB                -0.26
## PP.Nat_2R_CBB                -0.46
## PP.Nat_3R_CBB                -0.50
## PP.Nat_1_PBPB                 0.86
## PP.Nat_4R_PBPB                0.29
## PP.Nat_2R_PBPB                0.13
## PP.Nat_3R_PBPB               -0.26
## PP.Nat_1_PBFB                 0.73
## PP.Nat_4R_PBFB               -0.40
## PP.Nat_2R_PBFB                0.04
## PP.Nat_3R_PBFB                0.15
## PP.Nat_1_VB                   0.91
## PP.Nat_4R_VB                  0.21
## PP.Nat_2R_VB                 -0.04
## PP.Nat_3R_VB                 -0.18
## PP.BehavInt1_GFFB            -0.13
## PP.BehavInt2_GFFB            -0.16
## PP.BehavInt3_GFFB            -0.10
## PP.BehavInt4_GFFB            -0.16
## PP.BehavInt1_GFPRB            0.92
## PP.BehavInt2_GFPRB            0.91
## PP.BehavInt3_GFPRB            0.92
## PP.BehavInt4_GFPRB            0.93
## PP.BehavInt1_CBB              0.49
## PP.BehavInt2_CBB              0.45
## PP.BehavInt3_CBB              0.47
## PP.BehavInt4_CBB              0.47
## PP.BehavInt1_PBPB             0.92
## PP.BehavInt2_PBPB             0.91
## PP.BehavInt3_PBPB             0.92
## PP.BehavInt4_PBPB             0.93
## PP.BehavInt1_PBFB             0.85
## PP.BehavInt2_PBFB             0.83
## PP.BehavInt3_PBFB             0.86
## PP.BehavInt4_PBFB             0.85
## PP.BehavInt1_VB               0.99
## PP.BehavInt2_VB               0.97
## PP.BehavInt3_VB               0.99
## PP.BehavInt4_VB               1.00
## 
## n= 48 
## 
## 
## P
##                    PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB                    0.9750         0.9035         0.0055        
## PP.Nat_4R_GFFB     0.9750                       0.0000         0.0000        
## PP.Nat_2R_GFFB     0.9035        0.0000                        0.0000        
## PP.Nat_3R_GFFB     0.0055        0.0000         0.0000                       
## PP.Nat_1_GFPRB     0.0009        0.0180         0.1291         0.4124        
## PP.Nat_4R_GFPRB    0.0893        0.0000         0.0000         0.0000        
## PP.Nat_2R_GFPRB    0.1703        0.0000         0.0000         0.0000        
## PP.Nat_3R_GFPRB    0.0475        0.0000         0.0000         0.0000        
## PP.Nat_1_CBB       0.0006        0.0000         0.0000         0.0000        
## PP.Nat_4R_CBB      0.0741        0.8075         0.6245         0.6559        
## PP.Nat_2R_CBB      0.4533        0.4298         0.0957         0.4871        
## PP.Nat_3R_CBB      0.3388        0.2605         0.0315         0.2723        
## PP.Nat_1_PBPB      0.9904        0.0000         0.0000         0.0000        
## PP.Nat_4R_PBPB     0.0000        0.9023         0.9301         0.1403        
## PP.Nat_2R_PBPB     0.0000        0.8597         0.9435         0.0596        
## PP.Nat_3R_PBPB     0.0000        0.1943         0.0269         0.0032        
## PP.Nat_1_PBFB      0.4227        0.0000         0.0000         0.0000        
## PP.Nat_4R_PBFB     0.0000        0.0803         0.0620         0.8538        
## PP.Nat_2R_PBFB     0.0000        0.9014         0.4460         0.0799        
## PP.Nat_3R_PBFB     0.0000        0.6431         0.2172         0.0243        
## PP.Nat_1_VB        0.4114        0.0000         0.0000         0.0003        
## PP.Nat_4R_VB       0.0000        0.0688         0.1987         0.0003        
## PP.Nat_2R_VB       0.0000        0.0065         0.0201         0.0000        
## PP.Nat_3R_VB       0.0000        0.0063         0.0060         0.0000        
## PP.BehavInt1_GFFB  0.0000        0.8166         0.9957         0.0035        
## PP.BehavInt2_GFFB  0.0000        0.7427         0.6654         0.0247        
## PP.BehavInt3_GFFB  0.0000        0.6037         0.7974         0.0015        
## PP.BehavInt4_GFFB  0.0000        0.9813         0.8575         0.0074        
## PP.BehavInt1_GFPRB 0.4073        0.0000         0.0000         0.0000        
## PP.BehavInt2_GFPRB 0.4043        0.0000         0.0000         0.0000        
## PP.BehavInt3_GFPRB 0.4905        0.0000         0.0000         0.0000        
## PP.BehavInt4_GFPRB 0.4694        0.0000         0.0000         0.0000        
## PP.BehavInt1_CBB   0.0089        0.0000         0.0000         0.0000        
## PP.BehavInt2_CBB   0.0024        0.0000         0.0000         0.0000        
## PP.BehavInt3_CBB   0.0059        0.0000         0.0000         0.0000        
## PP.BehavInt4_CBB   0.0051        0.0000         0.0000         0.0000        
## PP.BehavInt1_PBPB  0.4073        0.0000         0.0000         0.0000        
## PP.BehavInt2_PBPB  0.4043        0.0000         0.0000         0.0000        
## PP.BehavInt3_PBPB  0.4905        0.0000         0.0000         0.0000        
## PP.BehavInt4_PBPB  0.4694        0.0000         0.0000         0.0000        
## PP.BehavInt1_PBFB  0.9372        0.0000         0.0000         0.0000        
## PP.BehavInt2_PBFB  0.6968        0.0000         0.0000         0.0000        
## PP.BehavInt3_PBFB  0.7981        0.0000         0.0000         0.0000        
## PP.BehavInt4_PBFB  0.7596        0.0000         0.0000         0.0000        
## PP.BehavInt1_VB    0.3462        0.0000         0.0000         0.0000        
## PP.BehavInt2_VB    0.2443        0.0000         0.0000         0.0000        
## PP.BehavInt3_VB    0.3179        0.0000         0.0000         0.0001        
## PP.BehavInt4_VB    0.2993        0.0000         0.0000         0.0000        
##                    PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB      0.0009         0.0893          0.1703         
## PP.Nat_4R_GFFB     0.0180         0.0000          0.0000         
## PP.Nat_2R_GFFB     0.1291         0.0000          0.0000         
## PP.Nat_3R_GFFB     0.4124         0.0000          0.0000         
## PP.Nat_1_GFPRB                    0.0006          0.0019         
## PP.Nat_4R_GFPRB    0.0006                         0.0000         
## PP.Nat_2R_GFPRB    0.0019         0.0000                         
## PP.Nat_3R_GFPRB    0.0306         0.0000          0.0000         
## PP.Nat_1_CBB       0.0750         0.0000          0.0000         
## PP.Nat_4R_CBB      0.0012         0.7360          0.5989         
## PP.Nat_2R_CBB      0.0010         0.5215          0.5202         
## PP.Nat_3R_CBB      0.0025         0.8450          0.7837         
## PP.Nat_1_PBPB      0.0563         0.0000          0.0000         
## PP.Nat_4R_PBPB     0.0453         0.2776          0.8376         
## PP.Nat_2R_PBPB     0.0150         0.2990          0.7528         
## PP.Nat_3R_PBPB     0.0006         0.2698          0.6346         
## PP.Nat_1_PBFB      0.0213         0.0000          0.0000         
## PP.Nat_4R_PBFB     0.0000         0.2754          0.0959         
## PP.Nat_2R_PBFB     0.0002         0.5809          0.8932         
## PP.Nat_3R_PBFB     0.0000         0.6391          0.9673         
## PP.Nat_1_VB        0.5501         0.0009          0.0002         
## PP.Nat_4R_VB       0.6513         0.0003          0.0057         
## PP.Nat_2R_VB       0.8906         0.0000          0.0000         
## PP.Nat_3R_VB       0.8300         0.0000          0.0000         
## PP.BehavInt1_GFFB  0.0088         0.0554          0.1364         
## PP.BehavInt2_GFFB  0.0013         0.2389          0.4398         
## PP.BehavInt3_GFFB  0.0167         0.0294          0.0769         
## PP.BehavInt4_GFFB  0.0091         0.0803          0.1765         
## PP.BehavInt1_GFPRB 0.2613         0.0000          0.0000         
## PP.BehavInt2_GFPRB 0.0841         0.0000          0.0000         
## PP.BehavInt3_GFPRB 0.1876         0.0000          0.0000         
## PP.BehavInt4_GFPRB 0.2464         0.0000          0.0000         
## PP.BehavInt1_CBB   0.1057         0.0000          0.0000         
## PP.BehavInt2_CBB   0.1086         0.0000          0.0000         
## PP.BehavInt3_CBB   0.0990         0.0000          0.0000         
## PP.BehavInt4_CBB   0.1116         0.0000          0.0000         
## PP.BehavInt1_PBPB  0.2613         0.0000          0.0000         
## PP.BehavInt2_PBPB  0.0841         0.0000          0.0000         
## PP.BehavInt3_PBPB  0.1876         0.0000          0.0000         
## PP.BehavInt4_PBPB  0.2464         0.0000          0.0000         
## PP.BehavInt1_PBFB  0.0463         0.0000          0.0000         
## PP.BehavInt2_PBFB  0.0433         0.0000          0.0000         
## PP.BehavInt3_PBFB  0.0975         0.0000          0.0000         
## PP.BehavInt4_PBFB  0.1067         0.0000          0.0000         
## PP.BehavInt1_VB    0.5729         0.0007          0.0001         
## PP.BehavInt2_VB    0.2083         0.0000          0.0000         
## PP.BehavInt3_VB    0.7437         0.0019          0.0003         
## PP.BehavInt4_VB    0.5869         0.0006          0.0001         
##                    PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB      0.0475          0.0006       0.0741        0.4533       
## PP.Nat_4R_GFFB     0.0000          0.0000       0.8075        0.4298       
## PP.Nat_2R_GFFB     0.0000          0.0000       0.6245        0.0957       
## PP.Nat_3R_GFFB     0.0000          0.0000       0.6559        0.4871       
## PP.Nat_1_GFPRB     0.0306          0.0750       0.0012        0.0010       
## PP.Nat_4R_GFPRB    0.0000          0.0000       0.7360        0.5215       
## PP.Nat_2R_GFPRB    0.0000          0.0000       0.5989        0.5202       
## PP.Nat_3R_GFPRB                    0.0000       0.5609        0.6687       
## PP.Nat_1_CBB       0.0000                       0.2001        0.2714       
## PP.Nat_4R_CBB      0.5609          0.2001                     0.0000       
## PP.Nat_2R_CBB      0.6687          0.2714       0.0000                     
## PP.Nat_3R_CBB      0.7608          0.7653       0.0000        0.0000       
## PP.Nat_1_PBPB      0.0000          0.0000       0.9691        0.2569       
## PP.Nat_4R_PBPB     0.7031          0.0575       0.0640        0.5041       
## PP.Nat_2R_PBPB     0.4313          0.0252       0.0043        0.0164       
## PP.Nat_3R_PBPB     0.0761          0.0067       0.0523        0.0066       
## PP.Nat_1_PBFB      0.0000          0.0000       0.5080        0.8660       
## PP.Nat_4R_PBFB     0.2066          0.2726       0.0001        0.0154       
## PP.Nat_2R_PBFB     0.5951          0.3879       0.0000        0.0000       
## PP.Nat_3R_PBFB     0.3703          0.3154       0.0001        0.0000       
## PP.Nat_1_VB        0.0001          0.0107       0.0674        0.0019       
## PP.Nat_4R_VB       0.0013          0.0000       0.9493        0.2787       
## PP.Nat_2R_VB       0.0000          0.0000       0.9619        0.5037       
## PP.Nat_3R_VB       0.0000          0.0000       0.9144        0.7186       
## PP.BehavInt1_GFFB  0.0300          0.0004       0.0127        0.2145       
## PP.BehavInt2_GFFB  0.1175          0.0055       0.0045        0.1099       
## PP.BehavInt3_GFFB  0.0159          0.0001       0.0151        0.2490       
## PP.BehavInt4_GFFB  0.0639          0.0009       0.0128        0.2549       
## PP.BehavInt1_GFPRB 0.0000          0.0000       0.7698        0.0645       
## PP.BehavInt2_GFPRB 0.0000          0.0000       0.9614        0.1375       
## PP.BehavInt3_GFPRB 0.0000          0.0000       0.7846        0.0764       
## PP.BehavInt4_GFPRB 0.0000          0.0000       0.5295        0.0289       
## PP.BehavInt1_CBB   0.0000          0.0000       0.2535        0.5990       
## PP.BehavInt2_CBB   0.0000          0.0000       0.2586        0.4740       
## PP.BehavInt3_CBB   0.0000          0.0000       0.2674        0.5351       
## PP.BehavInt4_CBB   0.0000          0.0000       0.2258        0.5242       
## PP.BehavInt1_PBPB  0.0000          0.0000       0.7698        0.0645       
## PP.BehavInt2_PBPB  0.0000          0.0000       0.9614        0.1375       
## PP.BehavInt3_PBPB  0.0000          0.0000       0.7846        0.0764       
## PP.BehavInt4_PBPB  0.0000          0.0000       0.5295        0.0289       
## PP.BehavInt1_PBFB  0.0000          0.0000       0.9649        0.2856       
## PP.BehavInt2_PBFB  0.0000          0.0000       0.8031        0.4689       
## PP.BehavInt3_PBFB  0.0000          0.0000       0.8894        0.2195       
## PP.BehavInt4_PBFB  0.0000          0.0000       0.9876        0.2934       
## PP.BehavInt1_VB    0.0000          0.0094       0.0889        0.0010       
## PP.BehavInt2_VB    0.0000          0.0049       0.1611        0.0069       
## PP.BehavInt3_VB    0.0003          0.0169       0.0542        0.0003       
## PP.BehavInt4_VB    0.0001          0.0126       0.0704        0.0009       
##                    PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB      0.3388        0.9904        0.0000         0.0000        
## PP.Nat_4R_GFFB     0.2605        0.0000        0.9023         0.8597        
## PP.Nat_2R_GFFB     0.0315        0.0000        0.9301         0.9435        
## PP.Nat_3R_GFFB     0.2723        0.0000        0.1403         0.0596        
## PP.Nat_1_GFPRB     0.0025        0.0563        0.0453         0.0150        
## PP.Nat_4R_GFPRB    0.8450        0.0000        0.2776         0.2990        
## PP.Nat_2R_GFPRB    0.7837        0.0000        0.8376         0.7528        
## PP.Nat_3R_GFPRB    0.7608        0.0000        0.7031         0.4313        
## PP.Nat_1_CBB       0.7653        0.0000        0.0575         0.0252        
## PP.Nat_4R_CBB      0.0000        0.9691        0.0640         0.0043        
## PP.Nat_2R_CBB      0.0000        0.2569        0.5041         0.0164        
## PP.Nat_3R_CBB                    0.0927        0.6270         0.0167        
## PP.Nat_1_PBPB      0.0927                      0.0980         0.4360        
## PP.Nat_4R_PBPB     0.6270        0.0980                       0.0000        
## PP.Nat_2R_PBPB     0.0167        0.4360        0.0000                       
## PP.Nat_3R_PBPB     0.0021        0.1179        0.0000         0.0000        
## PP.Nat_1_PBFB      0.4838        0.0000        0.8267         0.9185        
## PP.Nat_4R_PBFB     0.0491        0.0005        0.0000         0.0000        
## PP.Nat_2R_PBFB     0.0000        0.7899        0.0000         0.0000        
## PP.Nat_3R_PBFB     0.0000        0.6341        0.0000         0.0000        
## PP.Nat_1_VB        0.0006        0.0000        0.0523         0.4780        
## PP.Nat_4R_VB       0.4204        0.8877        0.0000         0.0000        
## PP.Nat_2R_VB       0.7310        0.0361        0.0000         0.0000        
## PP.Nat_3R_VB       0.9568        0.0026        0.0004         0.0002        
## PP.BehavInt1_GFFB  0.1548        0.8805        0.0000         0.0000        
## PP.BehavInt2_GFFB  0.0694        0.7045        0.0000         0.0000        
## PP.BehavInt3_GFFB  0.1776        0.6909        0.0000         0.0000        
## PP.BehavInt4_GFFB  0.1873        0.9945        0.0000         0.0000        
## PP.BehavInt1_GFPRB 0.0124        0.0000        0.0679         0.3167        
## PP.BehavInt2_GFPRB 0.0387        0.0000        0.0911         0.3541        
## PP.BehavInt3_GFPRB 0.0208        0.0000        0.1151         0.4094        
## PP.BehavInt4_GFPRB 0.0068        0.0000        0.1264         0.4930        
## PP.BehavInt1_CBB   0.6880        0.0000        0.1056         0.0577        
## PP.BehavInt2_CBB   0.8455        0.0000        0.0798         0.0358        
## PP.BehavInt3_CBB   0.7641        0.0000        0.0977         0.0562        
## PP.BehavInt4_CBB   0.8005        0.0000        0.1120         0.0582        
## PP.BehavInt1_PBPB  0.0124        0.0000        0.0679         0.3167        
## PP.BehavInt2_PBPB  0.0387        0.0000        0.0911         0.3541        
## PP.BehavInt3_PBPB  0.0208        0.0000        0.1151         0.4094        
## PP.BehavInt4_PBPB  0.0068        0.0000        0.1264         0.4930        
## PP.BehavInt1_PBFB  0.0878        0.0000        0.4969         0.8688        
## PP.BehavInt2_PBFB  0.1924        0.0000        0.5769         0.9918        
## PP.BehavInt3_PBFB  0.0679        0.0000        0.6994         0.9038        
## PP.BehavInt4_PBFB  0.0990        0.0000        0.6436         0.9847        
## PP.BehavInt1_VB    0.0004        0.0000        0.0510         0.4804        
## PP.BehavInt2_VB    0.0025        0.0000        0.0139         0.1995        
## PP.BehavInt3_VB    0.0000        0.0000        0.0554         0.4538        
## PP.BehavInt4_VB    0.0003        0.0000        0.0495         0.3842        
##                    PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB      0.0000         0.4227        0.0000         0.0000        
## PP.Nat_4R_GFFB     0.1943         0.0000        0.0803         0.9014        
## PP.Nat_2R_GFFB     0.0269         0.0000        0.0620         0.4460        
## PP.Nat_3R_GFFB     0.0032         0.0000        0.8538         0.0799        
## PP.Nat_1_GFPRB     0.0006         0.0213        0.0000         0.0002        
## PP.Nat_4R_GFPRB    0.2698         0.0000        0.2754         0.5809        
## PP.Nat_2R_GFPRB    0.6346         0.0000        0.0959         0.8932        
## PP.Nat_3R_GFPRB    0.0761         0.0000        0.2066         0.5951        
## PP.Nat_1_CBB       0.0067         0.0000        0.2726         0.3879        
## PP.Nat_4R_CBB      0.0523         0.5080        0.0001         0.0000        
## PP.Nat_2R_CBB      0.0066         0.8660        0.0154         0.0000        
## PP.Nat_3R_CBB      0.0021         0.4838        0.0491         0.0000        
## PP.Nat_1_PBPB      0.1179         0.0000        0.0005         0.7899        
## PP.Nat_4R_PBPB     0.0000         0.8267        0.0000         0.0000        
## PP.Nat_2R_PBPB     0.0000         0.9185        0.0000         0.0000        
## PP.Nat_3R_PBPB                    0.0468        0.0037         0.0000        
## PP.Nat_1_PBFB      0.0468                       0.0016         0.6806        
## PP.Nat_4R_PBFB     0.0037         0.0016                       0.0000        
## PP.Nat_2R_PBFB     0.0000         0.6806        0.0000                       
## PP.Nat_3R_PBFB     0.0000         0.7361        0.0000         0.0000        
## PP.Nat_1_VB        0.1208         0.0000        0.0025         0.9593        
## PP.Nat_4R_VB       0.0003         0.1289        0.0002         0.0000        
## PP.Nat_2R_VB       0.0003         0.0026        0.0252         0.0004        
## PP.Nat_3R_VB       0.0000         0.0003        0.0650         0.0005        
## PP.BehavInt1_GFFB  0.0000         0.3289        0.0000         0.0000        
## PP.BehavInt2_GFFB  0.0000         0.6913        0.0000         0.0000        
## PP.BehavInt3_GFFB  0.0000         0.2283        0.0002         0.0000        
## PP.BehavInt4_GFFB  0.0002         0.4443        0.0001         0.0000        
## PP.BehavInt1_GFPRB 0.0423         0.0000        0.0004         0.7019        
## PP.BehavInt2_GFPRB 0.0633         0.0000        0.0005         0.7404        
## PP.BehavInt3_GFPRB 0.0281         0.0000        0.0010         0.8750        
## PP.BehavInt4_GFPRB 0.0240         0.0000        0.0022         0.9902        
## PP.BehavInt1_CBB   0.0004         0.0000        0.1419         0.4328        
## PP.BehavInt2_CBB   0.0008         0.0000        0.1978         0.3701        
## PP.BehavInt3_CBB   0.0006         0.0000        0.1733         0.4005        
## PP.BehavInt4_CBB   0.0007         0.0000        0.1473         0.4306        
## PP.BehavInt1_PBPB  0.0423         0.0000        0.0004         0.7019        
## PP.BehavInt2_PBPB  0.0633         0.0000        0.0005         0.7404        
## PP.BehavInt3_PBPB  0.0281         0.0000        0.0010         0.8750        
## PP.BehavInt4_PBPB  0.0240         0.0000        0.0022         0.9902        
## PP.BehavInt1_PBFB  0.0245         0.0000        0.0022         0.8417        
## PP.BehavInt2_PBFB  0.0334         0.0000        0.0031         0.8623        
## PP.BehavInt3_PBFB  0.0117         0.0000        0.0045         0.9996        
## PP.BehavInt4_PBFB  0.0144         0.0000        0.0037         0.9073        
## PP.BehavInt1_VB    0.0576         0.0000        0.0032         0.8177        
## PP.BehavInt2_VB    0.3288         0.0000        0.0023         0.8034        
## PP.BehavInt3_VB    0.0682         0.0000        0.0047         0.8596        
## PP.BehavInt4_VB    0.0770         0.0000        0.0051         0.8119        
##                    PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB      0.0000         0.4114      0.0000       0.0000      
## PP.Nat_4R_GFFB     0.6431         0.0000      0.0688       0.0065      
## PP.Nat_2R_GFFB     0.2172         0.0000      0.1987       0.0201      
## PP.Nat_3R_GFFB     0.0243         0.0003      0.0003       0.0000      
## PP.Nat_1_GFPRB     0.0000         0.5501      0.6513       0.8906      
## PP.Nat_4R_GFPRB    0.6391         0.0009      0.0003       0.0000      
## PP.Nat_2R_GFPRB    0.9673         0.0002      0.0057       0.0000      
## PP.Nat_3R_GFPRB    0.3703         0.0001      0.0013       0.0000      
## PP.Nat_1_CBB       0.3154         0.0107      0.0000       0.0000      
## PP.Nat_4R_CBB      0.0001         0.0674      0.9493       0.9619      
## PP.Nat_2R_CBB      0.0000         0.0019      0.2787       0.5037      
## PP.Nat_3R_CBB      0.0000         0.0006      0.4204       0.7310      
## PP.Nat_1_PBPB      0.6341         0.0000      0.8877       0.0361      
## PP.Nat_4R_PBPB     0.0000         0.0523      0.0000       0.0000      
## PP.Nat_2R_PBPB     0.0000         0.4780      0.0000       0.0000      
## PP.Nat_3R_PBPB     0.0000         0.1208      0.0003       0.0003      
## PP.Nat_1_PBFB      0.7361         0.0000      0.1289       0.0026      
## PP.Nat_4R_PBFB     0.0000         0.0025      0.0002       0.0252      
## PP.Nat_2R_PBFB     0.0000         0.9593      0.0000       0.0004      
## PP.Nat_3R_PBFB                    0.4963      0.0015       0.0012      
## PP.Nat_1_VB        0.4963                     0.0589       0.8010      
## PP.Nat_4R_VB       0.0015         0.0589                   0.0000      
## PP.Nat_2R_VB       0.0012         0.8010      0.0000                   
## PP.Nat_3R_VB       0.0000         0.4384      0.0000       0.0000      
## PP.BehavInt1_GFFB  0.0000         0.6509      0.0000       0.0000      
## PP.BehavInt2_GFFB  0.0000         0.4965      0.0000       0.0000      
## PP.BehavInt3_GFFB  0.0002         0.7539      0.0000       0.0000      
## PP.BehavInt4_GFFB  0.0002         0.4941      0.0000       0.0000      
## PP.BehavInt1_GFPRB 0.5303         0.0000      0.5091       0.3204      
## PP.BehavInt2_GFPRB 0.6319         0.0000      0.7559       0.1826      
## PP.BehavInt3_GFPRB 0.3912         0.0000      0.7663       0.1487      
## PP.BehavInt4_GFPRB 0.2823         0.0000      0.6510       0.2116      
## PP.BehavInt1_CBB   0.2428         0.0013      0.0000       0.0000      
## PP.BehavInt2_CBB   0.2341         0.0026      0.0000       0.0000      
## PP.BehavInt3_CBB   0.2385         0.0022      0.0000       0.0000      
## PP.BehavInt4_CBB   0.2531         0.0028      0.0000       0.0000      
## PP.BehavInt1_PBPB  0.5303         0.0000      0.5091       0.3204      
## PP.BehavInt2_PBPB  0.6319         0.0000      0.7559       0.1826      
## PP.BehavInt3_PBPB  0.3912         0.0000      0.7663       0.1487      
## PP.BehavInt4_PBPB  0.2823         0.0000      0.6510       0.2116      
## PP.BehavInt1_PBFB  0.4922         0.0000      0.4542       0.0268      
## PP.BehavInt2_PBFB  0.5253         0.0000      0.2743       0.0088      
## PP.BehavInt3_PBFB  0.3432         0.0000      0.3919       0.0199      
## PP.BehavInt4_PBFB  0.3898         0.0000      0.3737       0.0185      
## PP.BehavInt1_VB    0.2727         0.0000      0.1454       0.8079      
## PP.BehavInt2_VB    0.5522         0.0000      0.1699       0.6698      
## PP.BehavInt3_VB    0.2843         0.0000      0.1057       0.9557      
## PP.BehavInt4_VB    0.2964         0.0000      0.1541       0.7858      
##                    PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB      0.0000       0.0000            0.0000           
## PP.Nat_4R_GFFB     0.0063       0.8166            0.7427           
## PP.Nat_2R_GFFB     0.0060       0.9957            0.6654           
## PP.Nat_3R_GFFB     0.0000       0.0035            0.0247           
## PP.Nat_1_GFPRB     0.8300       0.0088            0.0013           
## PP.Nat_4R_GFPRB    0.0000       0.0554            0.2389           
## PP.Nat_2R_GFPRB    0.0000       0.1364            0.4398           
## PP.Nat_3R_GFPRB    0.0000       0.0300            0.1175           
## PP.Nat_1_CBB       0.0000       0.0004            0.0055           
## PP.Nat_4R_CBB      0.9144       0.0127            0.0045           
## PP.Nat_2R_CBB      0.7186       0.2145            0.1099           
## PP.Nat_3R_CBB      0.9568       0.1548            0.0694           
## PP.Nat_1_PBPB      0.0026       0.8805            0.7045           
## PP.Nat_4R_PBPB     0.0004       0.0000            0.0000           
## PP.Nat_2R_PBPB     0.0002       0.0000            0.0000           
## PP.Nat_3R_PBPB     0.0000       0.0000            0.0000           
## PP.Nat_1_PBFB      0.0003       0.3289            0.6913           
## PP.Nat_4R_PBFB     0.0650       0.0000            0.0000           
## PP.Nat_2R_PBFB     0.0005       0.0000            0.0000           
## PP.Nat_3R_PBFB     0.0000       0.0000            0.0000           
## PP.Nat_1_VB        0.4384       0.6509            0.4965           
## PP.Nat_4R_VB       0.0000       0.0000            0.0000           
## PP.Nat_2R_VB       0.0000       0.0000            0.0000           
## PP.Nat_3R_VB                    0.0000            0.0000           
## PP.BehavInt1_GFFB  0.0000                         0.0000           
## PP.BehavInt2_GFFB  0.0000       0.0000                             
## PP.BehavInt3_GFFB  0.0000       0.0000            0.0000           
## PP.BehavInt4_GFFB  0.0000       0.0000            0.0000           
## PP.BehavInt1_GFPRB 0.0573       0.4669            0.3039           
## PP.BehavInt2_GFPRB 0.0286       0.4785            0.2628           
## PP.BehavInt3_GFPRB 0.0140       0.6009            0.3717           
## PP.BehavInt4_GFPRB 0.0271       0.6068            0.3910           
## PP.BehavInt1_CBB   0.0000       0.0065            0.0316           
## PP.BehavInt2_CBB   0.0000       0.0018            0.0126           
## PP.BehavInt3_CBB   0.0000       0.0044            0.0228           
## PP.BehavInt4_CBB   0.0000       0.0044            0.0247           
## PP.BehavInt1_PBPB  0.0573       0.4669            0.3039           
## PP.BehavInt2_PBPB  0.0286       0.4785            0.2628           
## PP.BehavInt3_PBPB  0.0140       0.6009            0.3717           
## PP.BehavInt4_PBPB  0.0271       0.6068            0.3910           
## PP.BehavInt1_PBFB  0.0049       0.8822            0.7564           
## PP.BehavInt2_PBFB  0.0013       0.6009            0.9975           
## PP.BehavInt3_PBFB  0.0023       0.6344            0.9810           
## PP.BehavInt4_PBFB  0.0020       0.6156            0.9712           
## PP.BehavInt1_VB    0.2183       0.4529            0.3467           
## PP.BehavInt2_VB    0.2140       0.3557            0.2212           
## PP.BehavInt3_VB    0.3027       0.4525            0.3669           
## PP.BehavInt4_VB    0.2199       0.3924            0.2868           
##                    PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB      0.0000            0.0000            0.4073            
## PP.Nat_4R_GFFB     0.6037            0.9813            0.0000            
## PP.Nat_2R_GFFB     0.7974            0.8575            0.0000            
## PP.Nat_3R_GFFB     0.0015            0.0074            0.0000            
## PP.Nat_1_GFPRB     0.0167            0.0091            0.2613            
## PP.Nat_4R_GFPRB    0.0294            0.0803            0.0000            
## PP.Nat_2R_GFPRB    0.0769            0.1765            0.0000            
## PP.Nat_3R_GFPRB    0.0159            0.0639            0.0000            
## PP.Nat_1_CBB       0.0001            0.0009            0.0000            
## PP.Nat_4R_CBB      0.0151            0.0128            0.7698            
## PP.Nat_2R_CBB      0.2490            0.2549            0.0645            
## PP.Nat_3R_CBB      0.1776            0.1873            0.0124            
## PP.Nat_1_PBPB      0.6909            0.9945            0.0000            
## PP.Nat_4R_PBPB     0.0000            0.0000            0.0679            
## PP.Nat_2R_PBPB     0.0000            0.0000            0.3167            
## PP.Nat_3R_PBPB     0.0000            0.0002            0.0423            
## PP.Nat_1_PBFB      0.2283            0.4443            0.0000            
## PP.Nat_4R_PBFB     0.0002            0.0001            0.0004            
## PP.Nat_2R_PBFB     0.0000            0.0000            0.7019            
## PP.Nat_3R_PBFB     0.0002            0.0002            0.5303            
## PP.Nat_1_VB        0.7539            0.4941            0.0000            
## PP.Nat_4R_VB       0.0000            0.0000            0.5091            
## PP.Nat_2R_VB       0.0000            0.0000            0.3204            
## PP.Nat_3R_VB       0.0000            0.0000            0.0573            
## PP.BehavInt1_GFFB  0.0000            0.0000            0.4669            
## PP.BehavInt2_GFFB  0.0000            0.0000            0.3039            
## PP.BehavInt3_GFFB                    0.0000            0.6055            
## PP.BehavInt4_GFFB  0.0000                              0.3542            
## PP.BehavInt1_GFPRB 0.6055            0.3542                              
## PP.BehavInt2_GFPRB 0.6454            0.3526            0.0000            
## PP.BehavInt3_GFPRB 0.7700            0.4653            0.0000            
## PP.BehavInt4_GFPRB 0.7644            0.4567            0.0000            
## PP.BehavInt1_CBB   0.0028            0.0130            0.0000            
## PP.BehavInt2_CBB   0.0006            0.0038            0.0000            
## PP.BehavInt3_CBB   0.0018            0.0087            0.0000            
## PP.BehavInt4_CBB   0.0018            0.0085            0.0000            
## PP.BehavInt1_PBPB  0.6055            0.3542            0.0000            
## PP.BehavInt2_PBPB  0.6454            0.3526            0.0000            
## PP.BehavInt3_PBPB  0.7700            0.4653            0.0000            
## PP.BehavInt4_PBPB  0.7644            0.4567            0.0000            
## PP.BehavInt1_PBFB  0.7225            0.9417            0.0000            
## PP.BehavInt2_PBFB  0.4561            0.7669            0.0000            
## PP.BehavInt3_PBFB  0.5033            0.8157            0.0000            
## PP.BehavInt4_PBFB  0.4799            0.7958            0.0000            
## PP.BehavInt1_VB    0.5474            0.3352            0.0000            
## PP.BehavInt2_VB    0.4693            0.2643            0.0000            
## PP.BehavInt3_VB    0.5389            0.3349            0.0000            
## PP.BehavInt4_VB    0.4839            0.2821            0.0000            
##                    PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB      0.4043             0.4905             0.4694            
## PP.Nat_4R_GFFB     0.0000             0.0000             0.0000            
## PP.Nat_2R_GFFB     0.0000             0.0000             0.0000            
## PP.Nat_3R_GFFB     0.0000             0.0000             0.0000            
## PP.Nat_1_GFPRB     0.0841             0.1876             0.2464            
## PP.Nat_4R_GFPRB    0.0000             0.0000             0.0000            
## PP.Nat_2R_GFPRB    0.0000             0.0000             0.0000            
## PP.Nat_3R_GFPRB    0.0000             0.0000             0.0000            
## PP.Nat_1_CBB       0.0000             0.0000             0.0000            
## PP.Nat_4R_CBB      0.9614             0.7846             0.5295            
## PP.Nat_2R_CBB      0.1375             0.0764             0.0289            
## PP.Nat_3R_CBB      0.0387             0.0208             0.0068            
## PP.Nat_1_PBPB      0.0000             0.0000             0.0000            
## PP.Nat_4R_PBPB     0.0911             0.1151             0.1264            
## PP.Nat_2R_PBPB     0.3541             0.4094             0.4930            
## PP.Nat_3R_PBPB     0.0633             0.0281             0.0240            
## PP.Nat_1_PBFB      0.0000             0.0000             0.0000            
## PP.Nat_4R_PBFB     0.0005             0.0010             0.0022            
## PP.Nat_2R_PBFB     0.7404             0.8750             0.9902            
## PP.Nat_3R_PBFB     0.6319             0.3912             0.2823            
## PP.Nat_1_VB        0.0000             0.0000             0.0000            
## PP.Nat_4R_VB       0.7559             0.7663             0.6510            
## PP.Nat_2R_VB       0.1826             0.1487             0.2116            
## PP.Nat_3R_VB       0.0286             0.0140             0.0271            
## PP.BehavInt1_GFFB  0.4785             0.6009             0.6068            
## PP.BehavInt2_GFFB  0.2628             0.3717             0.3910            
## PP.BehavInt3_GFFB  0.6454             0.7700             0.7644            
## PP.BehavInt4_GFFB  0.3526             0.4653             0.4567            
## PP.BehavInt1_GFPRB 0.0000             0.0000             0.0000            
## PP.BehavInt2_GFPRB                    0.0000             0.0000            
## PP.BehavInt3_GFPRB 0.0000                                0.0000            
## PP.BehavInt4_GFPRB 0.0000             0.0000                               
## PP.BehavInt1_CBB   0.0000             0.0000             0.0000            
## PP.BehavInt2_CBB   0.0000             0.0000             0.0000            
## PP.BehavInt3_CBB   0.0000             0.0000             0.0000            
## PP.BehavInt4_CBB   0.0000             0.0000             0.0000            
## PP.BehavInt1_PBPB  0.0000             0.0000             0.0000            
## PP.BehavInt2_PBPB  0.0000             0.0000             0.0000            
## PP.BehavInt3_PBPB  0.0000             0.0000             0.0000            
## PP.BehavInt4_PBPB  0.0000             0.0000             0.0000            
## PP.BehavInt1_PBFB  0.0000             0.0000             0.0000            
## PP.BehavInt2_PBFB  0.0000             0.0000             0.0000            
## PP.BehavInt3_PBFB  0.0000             0.0000             0.0000            
## PP.BehavInt4_PBFB  0.0000             0.0000             0.0000            
## PP.BehavInt1_VB    0.0000             0.0000             0.0000            
## PP.BehavInt2_VB    0.0000             0.0000             0.0000            
## PP.BehavInt3_VB    0.0000             0.0000             0.0000            
## PP.BehavInt4_VB    0.0000             0.0000             0.0000            
##                    PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB      0.0089           0.0024           0.0059          
## PP.Nat_4R_GFFB     0.0000           0.0000           0.0000          
## PP.Nat_2R_GFFB     0.0000           0.0000           0.0000          
## PP.Nat_3R_GFFB     0.0000           0.0000           0.0000          
## PP.Nat_1_GFPRB     0.1057           0.1086           0.0990          
## PP.Nat_4R_GFPRB    0.0000           0.0000           0.0000          
## PP.Nat_2R_GFPRB    0.0000           0.0000           0.0000          
## PP.Nat_3R_GFPRB    0.0000           0.0000           0.0000          
## PP.Nat_1_CBB       0.0000           0.0000           0.0000          
## PP.Nat_4R_CBB      0.2535           0.2586           0.2674          
## PP.Nat_2R_CBB      0.5990           0.4740           0.5351          
## PP.Nat_3R_CBB      0.6880           0.8455           0.7641          
## PP.Nat_1_PBPB      0.0000           0.0000           0.0000          
## PP.Nat_4R_PBPB     0.1056           0.0798           0.0977          
## PP.Nat_2R_PBPB     0.0577           0.0358           0.0562          
## PP.Nat_3R_PBPB     0.0004           0.0008           0.0006          
## PP.Nat_1_PBFB      0.0000           0.0000           0.0000          
## PP.Nat_4R_PBFB     0.1419           0.1978           0.1733          
## PP.Nat_2R_PBFB     0.4328           0.3701           0.4005          
## PP.Nat_3R_PBFB     0.2428           0.2341           0.2385          
## PP.Nat_1_VB        0.0013           0.0026           0.0022          
## PP.Nat_4R_VB       0.0000           0.0000           0.0000          
## PP.Nat_2R_VB       0.0000           0.0000           0.0000          
## PP.Nat_3R_VB       0.0000           0.0000           0.0000          
## PP.BehavInt1_GFFB  0.0065           0.0018           0.0044          
## PP.BehavInt2_GFFB  0.0316           0.0126           0.0228          
## PP.BehavInt3_GFFB  0.0028           0.0006           0.0018          
## PP.BehavInt4_GFFB  0.0130           0.0038           0.0087          
## PP.BehavInt1_GFPRB 0.0000           0.0000           0.0000          
## PP.BehavInt2_GFPRB 0.0000           0.0000           0.0000          
## PP.BehavInt3_GFPRB 0.0000           0.0000           0.0000          
## PP.BehavInt4_GFPRB 0.0000           0.0000           0.0000          
## PP.BehavInt1_CBB                    0.0000           0.0000          
## PP.BehavInt2_CBB   0.0000                            0.0000          
## PP.BehavInt3_CBB   0.0000           0.0000                           
## PP.BehavInt4_CBB   0.0000           0.0000           0.0000          
## PP.BehavInt1_PBPB  0.0000           0.0000           0.0000          
## PP.BehavInt2_PBPB  0.0000           0.0000           0.0000          
## PP.BehavInt3_PBPB  0.0000           0.0000           0.0000          
## PP.BehavInt4_PBPB  0.0000           0.0000           0.0000          
## PP.BehavInt1_PBFB  0.0000           0.0000           0.0000          
## PP.BehavInt2_PBFB  0.0000           0.0000           0.0000          
## PP.BehavInt3_PBFB  0.0000           0.0000           0.0000          
## PP.BehavInt4_PBFB  0.0000           0.0000           0.0000          
## PP.BehavInt1_VB    0.0004           0.0011           0.0006          
## PP.BehavInt2_VB    0.0003           0.0006           0.0005          
## PP.BehavInt3_VB    0.0006           0.0021           0.0010          
## PP.BehavInt4_VB    0.0004           0.0014           0.0007          
##                    PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB      0.0051           0.4073            0.4043           
## PP.Nat_4R_GFFB     0.0000           0.0000            0.0000           
## PP.Nat_2R_GFFB     0.0000           0.0000            0.0000           
## PP.Nat_3R_GFFB     0.0000           0.0000            0.0000           
## PP.Nat_1_GFPRB     0.1116           0.2613            0.0841           
## PP.Nat_4R_GFPRB    0.0000           0.0000            0.0000           
## PP.Nat_2R_GFPRB    0.0000           0.0000            0.0000           
## PP.Nat_3R_GFPRB    0.0000           0.0000            0.0000           
## PP.Nat_1_CBB       0.0000           0.0000            0.0000           
## PP.Nat_4R_CBB      0.2258           0.7698            0.9614           
## PP.Nat_2R_CBB      0.5242           0.0645            0.1375           
## PP.Nat_3R_CBB      0.8005           0.0124            0.0387           
## PP.Nat_1_PBPB      0.0000           0.0000            0.0000           
## PP.Nat_4R_PBPB     0.1120           0.0679            0.0911           
## PP.Nat_2R_PBPB     0.0582           0.3167            0.3541           
## PP.Nat_3R_PBPB     0.0007           0.0423            0.0633           
## PP.Nat_1_PBFB      0.0000           0.0000            0.0000           
## PP.Nat_4R_PBFB     0.1473           0.0004            0.0005           
## PP.Nat_2R_PBFB     0.4306           0.7019            0.7404           
## PP.Nat_3R_PBFB     0.2531           0.5303            0.6319           
## PP.Nat_1_VB        0.0028           0.0000            0.0000           
## PP.Nat_4R_VB       0.0000           0.5091            0.7559           
## PP.Nat_2R_VB       0.0000           0.3204            0.1826           
## PP.Nat_3R_VB       0.0000           0.0573            0.0286           
## PP.BehavInt1_GFFB  0.0044           0.4669            0.4785           
## PP.BehavInt2_GFFB  0.0247           0.3039            0.2628           
## PP.BehavInt3_GFFB  0.0018           0.6055            0.6454           
## PP.BehavInt4_GFFB  0.0085           0.3542            0.3526           
## PP.BehavInt1_GFPRB 0.0000           0.0000            0.0000           
## PP.BehavInt2_GFPRB 0.0000           0.0000            0.0000           
## PP.BehavInt3_GFPRB 0.0000           0.0000            0.0000           
## PP.BehavInt4_GFPRB 0.0000           0.0000            0.0000           
## PP.BehavInt1_CBB   0.0000           0.0000            0.0000           
## PP.BehavInt2_CBB   0.0000           0.0000            0.0000           
## PP.BehavInt3_CBB   0.0000           0.0000            0.0000           
## PP.BehavInt4_CBB                    0.0000            0.0000           
## PP.BehavInt1_PBPB  0.0000                             0.0000           
## PP.BehavInt2_PBPB  0.0000           0.0000                             
## PP.BehavInt3_PBPB  0.0000           0.0000            0.0000           
## PP.BehavInt4_PBPB  0.0000           0.0000            0.0000           
## PP.BehavInt1_PBFB  0.0000           0.0000            0.0000           
## PP.BehavInt2_PBFB  0.0000           0.0000            0.0000           
## PP.BehavInt3_PBFB  0.0000           0.0000            0.0000           
## PP.BehavInt4_PBFB  0.0000           0.0000            0.0000           
## PP.BehavInt1_VB    0.0006           0.0000            0.0000           
## PP.BehavInt2_VB    0.0006           0.0000            0.0000           
## PP.BehavInt3_VB    0.0010           0.0000            0.0000           
## PP.BehavInt4_VB    0.0007           0.0000            0.0000           
##                    PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB      0.4905            0.4694            0.9372           
## PP.Nat_4R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_2R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_3R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_1_GFPRB     0.1876            0.2464            0.0463           
## PP.Nat_4R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_2R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_3R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_1_CBB       0.0000            0.0000            0.0000           
## PP.Nat_4R_CBB      0.7846            0.5295            0.9649           
## PP.Nat_2R_CBB      0.0764            0.0289            0.2856           
## PP.Nat_3R_CBB      0.0208            0.0068            0.0878           
## PP.Nat_1_PBPB      0.0000            0.0000            0.0000           
## PP.Nat_4R_PBPB     0.1151            0.1264            0.4969           
## PP.Nat_2R_PBPB     0.4094            0.4930            0.8688           
## PP.Nat_3R_PBPB     0.0281            0.0240            0.0245           
## PP.Nat_1_PBFB      0.0000            0.0000            0.0000           
## PP.Nat_4R_PBFB     0.0010            0.0022            0.0022           
## PP.Nat_2R_PBFB     0.8750            0.9902            0.8417           
## PP.Nat_3R_PBFB     0.3912            0.2823            0.4922           
## PP.Nat_1_VB        0.0000            0.0000            0.0000           
## PP.Nat_4R_VB       0.7663            0.6510            0.4542           
## PP.Nat_2R_VB       0.1487            0.2116            0.0268           
## PP.Nat_3R_VB       0.0140            0.0271            0.0049           
## PP.BehavInt1_GFFB  0.6009            0.6068            0.8822           
## PP.BehavInt2_GFFB  0.3717            0.3910            0.7564           
## PP.BehavInt3_GFFB  0.7700            0.7644            0.7225           
## PP.BehavInt4_GFFB  0.4653            0.4567            0.9417           
## PP.BehavInt1_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt2_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt3_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt4_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt1_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt2_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt3_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt4_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt1_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt2_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt3_PBPB                    0.0000            0.0000           
## PP.BehavInt4_PBPB  0.0000                              0.0000           
## PP.BehavInt1_PBFB  0.0000            0.0000                             
## PP.BehavInt2_PBFB  0.0000            0.0000            0.0000           
## PP.BehavInt3_PBFB  0.0000            0.0000            0.0000           
## PP.BehavInt4_PBFB  0.0000            0.0000            0.0000           
## PP.BehavInt1_VB    0.0000            0.0000            0.0000           
## PP.BehavInt2_VB    0.0000            0.0000            0.0000           
## PP.BehavInt3_VB    0.0000            0.0000            0.0000           
## PP.BehavInt4_VB    0.0000            0.0000            0.0000           
##                    PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB      0.6968            0.7981            0.7596           
## PP.Nat_4R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_2R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_3R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_1_GFPRB     0.0433            0.0975            0.1067           
## PP.Nat_4R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_2R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_3R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_1_CBB       0.0000            0.0000            0.0000           
## PP.Nat_4R_CBB      0.8031            0.8894            0.9876           
## PP.Nat_2R_CBB      0.4689            0.2195            0.2934           
## PP.Nat_3R_CBB      0.1924            0.0679            0.0990           
## PP.Nat_1_PBPB      0.0000            0.0000            0.0000           
## PP.Nat_4R_PBPB     0.5769            0.6994            0.6436           
## PP.Nat_2R_PBPB     0.9918            0.9038            0.9847           
## PP.Nat_3R_PBPB     0.0334            0.0117            0.0144           
## PP.Nat_1_PBFB      0.0000            0.0000            0.0000           
## PP.Nat_4R_PBFB     0.0031            0.0045            0.0037           
## PP.Nat_2R_PBFB     0.8623            0.9996            0.9073           
## PP.Nat_3R_PBFB     0.5253            0.3432            0.3898           
## PP.Nat_1_VB        0.0000            0.0000            0.0000           
## PP.Nat_4R_VB       0.2743            0.3919            0.3737           
## PP.Nat_2R_VB       0.0088            0.0199            0.0185           
## PP.Nat_3R_VB       0.0013            0.0023            0.0020           
## PP.BehavInt1_GFFB  0.6009            0.6344            0.6156           
## PP.BehavInt2_GFFB  0.9975            0.9810            0.9712           
## PP.BehavInt3_GFFB  0.4561            0.5033            0.4799           
## PP.BehavInt4_GFFB  0.7669            0.8157            0.7958           
## PP.BehavInt1_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt2_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt3_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt4_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt1_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt2_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt3_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt4_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt1_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt2_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt3_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt4_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt1_PBFB  0.0000            0.0000            0.0000           
## PP.BehavInt2_PBFB                    0.0000            0.0000           
## PP.BehavInt3_PBFB  0.0000                              0.0000           
## PP.BehavInt4_PBFB  0.0000            0.0000                             
## PP.BehavInt1_VB    0.0000            0.0000            0.0000           
## PP.BehavInt2_VB    0.0000            0.0000            0.0000           
## PP.BehavInt3_VB    0.0000            0.0000            0.0000           
## PP.BehavInt4_VB    0.0000            0.0000            0.0000           
##                    PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB      0.3462          0.2443          0.3179         
## PP.Nat_4R_GFFB     0.0000          0.0000          0.0000         
## PP.Nat_2R_GFFB     0.0000          0.0000          0.0000         
## PP.Nat_3R_GFFB     0.0000          0.0000          0.0001         
## PP.Nat_1_GFPRB     0.5729          0.2083          0.7437         
## PP.Nat_4R_GFPRB    0.0007          0.0000          0.0019         
## PP.Nat_2R_GFPRB    0.0001          0.0000          0.0003         
## PP.Nat_3R_GFPRB    0.0000          0.0000          0.0003         
## PP.Nat_1_CBB       0.0094          0.0049          0.0169         
## PP.Nat_4R_CBB      0.0889          0.1611          0.0542         
## PP.Nat_2R_CBB      0.0010          0.0069          0.0003         
## PP.Nat_3R_CBB      0.0004          0.0025          0.0000         
## PP.Nat_1_PBPB      0.0000          0.0000          0.0000         
## PP.Nat_4R_PBPB     0.0510          0.0139          0.0554         
## PP.Nat_2R_PBPB     0.4804          0.1995          0.4538         
## PP.Nat_3R_PBPB     0.0576          0.3288          0.0682         
## PP.Nat_1_PBFB      0.0000          0.0000          0.0000         
## PP.Nat_4R_PBFB     0.0032          0.0023          0.0047         
## PP.Nat_2R_PBFB     0.8177          0.8034          0.8596         
## PP.Nat_3R_PBFB     0.2727          0.5522          0.2843         
## PP.Nat_1_VB        0.0000          0.0000          0.0000         
## PP.Nat_4R_VB       0.1454          0.1699          0.1057         
## PP.Nat_2R_VB       0.8079          0.6698          0.9557         
## PP.Nat_3R_VB       0.2183          0.2140          0.3027         
## PP.BehavInt1_GFFB  0.4529          0.3557          0.4525         
## PP.BehavInt2_GFFB  0.3467          0.2212          0.3669         
## PP.BehavInt3_GFFB  0.5474          0.4693          0.5389         
## PP.BehavInt4_GFFB  0.3352          0.2643          0.3349         
## PP.BehavInt1_GFPRB 0.0000          0.0000          0.0000         
## PP.BehavInt2_GFPRB 0.0000          0.0000          0.0000         
## PP.BehavInt3_GFPRB 0.0000          0.0000          0.0000         
## PP.BehavInt4_GFPRB 0.0000          0.0000          0.0000         
## PP.BehavInt1_CBB   0.0004          0.0003          0.0006         
## PP.BehavInt2_CBB   0.0011          0.0006          0.0021         
## PP.BehavInt3_CBB   0.0006          0.0005          0.0010         
## PP.BehavInt4_CBB   0.0006          0.0006          0.0010         
## PP.BehavInt1_PBPB  0.0000          0.0000          0.0000         
## PP.BehavInt2_PBPB  0.0000          0.0000          0.0000         
## PP.BehavInt3_PBPB  0.0000          0.0000          0.0000         
## PP.BehavInt4_PBPB  0.0000          0.0000          0.0000         
## PP.BehavInt1_PBFB  0.0000          0.0000          0.0000         
## PP.BehavInt2_PBFB  0.0000          0.0000          0.0000         
## PP.BehavInt3_PBFB  0.0000          0.0000          0.0000         
## PP.BehavInt4_PBFB  0.0000          0.0000          0.0000         
## PP.BehavInt1_VB                    0.0000          0.0000         
## PP.BehavInt2_VB    0.0000                          0.0000         
## PP.BehavInt3_VB    0.0000          0.0000                         
## PP.BehavInt4_VB    0.0000          0.0000          0.0000         
##                    PP.BehavInt4_VB
## PP.Nat_1_GFFB      0.2993         
## PP.Nat_4R_GFFB     0.0000         
## PP.Nat_2R_GFFB     0.0000         
## PP.Nat_3R_GFFB     0.0000         
## PP.Nat_1_GFPRB     0.5869         
## PP.Nat_4R_GFPRB    0.0006         
## PP.Nat_2R_GFPRB    0.0001         
## PP.Nat_3R_GFPRB    0.0001         
## PP.Nat_1_CBB       0.0126         
## PP.Nat_4R_CBB      0.0704         
## PP.Nat_2R_CBB      0.0009         
## PP.Nat_3R_CBB      0.0003         
## PP.Nat_1_PBPB      0.0000         
## PP.Nat_4R_PBPB     0.0495         
## PP.Nat_2R_PBPB     0.3842         
## PP.Nat_3R_PBPB     0.0770         
## PP.Nat_1_PBFB      0.0000         
## PP.Nat_4R_PBFB     0.0051         
## PP.Nat_2R_PBFB     0.8119         
## PP.Nat_3R_PBFB     0.2964         
## PP.Nat_1_VB        0.0000         
## PP.Nat_4R_VB       0.1541         
## PP.Nat_2R_VB       0.7858         
## PP.Nat_3R_VB       0.2199         
## PP.BehavInt1_GFFB  0.3924         
## PP.BehavInt2_GFFB  0.2868         
## PP.BehavInt3_GFFB  0.4839         
## PP.BehavInt4_GFFB  0.2821         
## PP.BehavInt1_GFPRB 0.0000         
## PP.BehavInt2_GFPRB 0.0000         
## PP.BehavInt3_GFPRB 0.0000         
## PP.BehavInt4_GFPRB 0.0000         
## PP.BehavInt1_CBB   0.0004         
## PP.BehavInt2_CBB   0.0014         
## PP.BehavInt3_CBB   0.0007         
## PP.BehavInt4_CBB   0.0007         
## PP.BehavInt1_PBPB  0.0000         
## PP.BehavInt2_PBPB  0.0000         
## PP.BehavInt3_PBPB  0.0000         
## PP.BehavInt4_PBPB  0.0000         
## PP.BehavInt1_PBFB  0.0000         
## PP.BehavInt2_PBFB  0.0000         
## PP.BehavInt3_PBFB  0.0000         
## PP.BehavInt4_PBFB  0.0000         
## PP.BehavInt1_VB    0.0000         
## PP.BehavInt2_VB    0.0000         
## PP.BehavInt3_VB    0.0000         
## PP.BehavInt4_VB
library(corrplot)
corrplot(mydata.cor4, method="color")

corrplot(mydata.cor4, addCoef.col = 1,  number.cex = 0.3, method = 'number')

#Naturalness (TOTAL SCALE), Support, and Individual Difference Measures
PP$corAll <- data.frame(PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot, PP$Behav_Scale_GFFB, PP$Behav_Scale_GFPRB, PP$Behav_Scale_CBB, PP$Behav_Scale_PBPB, PP$Behav_Scale_PBFB, PP$Behav_Scale_VB, PP$CCB_Scale,PP$CNS_Scale,PP$ATNS_Scale, PP$CollScale, PP$IndScale)

mydata.cor6 = cor(PP$corAll, use = "pairwise.complete.obs")
head(round(mydata.cor6,2))
##                 PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB            1.00           0.18           0.18          -0.15
## PP.Nat_4R_GFFB           0.18           1.00           0.61           0.50
## PP.Nat_2R_GFFB           0.18           0.61           1.00           0.44
## PP.Nat_3R_GFFB          -0.15           0.50           0.44           1.00
## PP.Nat_1_GFPRB           0.42           0.15           0.07           0.01
## PP.Nat_4R_GFPRB          0.04           0.47           0.21           0.33
##                 PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB             0.42            0.04           -0.03           -0.04
## PP.Nat_4R_GFFB            0.15            0.47            0.49            0.38
## PP.Nat_2R_GFFB            0.07            0.21            0.29            0.17
## PP.Nat_3R_GFFB            0.01            0.33            0.34            0.49
## PP.Nat_1_GFPRB            1.00            0.38            0.25            0.14
## PP.Nat_4R_GFPRB           0.38            1.00            0.68            0.52
##                 PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB           0.35         -0.01          0.04          0.00
## PP.Nat_4R_GFFB         -0.36          0.20          0.14          0.05
## PP.Nat_2R_GFFB         -0.32          0.13          0.22          0.21
## PP.Nat_3R_GFFB         -0.41          0.08          0.07          0.01
## PP.Nat_1_GFPRB         -0.10         -0.05         -0.13         -0.13
## PP.Nat_4R_GFPRB        -0.34          0.11         -0.06         -0.06
##                 PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB            0.14          -0.21          -0.26          -0.17
## PP.Nat_4R_GFFB          -0.23           0.08           0.00          -0.04
## PP.Nat_2R_GFFB          -0.27           0.15           0.04           0.06
## PP.Nat_3R_GFFB          -0.36           0.09           0.14           0.10
## PP.Nat_1_GFPRB          -0.04           0.03           0.05          -0.33
## PP.Nat_4R_GFPRB         -0.23           0.20           0.11          -0.12
##                 PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB            0.17           0.24           0.28           0.29
## PP.Nat_4R_GFFB          -0.35          -0.07           0.03           0.05
## PP.Nat_2R_GFFB          -0.33           0.05          -0.11          -0.07
## PP.Nat_3R_GFFB          -0.37          -0.11          -0.11          -0.15
## PP.Nat_1_GFPRB          -0.06           0.23           0.20           0.28
## PP.Nat_4R_GFPRB         -0.35          -0.01          -0.04           0.05
##                 PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB          0.09        -0.21        -0.22        -0.24
## PP.Nat_4R_GFFB        -0.13         0.25         0.13         0.05
## PP.Nat_2R_GFFB        -0.09         0.15         0.12         0.12
## PP.Nat_3R_GFFB        -0.04         0.27         0.22         0.20
## PP.Nat_1_GFPRB         0.09         0.02         0.07         0.06
## PP.Nat_4R_GFPRB       -0.11         0.32         0.39         0.25
##                 PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Nat_1_GFFB                0.59              0.52              0.58
## PP.Nat_4R_GFFB               0.13              0.18              0.10
## PP.Nat_2R_GFFB               0.16              0.16              0.12
## PP.Nat_3R_GFFB              -0.19             -0.09             -0.21
## PP.Nat_1_GFPRB               0.27              0.31              0.24
## PP.Nat_4R_GFPRB             -0.04              0.05             -0.03
##                 PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Nat_1_GFFB                0.59               0.08               0.03
## PP.Nat_4R_GFFB               0.15              -0.19              -0.24
## PP.Nat_2R_GFFB               0.14              -0.29              -0.31
## PP.Nat_3R_GFFB              -0.17              -0.20              -0.23
## PP.Nat_1_GFPRB               0.26               0.15               0.04
## PP.Nat_4R_GFPRB             -0.05              -0.04              -0.13
##                 PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Nat_1_GFFB                 0.02               0.02             0.26
## PP.Nat_4R_GFFB               -0.22              -0.29            -0.26
## PP.Nat_2R_GFFB               -0.34              -0.33            -0.27
## PP.Nat_3R_GFFB               -0.22              -0.22            -0.29
## PP.Nat_1_GFPRB                0.08               0.07            -0.02
## PP.Nat_4R_GFPRB              -0.10              -0.05            -0.27
##                 PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Nat_1_GFFB               0.35             0.29             0.31
## PP.Nat_4R_GFFB             -0.29            -0.29            -0.26
## PP.Nat_2R_GFFB             -0.25            -0.28            -0.28
## PP.Nat_3R_GFFB             -0.29            -0.32            -0.33
## PP.Nat_1_GFPRB             -0.03            -0.06            -0.03
## PP.Nat_4R_GFPRB            -0.34            -0.33            -0.30
##                 PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Nat_1_GFFB                0.08              0.03              0.02
## PP.Nat_4R_GFFB              -0.19             -0.24             -0.22
## PP.Nat_2R_GFFB              -0.29             -0.31             -0.34
## PP.Nat_3R_GFFB              -0.20             -0.23             -0.22
## PP.Nat_1_GFPRB               0.15              0.04              0.08
## PP.Nat_4R_GFPRB             -0.04             -0.13             -0.10
##                 PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Nat_1_GFFB                0.02              0.03              0.16
## PP.Nat_4R_GFFB              -0.29             -0.38             -0.38
## PP.Nat_2R_GFFB              -0.33             -0.37             -0.29
## PP.Nat_3R_GFFB              -0.22             -0.34             -0.39
## PP.Nat_1_GFPRB               0.07             -0.10             -0.04
## PP.Nat_4R_GFPRB             -0.05             -0.27             -0.28
##                 PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Nat_1_GFFB                0.08              0.12            0.05
## PP.Nat_4R_GFFB              -0.37             -0.35           -0.14
## PP.Nat_2R_GFFB              -0.36             -0.31           -0.17
## PP.Nat_3R_GFFB              -0.38             -0.41           -0.11
## PP.Nat_1_GFPRB              -0.01              0.05            0.10
## PP.Nat_4R_GFPRB             -0.22             -0.20           -0.08
##                 PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB PP.CCB_48
## PP.Nat_1_GFFB              0.04            0.05            0.05     -0.05
## PP.Nat_4R_GFFB            -0.17           -0.17           -0.15     -0.06
## PP.Nat_2R_GFFB            -0.12           -0.18           -0.18     -0.17
## PP.Nat_3R_GFFB            -0.09           -0.10           -0.09     -0.02
## PP.Nat_1_GFPRB             0.03            0.17            0.13      0.07
## PP.Nat_4R_GFPRB           -0.21           -0.03           -0.12      0.02
##                 PP.CCB_49 PP.CCB_50 PP.CCB_51 PP.CNS_1 PP.CNS_2 PP.CNS_3
## PP.Nat_1_GFFB       -0.03      0.01      0.07     0.12     0.16     0.11
## PP.Nat_4R_GFFB      -0.10     -0.05     -0.05    -0.10    -0.04    -0.03
## PP.Nat_2R_GFFB      -0.14     -0.13     -0.16    -0.11    -0.12    -0.14
## PP.Nat_3R_GFFB       0.01     -0.01     -0.03    -0.13    -0.09    -0.03
## PP.Nat_1_GFPRB       0.08      0.04      0.06     0.12     0.22     0.11
## PP.Nat_4R_GFPRB      0.00      0.01     -0.06    -0.09     0.00    -0.06
##                 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3 PP.ATNS_4 PP.ATNS_5 PP.Ind_3
## PP.Nat_1_GFFB        0.20      -0.23      0.10      0.09      0.11     0.22
## PP.Nat_4R_GFFB      -0.12       0.23     -0.13     -0.04     -0.10    -0.15
## PP.Nat_2R_GFFB      -0.14       0.09     -0.10     -0.08     -0.10    -0.10
## PP.Nat_3R_GFFB      -0.17       0.23     -0.11     -0.08     -0.10    -0.24
## PP.Nat_1_GFPRB       0.10       0.12      0.04      0.11      0.08     0.12
## PP.Nat_4R_GFPRB     -0.09       0.34     -0.20     -0.10     -0.12    -0.21
##                 PP.Ind_4 PP.Ind_7 PP.Ind_8 PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.Nat_1_GFFB       0.22     0.19     0.22     0.12     0.12     0.12     0.13
## PP.Nat_4R_GFFB      0.05    -0.12     0.04     0.06     0.02    -0.02    -0.02
## PP.Nat_2R_GFFB      0.00    -0.09     0.01     0.00    -0.06    -0.13    -0.04
## PP.Nat_3R_GFFB     -0.05    -0.20    -0.09    -0.05    -0.02    -0.12    -0.05
## PP.Nat_1_GFPRB      0.26     0.10     0.31     0.26     0.24     0.21     0.26
## PP.Nat_4R_GFPRB     0.01    -0.17    -0.02     0.06     0.00     0.01     0.00
library("Hmisc")
mydata.rcorr6 = rcorr(as.matrix(mydata.cor6))
mydata.rcorr6
##                    PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB               1.00          -0.02           0.02          -0.42
## PP.Nat_4R_GFFB             -0.02           1.00           0.92           0.85
## PP.Nat_2R_GFFB              0.02           0.92           1.00           0.79
## PP.Nat_3R_GFFB             -0.42           0.85           0.79           1.00
## PP.Nat_1_GFPRB              0.45           0.34           0.22           0.11
## PP.Nat_4R_GFPRB            -0.27           0.82           0.66           0.80
## PP.Nat_2R_GFPRB            -0.22           0.83           0.68           0.79
## PP.Nat_3R_GFPRB            -0.31           0.81           0.68           0.87
## PP.Nat_1_CBB                0.50          -0.73          -0.66          -0.84
## PP.Nat_4R_CBB              -0.22           0.05           0.10           0.08
## PP.Nat_2R_CBB              -0.08           0.12           0.26           0.10
## PP.Nat_3R_CBB              -0.11           0.16           0.32           0.15
## PP.Nat_1_PBPB               0.04          -0.79          -0.79          -0.74
## PP.Nat_4R_PBPB             -0.66           0.01           0.02           0.23
## PP.Nat_2R_PBPB             -0.73           0.00           0.04           0.28
## PP.Nat_3R_PBPB             -0.54           0.20           0.34           0.40
## PP.Nat_1_PBFB               0.14          -0.86          -0.82          -0.81
## PP.Nat_4R_PBFB              0.53           0.22           0.24           0.00
## PP.Nat_2R_PBFB              0.56          -0.05          -0.14          -0.26
## PP.Nat_3R_PBFB              0.50          -0.08          -0.20          -0.30
## PP.Nat_1_VB                -0.10          -0.63          -0.66          -0.49
## PP.Nat_4R_VB               -0.71           0.28           0.20           0.51
## PP.Nat_2R_VB               -0.70           0.39           0.33           0.63
## PP.Nat_3R_VB               -0.65           0.40           0.40           0.64
## PP.BehavInt1_GFFB           0.92          -0.05           0.00          -0.43
## PP.BehavInt2_GFFB           0.89           0.03           0.06          -0.35
## PP.BehavInt3_GFFB           0.91          -0.09          -0.04          -0.46
## PP.BehavInt4_GFFB           0.91          -0.02           0.02          -0.40
## PP.BehavInt1_GFPRB         -0.09          -0.71          -0.77          -0.60
## PP.BehavInt2_GFPRB         -0.09          -0.76          -0.80          -0.64
## PP.BehavInt3_GFPRB         -0.08          -0.74          -0.80          -0.63
## PP.BehavInt4_GFPRB         -0.08          -0.75          -0.80          -0.63
## PP.BehavInt1_CBB            0.39          -0.73          -0.71          -0.80
## PP.BehavInt2_CBB            0.44          -0.72          -0.68          -0.81
## PP.BehavInt3_CBB            0.40          -0.74          -0.70          -0.81
## PP.BehavInt4_CBB            0.41          -0.72          -0.70          -0.80
## PP.BehavInt1_PBPB          -0.09          -0.71          -0.77          -0.60
## PP.BehavInt2_PBPB          -0.09          -0.76          -0.80          -0.64
## PP.BehavInt3_PBPB          -0.08          -0.74          -0.80          -0.63
## PP.BehavInt4_PBPB          -0.08          -0.75          -0.80          -0.63
## PP.BehavInt1_PBFB           0.01          -0.83          -0.83          -0.74
## PP.BehavInt2_PBFB           0.09          -0.83          -0.80          -0.77
## PP.BehavInt3_PBFB           0.06          -0.83          -0.83          -0.76
## PP.BehavInt4_PBFB           0.07          -0.82          -0.81          -0.76
## PP.BehavInt1_VB            -0.12          -0.66          -0.71          -0.52
## PP.BehavInt2_VB            -0.13          -0.70          -0.71          -0.55
## PP.BehavInt3_VB            -0.13          -0.65          -0.72          -0.51
## PP.BehavInt4_VB            -0.13          -0.66          -0.72          -0.52
## PP.CCB_48                  -0.17          -0.40          -0.53          -0.26
## PP.CCB_49                  -0.13          -0.41          -0.53          -0.27
## PP.CCB_50                  -0.12          -0.44          -0.56          -0.31
## PP.CCB_51                   0.00          -0.52          -0.64          -0.43
## PP.CNS_1                    0.24          -0.51          -0.55          -0.53
## PP.CNS_2                    0.23          -0.36          -0.46          -0.40
## PP.CNS_3                    0.17          -0.39          -0.48          -0.38
## PP.ATNS_1                   0.42          -0.25          -0.26          -0.37
## PP.ATNS_2R                 -0.54           0.66           0.55           0.77
## PP.ATNS_3                   0.24          -0.35          -0.35          -0.38
## PP.ATNS_4                   0.15          -0.34          -0.40          -0.36
## PP.ATNS_5                   0.23          -0.22          -0.25          -0.26
## PP.Ind_3                    0.45          -0.44          -0.40          -0.58
## PP.Ind_4                    0.39          -0.10          -0.16          -0.25
## PP.Ind_7                    0.44          -0.44          -0.41          -0.59
## PP.Ind_8                    0.43          -0.15          -0.21          -0.32
## PP.Ind_1                    0.20          -0.05          -0.16          -0.14
## PP.Ind_2                    0.21          -0.08          -0.17          -0.15
## PP.Ind_5                    0.24          -0.22          -0.34          -0.30
## PP.Ind_6                    0.27          -0.09          -0.16          -0.19
##                    PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB                0.45           -0.27           -0.22
## PP.Nat_4R_GFFB               0.34            0.82            0.83
## PP.Nat_2R_GFFB               0.22            0.66            0.68
## PP.Nat_3R_GFFB               0.11            0.80            0.79
## PP.Nat_1_GFPRB               1.00            0.45            0.42
## PP.Nat_4R_GFPRB              0.45            1.00            0.94
## PP.Nat_2R_GFPRB              0.42            0.94            1.00
## PP.Nat_3R_GFPRB              0.31            0.89            0.90
## PP.Nat_1_CBB                -0.26           -0.80           -0.77
## PP.Nat_4R_CBB               -0.45            0.01           -0.05
## PP.Nat_2R_CBB               -0.46           -0.04           -0.07
## PP.Nat_3R_CBB               -0.43           -0.01           -0.03
## PP.Nat_1_PBPB               -0.29           -0.67           -0.72
## PP.Nat_4R_PBPB              -0.31            0.20            0.05
## PP.Nat_2R_PBPB              -0.37            0.19            0.07
## PP.Nat_3R_PBPB              -0.46            0.17            0.09
## PP.Nat_1_PBFB               -0.34           -0.78           -0.81
## PP.Nat_4R_PBFB               0.53            0.11            0.21
## PP.Nat_2R_PBFB               0.50           -0.13           -0.01
## PP.Nat_3R_PBFB               0.54           -0.08           -0.02
## PP.Nat_1_VB                 -0.09           -0.45           -0.52
## PP.Nat_4R_VB                -0.08            0.52            0.40
## PP.Nat_2R_VB                -0.01            0.66            0.57
## PP.Nat_3R_VB                -0.04            0.62            0.55
## PP.BehavInt1_GFFB            0.37           -0.30           -0.23
## PP.BehavInt2_GFFB            0.44           -0.20           -0.13
## PP.BehavInt3_GFFB            0.33           -0.33           -0.28
## PP.BehavInt4_GFFB            0.37           -0.28           -0.22
## PP.BehavInt1_GFPRB          -0.20           -0.48           -0.53
## PP.BehavInt2_GFPRB          -0.28           -0.56           -0.60
## PP.BehavInt3_GFPRB          -0.23           -0.53           -0.58
## PP.BehavInt4_GFPRB          -0.20           -0.51           -0.56
## PP.BehavInt1_CBB            -0.24           -0.74           -0.71
## PP.BehavInt2_CBB            -0.24           -0.77           -0.74
## PP.BehavInt3_CBB            -0.25           -0.76           -0.73
## PP.BehavInt4_CBB            -0.24           -0.74           -0.72
## PP.BehavInt1_PBPB           -0.20           -0.48           -0.53
## PP.BehavInt2_PBPB           -0.28           -0.56           -0.60
## PP.BehavInt3_PBPB           -0.23           -0.53           -0.58
## PP.BehavInt4_PBPB           -0.20           -0.51           -0.56
## PP.BehavInt1_PBFB           -0.31           -0.67           -0.71
## PP.BehavInt2_PBFB           -0.32           -0.71           -0.75
## PP.BehavInt3_PBFB           -0.27           -0.67           -0.72
## PP.BehavInt4_PBFB           -0.26           -0.66           -0.72
## PP.BehavInt1_VB             -0.09           -0.46           -0.53
## PP.BehavInt2_VB             -0.19           -0.54           -0.62
## PP.BehavInt3_VB             -0.06           -0.42           -0.50
## PP.BehavInt4_VB             -0.09           -0.46           -0.53
## PP.CCB_48                    0.03           -0.22           -0.26
## PP.CCB_49                    0.05           -0.24           -0.26
## PP.CCB_50                    0.00           -0.29           -0.32
## PP.CCB_51                   -0.01           -0.39           -0.39
## PP.CNS_1                     0.08           -0.52           -0.48
## PP.CNS_2                     0.28           -0.32           -0.30
## PP.CNS_3                     0.14           -0.39           -0.38
## PP.ATNS_1                    0.26           -0.33           -0.27
## PP.ATNS_2R                   0.19            0.77            0.75
## PP.ATNS_3                    0.13           -0.42           -0.34
## PP.ATNS_4                    0.17           -0.36           -0.30
## PP.ATNS_5                    0.23           -0.27           -0.18
## PP.Ind_3                     0.15           -0.56           -0.49
## PP.Ind_4                     0.46           -0.18           -0.14
## PP.Ind_7                     0.17           -0.55           -0.51
## PP.Ind_8                     0.49           -0.21           -0.16
## PP.Ind_1                     0.46           -0.06           -0.03
## PP.Ind_2                     0.43           -0.10           -0.07
## PP.Ind_5                     0.39           -0.20           -0.17
## PP.Ind_6                     0.45           -0.13           -0.09
##                    PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB                -0.31         0.50         -0.22         -0.08
## PP.Nat_4R_GFFB                0.81        -0.73          0.05          0.12
## PP.Nat_2R_GFFB                0.68        -0.66          0.10          0.26
## PP.Nat_3R_GFFB                0.87        -0.84          0.08          0.10
## PP.Nat_1_GFPRB                0.31        -0.26         -0.45         -0.46
## PP.Nat_4R_GFPRB               0.89        -0.80          0.01         -0.04
## PP.Nat_2R_GFPRB               0.90        -0.77         -0.05         -0.07
## PP.Nat_3R_GFPRB               1.00        -0.85         -0.08         -0.07
## PP.Nat_1_CBB                 -0.85         1.00          0.21          0.19
## PP.Nat_4R_CBB                -0.08         0.21          1.00          0.89
## PP.Nat_2R_CBB                -0.07         0.19          0.89          1.00
## PP.Nat_3R_CBB                 0.03         0.07          0.80          0.92
## PP.Nat_1_PBPB                -0.76         0.70          0.08         -0.07
## PP.Nat_4R_PBPB                0.06        -0.23          0.38          0.22
## PP.Nat_2R_PBPB                0.11        -0.28          0.48          0.43
## PP.Nat_3R_PBPB                0.26        -0.36          0.33          0.42
## PP.Nat_1_PBFB                -0.84         0.82          0.15          0.03
## PP.Nat_4R_PBFB                0.17        -0.16         -0.55         -0.39
## PP.Nat_2R_PBFB               -0.08         0.10         -0.68         -0.64
## PP.Nat_3R_PBFB               -0.12         0.11         -0.56         -0.60
## PP.Nat_1_VB                  -0.52         0.37         -0.25         -0.41
## PP.Nat_4R_VB                  0.44        -0.58          0.09         -0.07
## PP.Nat_2R_VB                  0.60        -0.72          0.06         -0.04
## PP.Nat_3R_VB                  0.61        -0.70          0.07          0.02
## PP.BehavInt1_GFFB            -0.33         0.50         -0.31         -0.16
## PP.BehavInt2_GFFB            -0.25         0.41         -0.35         -0.20
## PP.BehavInt3_GFFB            -0.36         0.54         -0.30         -0.14
## PP.BehavInt4_GFFB            -0.29         0.47         -0.34         -0.17
## PP.BehavInt1_GFPRB           -0.60         0.55          0.08         -0.13
## PP.BehavInt2_GFPRB           -0.65         0.61          0.12         -0.08
## PP.BehavInt3_GFPRB           -0.64         0.58          0.08         -0.12
## PP.BehavInt4_GFPRB           -0.62         0.56          0.03         -0.18
## PP.BehavInt1_CBB             -0.82         0.93          0.23          0.15
## PP.BehavInt2_CBB             -0.84         0.95          0.23          0.17
## PP.BehavInt3_CBB             -0.84         0.94          0.22          0.15
## PP.BehavInt4_CBB             -0.82         0.94          0.24          0.16
## PP.BehavInt1_PBPB            -0.60         0.55          0.08         -0.13
## PP.BehavInt2_PBPB            -0.65         0.61          0.12         -0.08
## PP.BehavInt3_PBPB            -0.64         0.58          0.08         -0.12
## PP.BehavInt4_PBPB            -0.62         0.56          0.03         -0.18
## PP.BehavInt1_PBFB            -0.75         0.70          0.10         -0.06
## PP.BehavInt2_PBFB            -0.79         0.75          0.14          0.01
## PP.BehavInt3_PBFB            -0.76         0.71          0.08         -0.07
## PP.BehavInt4_PBFB            -0.77         0.72          0.12         -0.03
## PP.BehavInt1_VB              -0.54         0.38         -0.19         -0.39
## PP.BehavInt2_VB              -0.61         0.43         -0.15         -0.31
## PP.BehavInt3_VB              -0.51         0.36         -0.22         -0.43
## PP.BehavInt4_VB              -0.53         0.37         -0.20         -0.39
## PP.CCB_48                    -0.25         0.10         -0.39         -0.53
## PP.CCB_49                    -0.27         0.13         -0.39         -0.54
## PP.CCB_50                    -0.31         0.18         -0.35         -0.50
## PP.CCB_51                    -0.42         0.34         -0.33         -0.48
## PP.CNS_1                     -0.50         0.48         -0.36         -0.43
## PP.CNS_2                     -0.32         0.26         -0.53         -0.61
## PP.CNS_3                     -0.36         0.30         -0.47         -0.54
## PP.ATNS_1                    -0.22         0.20         -0.62         -0.55
## PP.ATNS_2R                    0.80        -0.85         -0.04         -0.06
## PP.ATNS_3                    -0.28         0.19         -0.60         -0.58
## PP.ATNS_4                    -0.28         0.16         -0.59         -0.61
## PP.ATNS_5                    -0.12         0.05         -0.68         -0.64
## PP.Ind_3                     -0.51         0.48         -0.35         -0.31
## PP.Ind_4                     -0.14         0.11         -0.59         -0.59
## PP.Ind_7                     -0.51         0.45         -0.44         -0.40
## PP.Ind_8                     -0.19         0.18         -0.62         -0.61
## PP.Ind_1                     -0.05        -0.02         -0.61         -0.65
## PP.Ind_2                     -0.08        -0.01         -0.59         -0.60
## PP.Ind_5                     -0.22         0.13         -0.60         -0.67
## PP.Ind_6                     -0.08         0.05         -0.55         -0.57
##                    PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB              -0.11          0.04          -0.66          -0.73
## PP.Nat_4R_GFFB              0.16         -0.79           0.01           0.00
## PP.Nat_2R_GFFB              0.32         -0.79           0.02           0.04
## PP.Nat_3R_GFFB              0.15         -0.74           0.23           0.28
## PP.Nat_1_GFPRB             -0.43         -0.29          -0.31          -0.37
## PP.Nat_4R_GFPRB            -0.01         -0.67           0.20           0.19
## PP.Nat_2R_GFPRB            -0.03         -0.72           0.05           0.07
## PP.Nat_3R_GFPRB             0.03         -0.76           0.06           0.11
## PP.Nat_1_CBB                0.07          0.70          -0.23          -0.28
## PP.Nat_4R_CBB               0.80          0.08           0.38           0.48
## PP.Nat_2R_CBB               0.92         -0.07           0.22           0.43
## PP.Nat_3R_CBB               1.00         -0.17           0.16           0.40
## PP.Nat_1_PBPB              -0.17          1.00           0.28           0.16
## PP.Nat_4R_PBPB              0.16          0.28           1.00           0.84
## PP.Nat_2R_PBPB              0.40          0.16           0.84           1.00
## PP.Nat_3R_PBPB              0.47         -0.20           0.61           0.71
## PP.Nat_1_PBFB              -0.06          0.93           0.07           0.02
## PP.Nat_4R_PBFB             -0.32         -0.49          -0.67          -0.64
## PP.Nat_2R_PBFB             -0.62         -0.09          -0.65          -0.80
## PP.Nat_3R_PBFB             -0.59          0.02          -0.55          -0.69
## PP.Nat_1_VB                -0.47          0.81           0.25           0.08
## PP.Nat_4R_VB               -0.06          0.00           0.75           0.66
## PP.Nat_2R_VB               -0.02         -0.27           0.57           0.60
## PP.Nat_3R_VB                0.04         -0.38           0.51           0.54
## PP.BehavInt1_GFFB          -0.18          0.05          -0.65          -0.77
## PP.BehavInt2_GFFB          -0.23         -0.03          -0.64          -0.78
## PP.BehavInt3_GFFB          -0.16          0.09          -0.63          -0.75
## PP.BehavInt4_GFFB          -0.19          0.01          -0.65          -0.77
## PP.BehavInt1_GFPRB         -0.25          0.92           0.33           0.21
## PP.BehavInt2_GFPRB         -0.19          0.93           0.31           0.20
## PP.BehavInt3_GFPRB         -0.23          0.93           0.29           0.19
## PP.BehavInt4_GFPRB         -0.28          0.92           0.28           0.17
## PP.BehavInt1_CBB            0.00          0.76          -0.15          -0.20
## PP.BehavInt2_CBB            0.02          0.74          -0.17          -0.23
## PP.BehavInt3_CBB            0.01          0.75          -0.16          -0.20
## PP.BehavInt4_CBB            0.01          0.76          -0.15          -0.20
## PP.BehavInt1_PBPB          -0.25          0.92           0.33           0.21
## PP.BehavInt2_PBPB          -0.19          0.93           0.31           0.20
## PP.BehavInt3_PBPB          -0.23          0.93           0.29           0.19
## PP.BehavInt4_PBPB          -0.28          0.92           0.28           0.17
## PP.BehavInt1_PBFB          -0.18          0.92           0.16           0.08
## PP.BehavInt2_PBFB          -0.10          0.93           0.15           0.07
## PP.BehavInt3_PBFB          -0.19          0.92           0.12           0.04
## PP.BehavInt4_PBFB          -0.15          0.93           0.15           0.08
## PP.BehavInt1_VB            -0.46          0.85           0.28           0.11
## PP.BehavInt2_VB            -0.38          0.87           0.34           0.19
## PP.BehavInt3_VB            -0.49          0.84           0.27           0.11
## PP.BehavInt4_VB            -0.45          0.85           0.28           0.13
## PP.CCB_48                  -0.57          0.38           0.00          -0.12
## PP.CCB_49                  -0.58          0.38          -0.05          -0.17
## PP.CCB_50                  -0.54          0.43          -0.03          -0.15
## PP.CCB_51                  -0.54          0.54          -0.08          -0.20
## PP.CNS_1                   -0.45          0.42          -0.30          -0.41
## PP.CNS_2                   -0.59          0.29          -0.33          -0.45
## PP.CNS_3                   -0.53          0.30          -0.30          -0.41
## PP.ATNS_1                  -0.46          0.02          -0.50          -0.59
## PP.ATNS_2R                  0.04         -0.64           0.28           0.33
## PP.ATNS_3                  -0.46          0.16          -0.43          -0.50
## PP.ATNS_4                  -0.54          0.25          -0.31          -0.41
## PP.ATNS_5                  -0.53          0.00          -0.46          -0.52
## PP.Ind_3                   -0.26          0.34          -0.33          -0.42
## PP.Ind_4                   -0.51          0.04          -0.42          -0.57
## PP.Ind_7                   -0.35          0.36          -0.39          -0.49
## PP.Ind_8                   -0.55          0.15          -0.40          -0.54
## PP.Ind_1                   -0.63         -0.03          -0.38          -0.50
## PP.Ind_2                   -0.56         -0.04          -0.44          -0.49
## PP.Ind_5                   -0.65          0.16          -0.36          -0.49
## PP.Ind_6                   -0.48         -0.03          -0.41          -0.52
##                    PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB               -0.54          0.14           0.53           0.56
## PP.Nat_4R_GFFB               0.20         -0.86           0.22          -0.05
## PP.Nat_2R_GFFB               0.34         -0.82           0.24          -0.14
## PP.Nat_3R_GFFB               0.40         -0.81           0.00          -0.26
## PP.Nat_1_GFPRB              -0.46         -0.34           0.53           0.50
## PP.Nat_4R_GFPRB              0.17         -0.78           0.11          -0.13
## PP.Nat_2R_GFPRB              0.09         -0.81           0.21          -0.01
## PP.Nat_3R_GFPRB              0.26         -0.84           0.17          -0.08
## PP.Nat_1_CBB                -0.36          0.82          -0.16           0.10
## PP.Nat_4R_CBB                0.33          0.15          -0.55          -0.68
## PP.Nat_2R_CBB                0.42          0.03          -0.39          -0.64
## PP.Nat_3R_CBB                0.47         -0.06          -0.32          -0.62
## PP.Nat_1_PBPB               -0.20          0.93          -0.49          -0.09
## PP.Nat_4R_PBPB               0.61          0.07          -0.67          -0.65
## PP.Nat_2R_PBPB               0.71          0.02          -0.64          -0.80
## PP.Nat_3R_PBPB               1.00         -0.27          -0.41          -0.71
## PP.Nat_1_PBFB               -0.27          1.00          -0.44          -0.09
## PP.Nat_4R_PBFB              -0.41         -0.44           1.00           0.78
## PP.Nat_2R_PBFB              -0.71         -0.09           0.78           1.00
## PP.Nat_3R_PBFB              -0.82          0.03           0.68           0.87
## PP.Nat_1_VB                 -0.26          0.72          -0.40           0.03
## PP.Nat_4R_VB                 0.50         -0.20          -0.54          -0.55
## PP.Nat_2R_VB                 0.48         -0.39          -0.34          -0.51
## PP.Nat_3R_VB                 0.63         -0.47          -0.29          -0.52
## PP.BehavInt1_GFFB           -0.52          0.15           0.51           0.55
## PP.BehavInt2_GFFB           -0.53          0.07           0.55           0.57
## PP.BehavInt3_GFFB           -0.49          0.19           0.49           0.53
## PP.BehavInt4_GFFB           -0.50          0.12           0.52           0.55
## PP.BehavInt1_GFPRB          -0.25          0.85          -0.51          -0.13
## PP.BehavInt2_GFPRB          -0.22          0.88          -0.49          -0.12
## PP.BehavInt3_GFPRB          -0.27          0.87          -0.47          -0.09
## PP.BehavInt4_GFPRB          -0.29          0.86          -0.45          -0.06
## PP.BehavInt1_CBB            -0.44          0.88          -0.24           0.06
## PP.BehavInt2_CBB            -0.42          0.86          -0.21           0.08
## PP.BehavInt3_CBB            -0.43          0.87          -0.22           0.07
## PP.BehavInt4_CBB            -0.43          0.87          -0.23           0.06
## PP.BehavInt1_PBPB           -0.25          0.85          -0.51          -0.13
## PP.BehavInt2_PBPB           -0.22          0.88          -0.49          -0.12
## PP.BehavInt3_PBPB           -0.27          0.87          -0.47          -0.09
## PP.BehavInt4_PBPB           -0.29          0.86          -0.45          -0.06
## PP.BehavInt1_PBFB           -0.30          0.94          -0.44          -0.07
## PP.BehavInt2_PBFB           -0.27          0.95          -0.43          -0.08
## PP.BehavInt3_PBFB           -0.33          0.95          -0.41          -0.05
## PP.BehavInt4_PBFB           -0.31          0.95          -0.42          -0.08
## PP.BehavInt1_VB             -0.29          0.74          -0.41           0.03
## PP.BehavInt2_VB             -0.15          0.77          -0.42          -0.04
## PP.BehavInt3_VB             -0.28          0.74          -0.39           0.02
## PP.BehavInt4_VB             -0.27          0.74          -0.40           0.03
## PP.CCB_48                   -0.46          0.36          -0.08           0.30
## PP.CCB_49                   -0.50          0.38          -0.05           0.32
## PP.CCB_50                   -0.50          0.42          -0.06           0.33
## PP.CCB_51                   -0.56          0.55          -0.09           0.32
## PP.CNS_1                    -0.51          0.49           0.02           0.40
## PP.CNS_2                    -0.57          0.33           0.14           0.48
## PP.CNS_3                    -0.52          0.37           0.07           0.43
## PP.ATNS_1                   -0.39          0.07           0.47           0.63
## PP.ATNS_2R                   0.39         -0.74          -0.01          -0.22
## PP.ATNS_3                   -0.36          0.19           0.30           0.55
## PP.ATNS_4                   -0.44          0.26           0.22           0.50
## PP.ATNS_5                   -0.40          0.04           0.43           0.62
## PP.Ind_3                    -0.34          0.34           0.17           0.43
## PP.Ind_4                    -0.46          0.04           0.31           0.60
## PP.Ind_7                    -0.41          0.38           0.16           0.45
## PP.Ind_8                    -0.49          0.12           0.25           0.54
## PP.Ind_1                    -0.50         -0.02           0.29           0.55
## PP.Ind_2                    -0.44         -0.01           0.29           0.51
## PP.Ind_5                    -0.54          0.15           0.21           0.54
## PP.Ind_6                    -0.40         -0.02           0.30           0.53
##                    PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB                0.50       -0.10        -0.71        -0.70
## PP.Nat_4R_GFFB              -0.08       -0.63         0.28         0.39
## PP.Nat_2R_GFFB              -0.20       -0.66         0.20         0.33
## PP.Nat_3R_GFFB              -0.30       -0.49         0.51         0.63
## PP.Nat_1_GFPRB               0.54       -0.09        -0.08        -0.01
## PP.Nat_4R_GFPRB             -0.08       -0.45         0.52         0.66
## PP.Nat_2R_GFPRB             -0.02       -0.52         0.40         0.57
## PP.Nat_3R_GFPRB             -0.12       -0.52         0.44         0.60
## PP.Nat_1_CBB                 0.11        0.37        -0.58        -0.72
## PP.Nat_4R_CBB               -0.56       -0.25         0.09         0.06
## PP.Nat_2R_CBB               -0.60       -0.41        -0.07        -0.04
## PP.Nat_3R_CBB               -0.59       -0.47        -0.06        -0.02
## PP.Nat_1_PBPB                0.02        0.81         0.00        -0.27
## PP.Nat_4R_PBPB              -0.55        0.25         0.75         0.57
## PP.Nat_2R_PBPB              -0.69        0.08         0.66         0.60
## PP.Nat_3R_PBPB              -0.82       -0.26         0.50         0.48
## PP.Nat_1_PBFB                0.03        0.72        -0.20        -0.39
## PP.Nat_4R_PBFB               0.68       -0.40        -0.54        -0.34
## PP.Nat_2R_PBFB               0.87        0.03        -0.55        -0.51
## PP.Nat_3R_PBFB               1.00        0.13        -0.45        -0.44
## PP.Nat_1_VB                  0.13        1.00         0.25         0.03
## PP.Nat_4R_VB                -0.45        0.25         1.00         0.89
## PP.Nat_2R_VB                -0.44        0.03         0.89         1.00
## PP.Nat_3R_VB                -0.56       -0.13         0.77         0.87
## PP.BehavInt1_GFFB            0.48       -0.05        -0.67        -0.67
## PP.BehavInt2_GFFB            0.50       -0.09        -0.63        -0.60
## PP.BehavInt3_GFFB            0.45       -0.03        -0.69        -0.69
## PP.BehavInt4_GFFB            0.47       -0.08        -0.67        -0.67
## PP.BehavInt1_GFPRB           0.03        0.81         0.13        -0.10
## PP.BehavInt2_GFPRB           0.01        0.79         0.08        -0.15
## PP.BehavInt3_GFPRB           0.07        0.81         0.08        -0.16
## PP.BehavInt4_GFPRB           0.10        0.83         0.10        -0.14
## PP.BehavInt1_CBB             0.12        0.45        -0.48        -0.61
## PP.BehavInt2_CBB             0.12        0.43        -0.53        -0.66
## PP.BehavInt3_CBB             0.12        0.44        -0.51        -0.64
## PP.BehavInt4_CBB             0.11        0.43        -0.50        -0.64
## PP.BehavInt1_PBPB            0.03        0.81         0.13        -0.10
## PP.BehavInt2_PBPB            0.01        0.79         0.08        -0.15
## PP.BehavInt3_PBPB            0.07        0.81         0.08        -0.16
## PP.BehavInt4_PBPB            0.10        0.83         0.10        -0.14
## PP.BehavInt1_PBFB            0.07        0.76        -0.08        -0.27
## PP.BehavInt2_PBFB            0.04        0.72        -0.12        -0.32
## PP.BehavInt3_PBFB            0.09        0.76        -0.09        -0.29
## PP.BehavInt4_PBFB            0.07        0.75        -0.09        -0.28
## PP.BehavInt1_VB              0.17        0.92         0.21        -0.03
## PP.BehavInt2_VB              0.08        0.88         0.19        -0.07
## PP.BehavInt3_VB              0.16        0.91         0.23         0.00
## PP.BehavInt4_VB              0.15        0.91         0.21        -0.03
## PP.CCB_48                    0.45        0.61         0.07         0.00
## PP.CCB_49                    0.47        0.61         0.03        -0.02
## PP.CCB_50                    0.48        0.61         0.00        -0.09
## PP.CCB_51                    0.47        0.67        -0.08        -0.18
## PP.CNS_1                     0.39        0.49        -0.35        -0.44
## PP.CNS_2                     0.50        0.47        -0.22        -0.26
## PP.CNS_3                     0.46        0.49        -0.24        -0.30
## PP.ATNS_1                    0.50        0.19        -0.45        -0.45
## PP.ATNS_2R                  -0.20       -0.39         0.55         0.66
## PP.ATNS_3                    0.46        0.32        -0.32        -0.37
## PP.ATNS_4                    0.49        0.45        -0.21        -0.29
## PP.ATNS_5                    0.53        0.23        -0.30        -0.29
## PP.Ind_3                     0.33        0.29        -0.42        -0.56
## PP.Ind_4                     0.56        0.22        -0.28        -0.37
## PP.Ind_7                     0.37        0.37        -0.40        -0.52
## PP.Ind_8                     0.51        0.31        -0.26        -0.34
## PP.Ind_1                     0.54        0.28        -0.17        -0.18
## PP.Ind_2                     0.50        0.25        -0.21        -0.19
## PP.Ind_5                     0.54        0.41        -0.19        -0.26
## PP.Ind_6                     0.47        0.20        -0.26        -0.27
##                    PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB             -0.65              0.92              0.89
## PP.Nat_4R_GFFB             0.40             -0.05              0.03
## PP.Nat_2R_GFFB             0.40              0.00              0.06
## PP.Nat_3R_GFFB             0.64             -0.43             -0.35
## PP.Nat_1_GFPRB            -0.04              0.37              0.44
## PP.Nat_4R_GFPRB            0.62             -0.30             -0.20
## PP.Nat_2R_GFPRB            0.55             -0.23             -0.13
## PP.Nat_3R_GFPRB            0.61             -0.33             -0.25
## PP.Nat_1_CBB              -0.70              0.50              0.41
## PP.Nat_4R_CBB              0.07             -0.31             -0.35
## PP.Nat_2R_CBB              0.02             -0.16             -0.20
## PP.Nat_3R_CBB              0.04             -0.18             -0.23
## PP.Nat_1_PBPB             -0.38              0.05             -0.03
## PP.Nat_4R_PBPB             0.51             -0.65             -0.64
## PP.Nat_2R_PBPB             0.54             -0.77             -0.78
## PP.Nat_3R_PBPB             0.63             -0.52             -0.53
## PP.Nat_1_PBFB             -0.47              0.15              0.07
## PP.Nat_4R_PBFB            -0.29              0.51              0.55
## PP.Nat_2R_PBFB            -0.52              0.55              0.57
## PP.Nat_3R_PBFB            -0.56              0.48              0.50
## PP.Nat_1_VB               -0.13             -0.05             -0.09
## PP.Nat_4R_VB               0.77             -0.67             -0.63
## PP.Nat_2R_VB               0.87             -0.67             -0.60
## PP.Nat_3R_VB               1.00             -0.62             -0.56
## PP.BehavInt1_GFFB         -0.62              1.00              0.98
## PP.BehavInt2_GFFB         -0.56              0.98              1.00
## PP.BehavInt3_GFFB         -0.64              0.99              0.97
## PP.BehavInt4_GFFB         -0.61              0.99              0.97
## PP.BehavInt1_GFPRB        -0.22             -0.09             -0.13
## PP.BehavInt2_GFPRB        -0.26             -0.08             -0.14
## PP.BehavInt3_GFPRB        -0.29             -0.06             -0.12
## PP.BehavInt4_GFPRB        -0.26             -0.06             -0.11
## PP.BehavInt1_CBB          -0.64              0.39              0.32
## PP.BehavInt2_CBB          -0.67              0.44              0.37
## PP.BehavInt3_CBB          -0.66              0.41              0.33
## PP.BehavInt4_CBB          -0.66              0.40              0.33
## PP.BehavInt1_PBPB         -0.22             -0.09             -0.13
## PP.BehavInt2_PBPB         -0.26             -0.08             -0.14
## PP.BehavInt3_PBPB         -0.29             -0.06             -0.12
## PP.BehavInt4_PBPB         -0.26             -0.06             -0.11
## PP.BehavInt1_PBFB         -0.35              0.03             -0.03
## PP.BehavInt2_PBFB         -0.39              0.09              0.02
## PP.BehavInt3_PBFB         -0.38              0.08              0.02
## PP.BehavInt4_PBFB         -0.37              0.09              0.02
## PP.BehavInt1_VB           -0.18             -0.09             -0.12
## PP.BehavInt2_VB           -0.19             -0.11             -0.15
## PP.BehavInt3_VB           -0.15             -0.10             -0.12
## PP.BehavInt4_VB           -0.18             -0.11             -0.14
## PP.CCB_48                 -0.20             -0.14             -0.15
## PP.CCB_49                 -0.22             -0.10             -0.10
## PP.CCB_50                 -0.29             -0.11             -0.13
## PP.CCB_51                 -0.38              0.01             -0.01
## PP.CNS_1                  -0.54              0.25              0.22
## PP.CNS_2                  -0.40              0.24              0.23
## PP.CNS_3                  -0.44              0.20              0.18
## PP.ATNS_1                 -0.45              0.43              0.43
## PP.ATNS_2R                 0.64             -0.54             -0.47
## PP.ATNS_3                 -0.40              0.26              0.25
## PP.ATNS_4                 -0.38              0.19              0.18
## PP.ATNS_5                 -0.35              0.26              0.26
## PP.Ind_3                  -0.60              0.44              0.39
## PP.Ind_4                  -0.43              0.40              0.39
## PP.Ind_7                  -0.58              0.49              0.46
## PP.Ind_8                  -0.40              0.47              0.46
## PP.Ind_1                  -0.26              0.23              0.25
## PP.Ind_2                  -0.23              0.23              0.25
## PP.Ind_5                  -0.35              0.27              0.28
## PP.Ind_6                  -0.30              0.31              0.32
##                    PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB                   0.91              0.91              -0.09
## PP.Nat_4R_GFFB                 -0.09             -0.02              -0.71
## PP.Nat_2R_GFFB                 -0.04              0.02              -0.77
## PP.Nat_3R_GFFB                 -0.46             -0.40              -0.60
## PP.Nat_1_GFPRB                  0.33              0.37              -0.20
## PP.Nat_4R_GFPRB                -0.33             -0.28              -0.48
## PP.Nat_2R_GFPRB                -0.28             -0.22              -0.53
## PP.Nat_3R_GFPRB                -0.36             -0.29              -0.60
## PP.Nat_1_CBB                    0.54              0.47               0.55
## PP.Nat_4R_CBB                  -0.30             -0.34               0.08
## PP.Nat_2R_CBB                  -0.14             -0.17              -0.13
## PP.Nat_3R_CBB                  -0.16             -0.19              -0.25
## PP.Nat_1_PBPB                   0.09              0.01               0.92
## PP.Nat_4R_PBPB                 -0.63             -0.65               0.33
## PP.Nat_2R_PBPB                 -0.75             -0.77               0.21
## PP.Nat_3R_PBPB                 -0.49             -0.50              -0.25
## PP.Nat_1_PBFB                   0.19              0.12               0.85
## PP.Nat_4R_PBFB                  0.49              0.52              -0.51
## PP.Nat_2R_PBFB                  0.53              0.55              -0.13
## PP.Nat_3R_PBFB                  0.45              0.47               0.03
## PP.Nat_1_VB                    -0.03             -0.08               0.81
## PP.Nat_4R_VB                   -0.69             -0.67               0.13
## PP.Nat_2R_VB                   -0.69             -0.67              -0.10
## PP.Nat_3R_VB                   -0.64             -0.61              -0.22
## PP.BehavInt1_GFFB               0.99              0.99              -0.09
## PP.BehavInt2_GFFB               0.97              0.97              -0.13
## PP.BehavInt3_GFFB               1.00              0.99              -0.05
## PP.BehavInt4_GFFB               0.99              1.00              -0.13
## PP.BehavInt1_GFPRB             -0.05             -0.13               1.00
## PP.BehavInt2_GFPRB             -0.04             -0.12               0.98
## PP.BehavInt3_GFPRB             -0.03             -0.10               0.99
## PP.BehavInt4_GFPRB             -0.03             -0.10               0.99
## PP.BehavInt1_CBB                0.43              0.35               0.71
## PP.BehavInt2_CBB                0.48              0.41               0.66
## PP.BehavInt3_CBB                0.44              0.37               0.69
## PP.BehavInt4_CBB                0.44              0.37               0.68
## PP.BehavInt1_PBPB              -0.05             -0.13               1.00
## PP.BehavInt2_PBPB              -0.04             -0.12               0.98
## PP.BehavInt3_PBPB              -0.03             -0.10               0.99
## PP.BehavInt4_PBPB              -0.03             -0.10               0.99
## PP.BehavInt1_PBFB               0.07              0.00               0.95
## PP.BehavInt2_PBFB               0.13              0.05               0.92
## PP.BehavInt3_PBFB               0.11              0.04               0.94
## PP.BehavInt4_PBFB               0.12              0.04               0.94
## PP.BehavInt1_VB                -0.07             -0.13               0.90
## PP.BehavInt2_VB                -0.07             -0.14               0.89
## PP.BehavInt3_VB                -0.08             -0.13               0.90
## PP.BehavInt4_VB                -0.09             -0.14               0.90
## PP.CCB_48                      -0.15             -0.13               0.44
## PP.CCB_49                      -0.11             -0.09               0.44
## PP.CCB_50                      -0.11             -0.10               0.48
## PP.CCB_51                       0.02              0.02               0.57
## PP.CNS_1                        0.27              0.27               0.32
## PP.CNS_2                        0.24              0.28               0.23
## PP.CNS_3                        0.20              0.23               0.24
## PP.ATNS_1                       0.44              0.47              -0.11
## PP.ATNS_2R                     -0.57             -0.50              -0.52
## PP.ATNS_3                       0.28              0.30               0.03
## PP.ATNS_4                       0.20              0.22               0.19
## PP.ATNS_5                       0.26              0.30              -0.07
## PP.Ind_3                        0.45              0.44               0.19
## PP.Ind_4                        0.37              0.41              -0.04
## PP.Ind_7                        0.49              0.49               0.22
## PP.Ind_8                        0.44              0.48               0.08
## PP.Ind_1                        0.19              0.25              -0.04
## PP.Ind_2                        0.20              0.24              -0.08
## PP.Ind_5                        0.25              0.28               0.12
## PP.Ind_6                        0.29              0.33              -0.10
##                    PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB                   -0.09              -0.08              -0.08
## PP.Nat_4R_GFFB                  -0.76              -0.74              -0.75
## PP.Nat_2R_GFFB                  -0.80              -0.80              -0.80
## PP.Nat_3R_GFFB                  -0.64              -0.63              -0.63
## PP.Nat_1_GFPRB                  -0.28              -0.23              -0.20
## PP.Nat_4R_GFPRB                 -0.56              -0.53              -0.51
## PP.Nat_2R_GFPRB                 -0.60              -0.58              -0.56
## PP.Nat_3R_GFPRB                 -0.65              -0.64              -0.62
## PP.Nat_1_CBB                     0.61               0.58               0.56
## PP.Nat_4R_CBB                    0.12               0.08               0.03
## PP.Nat_2R_CBB                   -0.08              -0.12              -0.18
## PP.Nat_3R_CBB                   -0.19              -0.23              -0.28
## PP.Nat_1_PBPB                    0.93               0.93               0.92
## PP.Nat_4R_PBPB                   0.31               0.29               0.28
## PP.Nat_2R_PBPB                   0.20               0.19               0.17
## PP.Nat_3R_PBPB                  -0.22              -0.27              -0.29
## PP.Nat_1_PBFB                    0.88               0.87               0.86
## PP.Nat_4R_PBFB                  -0.49              -0.47              -0.45
## PP.Nat_2R_PBFB                  -0.12              -0.09              -0.06
## PP.Nat_3R_PBFB                   0.01               0.07               0.10
## PP.Nat_1_VB                      0.79               0.81               0.83
## PP.Nat_4R_VB                     0.08               0.08               0.10
## PP.Nat_2R_VB                    -0.15              -0.16              -0.14
## PP.Nat_3R_VB                    -0.26              -0.29              -0.26
## PP.BehavInt1_GFFB               -0.08              -0.06              -0.06
## PP.BehavInt2_GFFB               -0.14              -0.12              -0.11
## PP.BehavInt3_GFFB               -0.04              -0.03              -0.03
## PP.BehavInt4_GFFB               -0.12              -0.10              -0.10
## PP.BehavInt1_GFPRB               0.98               0.99               0.99
## PP.BehavInt2_GFPRB               1.00               0.98               0.98
## PP.BehavInt3_GFPRB               0.98               1.00               0.99
## PP.BehavInt4_GFPRB               0.98               0.99               1.00
## PP.BehavInt1_CBB                 0.74               0.73               0.70
## PP.BehavInt2_CBB                 0.70               0.69               0.66
## PP.BehavInt3_CBB                 0.72               0.71               0.69
## PP.BehavInt4_CBB                 0.72               0.71               0.68
## PP.BehavInt1_PBPB                0.98               0.99               0.99
## PP.BehavInt2_PBPB                1.00               0.98               0.98
## PP.BehavInt3_PBPB                0.98               1.00               0.99
## PP.BehavInt4_PBPB                0.98               0.99               1.00
## PP.BehavInt1_PBFB                0.96               0.95               0.95
## PP.BehavInt2_PBFB                0.95               0.93               0.92
## PP.BehavInt3_PBFB                0.94               0.95               0.94
## PP.BehavInt4_PBFB                0.94               0.95               0.94
## PP.BehavInt1_VB                  0.88               0.90               0.91
## PP.BehavInt2_VB                  0.89               0.90               0.91
## PP.BehavInt3_VB                  0.87               0.90               0.91
## PP.BehavInt4_VB                  0.89               0.91               0.92
## PP.CCB_48                        0.40               0.46               0.48
## PP.CCB_49                        0.40               0.46               0.48
## PP.CCB_50                        0.45               0.50               0.52
## PP.CCB_51                        0.55               0.60               0.61
## PP.CNS_1                         0.33               0.34               0.34
## PP.CNS_2                         0.22               0.24               0.26
## PP.CNS_3                         0.24               0.27               0.27
## PP.ATNS_1                       -0.08              -0.08              -0.06
## PP.ATNS_2R                      -0.57              -0.55              -0.54
## PP.ATNS_3                        0.06               0.06               0.08
## PP.ATNS_4                        0.19               0.21               0.23
## PP.ATNS_5                       -0.07              -0.04              -0.02
## PP.Ind_3                         0.22               0.22               0.22
## PP.Ind_4                        -0.06              -0.02               0.00
## PP.Ind_7                         0.23               0.25               0.25
## PP.Ind_8                         0.04               0.09               0.11
## PP.Ind_1                        -0.09              -0.04              -0.02
## PP.Ind_2                        -0.11              -0.08              -0.06
## PP.Ind_5                         0.09               0.13               0.15
## PP.Ind_6                        -0.11              -0.09              -0.07
##                    PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB                  0.39             0.44             0.40
## PP.Nat_4R_GFFB                -0.73            -0.72            -0.74
## PP.Nat_2R_GFFB                -0.71            -0.68            -0.70
## PP.Nat_3R_GFFB                -0.80            -0.81            -0.81
## PP.Nat_1_GFPRB                -0.24            -0.24            -0.25
## PP.Nat_4R_GFPRB               -0.74            -0.77            -0.76
## PP.Nat_2R_GFPRB               -0.71            -0.74            -0.73
## PP.Nat_3R_GFPRB               -0.82            -0.84            -0.84
## PP.Nat_1_CBB                   0.93             0.95             0.94
## PP.Nat_4R_CBB                  0.23             0.23             0.22
## PP.Nat_2R_CBB                  0.15             0.17             0.15
## PP.Nat_3R_CBB                  0.00             0.02             0.01
## PP.Nat_1_PBPB                  0.76             0.74             0.75
## PP.Nat_4R_PBPB                -0.15            -0.17            -0.16
## PP.Nat_2R_PBPB                -0.20            -0.23            -0.20
## PP.Nat_3R_PBPB                -0.44            -0.42            -0.43
## PP.Nat_1_PBFB                  0.88             0.86             0.87
## PP.Nat_4R_PBFB                -0.24            -0.21            -0.22
## PP.Nat_2R_PBFB                 0.06             0.08             0.07
## PP.Nat_3R_PBFB                 0.12             0.12             0.12
## PP.Nat_1_VB                    0.45             0.43             0.44
## PP.Nat_4R_VB                  -0.48            -0.53            -0.51
## PP.Nat_2R_VB                  -0.61            -0.66            -0.64
## PP.Nat_3R_VB                  -0.64            -0.67            -0.66
## PP.BehavInt1_GFFB              0.39             0.44             0.41
## PP.BehavInt2_GFFB              0.32             0.37             0.33
## PP.BehavInt3_GFFB              0.43             0.48             0.44
## PP.BehavInt4_GFFB              0.35             0.41             0.37
## PP.BehavInt1_GFPRB             0.71             0.66             0.69
## PP.BehavInt2_GFPRB             0.74             0.70             0.72
## PP.BehavInt3_GFPRB             0.73             0.69             0.71
## PP.BehavInt4_GFPRB             0.70             0.66             0.69
## PP.BehavInt1_CBB               1.00             0.99             0.99
## PP.BehavInt2_CBB               0.99             1.00             0.99
## PP.BehavInt3_CBB               0.99             0.99             1.00
## PP.BehavInt4_CBB               0.99             0.99             0.99
## PP.BehavInt1_PBPB              0.71             0.66             0.69
## PP.BehavInt2_PBPB              0.74             0.70             0.72
## PP.BehavInt3_PBPB              0.73             0.69             0.71
## PP.BehavInt4_PBPB              0.70             0.66             0.69
## PP.BehavInt1_PBFB              0.82             0.79             0.81
## PP.BehavInt2_PBFB              0.84             0.82             0.83
## PP.BehavInt3_PBFB              0.82             0.79             0.81
## PP.BehavInt4_PBFB              0.83             0.80             0.82
## PP.BehavInt1_VB                0.51             0.47             0.49
## PP.BehavInt2_VB                0.53             0.50             0.51
## PP.BehavInt3_VB                0.49             0.45             0.48
## PP.BehavInt4_VB                0.50             0.47             0.49
## PP.CCB_48                      0.20             0.16             0.20
## PP.CCB_49                      0.23             0.19             0.22
## PP.CCB_50                      0.27             0.23             0.27
## PP.CCB_51                      0.44             0.40             0.44
## PP.CNS_1                       0.44             0.45             0.44
## PP.CNS_2                       0.25             0.25             0.25
## PP.CNS_3                       0.29             0.29             0.28
## PP.ATNS_1                      0.07             0.11             0.08
## PP.ATNS_2R                    -0.84            -0.86            -0.85
## PP.ATNS_3                      0.08             0.10             0.09
## PP.ATNS_4                      0.13             0.13             0.14
## PP.ATNS_5                     -0.05            -0.03            -0.03
## PP.Ind_3                       0.36             0.40             0.38
## PP.Ind_4                       0.02             0.05             0.02
## PP.Ind_7                       0.36             0.38             0.38
## PP.Ind_8                       0.12             0.14             0.12
## PP.Ind_1                      -0.04            -0.04            -0.04
## PP.Ind_2                      -0.03            -0.03            -0.03
## PP.Ind_5                       0.13             0.12             0.13
## PP.Ind_6                      -0.02            -0.01            -0.02
##                    PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB                  0.41             -0.09             -0.09
## PP.Nat_4R_GFFB                -0.72             -0.71             -0.76
## PP.Nat_2R_GFFB                -0.70             -0.77             -0.80
## PP.Nat_3R_GFFB                -0.80             -0.60             -0.64
## PP.Nat_1_GFPRB                -0.24             -0.20             -0.28
## PP.Nat_4R_GFPRB               -0.74             -0.48             -0.56
## PP.Nat_2R_GFPRB               -0.72             -0.53             -0.60
## PP.Nat_3R_GFPRB               -0.82             -0.60             -0.65
## PP.Nat_1_CBB                   0.94              0.55              0.61
## PP.Nat_4R_CBB                  0.24              0.08              0.12
## PP.Nat_2R_CBB                  0.16             -0.13             -0.08
## PP.Nat_3R_CBB                  0.01             -0.25             -0.19
## PP.Nat_1_PBPB                  0.76              0.92              0.93
## PP.Nat_4R_PBPB                -0.15              0.33              0.31
## PP.Nat_2R_PBPB                -0.20              0.21              0.20
## PP.Nat_3R_PBPB                -0.43             -0.25             -0.22
## PP.Nat_1_PBFB                  0.87              0.85              0.88
## PP.Nat_4R_PBFB                -0.23             -0.51             -0.49
## PP.Nat_2R_PBFB                 0.06             -0.13             -0.12
## PP.Nat_3R_PBFB                 0.11              0.03              0.01
## PP.Nat_1_VB                    0.43              0.81              0.79
## PP.Nat_4R_VB                  -0.50              0.13              0.08
## PP.Nat_2R_VB                  -0.64             -0.10             -0.15
## PP.Nat_3R_VB                  -0.66             -0.22             -0.26
## PP.BehavInt1_GFFB              0.40             -0.09             -0.08
## PP.BehavInt2_GFFB              0.33             -0.13             -0.14
## PP.BehavInt3_GFFB              0.44             -0.05             -0.04
## PP.BehavInt4_GFFB              0.37             -0.13             -0.12
## PP.BehavInt1_GFPRB             0.68              1.00              0.98
## PP.BehavInt2_GFPRB             0.72              0.98              1.00
## PP.BehavInt3_GFPRB             0.71              0.99              0.98
## PP.BehavInt4_GFPRB             0.68              0.99              0.98
## PP.BehavInt1_CBB               0.99              0.71              0.74
## PP.BehavInt2_CBB               0.99              0.66              0.70
## PP.BehavInt3_CBB               0.99              0.69              0.72
## PP.BehavInt4_CBB               1.00              0.68              0.72
## PP.BehavInt1_PBPB              0.68              1.00              0.98
## PP.BehavInt2_PBPB              0.72              0.98              1.00
## PP.BehavInt3_PBPB              0.71              0.99              0.98
## PP.BehavInt4_PBPB              0.68              0.99              0.98
## PP.BehavInt1_PBFB              0.80              0.95              0.96
## PP.BehavInt2_PBFB              0.83              0.92              0.95
## PP.BehavInt3_PBFB              0.81              0.94              0.94
## PP.BehavInt4_PBFB              0.82              0.94              0.94
## PP.BehavInt1_VB                0.49              0.90              0.88
## PP.BehavInt2_VB                0.50              0.89              0.89
## PP.BehavInt3_VB                0.48              0.90              0.87
## PP.BehavInt4_VB                0.49              0.90              0.89
## PP.CCB_48                      0.19              0.44              0.40
## PP.CCB_49                      0.21              0.44              0.40
## PP.CCB_50                      0.26              0.48              0.45
## PP.CCB_51                      0.43              0.57              0.55
## PP.CNS_1                       0.44              0.32              0.33
## PP.CNS_2                       0.24              0.23              0.22
## PP.CNS_3                       0.28              0.24              0.24
## PP.ATNS_1                      0.07             -0.11             -0.08
## PP.ATNS_2R                    -0.84             -0.52             -0.57
## PP.ATNS_3                      0.08              0.03              0.06
## PP.ATNS_4                      0.13              0.19              0.19
## PP.ATNS_5                     -0.05             -0.07             -0.07
## PP.Ind_3                       0.37              0.19              0.22
## PP.Ind_4                       0.02             -0.04             -0.06
## PP.Ind_7                       0.36              0.22              0.23
## PP.Ind_8                       0.11              0.08              0.04
## PP.Ind_1                      -0.05             -0.04             -0.09
## PP.Ind_2                      -0.04             -0.08             -0.11
## PP.Ind_5                       0.13              0.12              0.09
## PP.Ind_6                      -0.02             -0.10             -0.11
##                    PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB                  -0.08             -0.08              0.01
## PP.Nat_4R_GFFB                 -0.74             -0.75             -0.83
## PP.Nat_2R_GFFB                 -0.80             -0.80             -0.83
## PP.Nat_3R_GFFB                 -0.63             -0.63             -0.74
## PP.Nat_1_GFPRB                 -0.23             -0.20             -0.31
## PP.Nat_4R_GFPRB                -0.53             -0.51             -0.67
## PP.Nat_2R_GFPRB                -0.58             -0.56             -0.71
## PP.Nat_3R_GFPRB                -0.64             -0.62             -0.75
## PP.Nat_1_CBB                    0.58              0.56              0.70
## PP.Nat_4R_CBB                   0.08              0.03              0.10
## PP.Nat_2R_CBB                  -0.12             -0.18             -0.06
## PP.Nat_3R_CBB                  -0.23             -0.28             -0.18
## PP.Nat_1_PBPB                   0.93              0.92              0.92
## PP.Nat_4R_PBPB                  0.29              0.28              0.16
## PP.Nat_2R_PBPB                  0.19              0.17              0.08
## PP.Nat_3R_PBPB                 -0.27             -0.29             -0.30
## PP.Nat_1_PBFB                   0.87              0.86              0.94
## PP.Nat_4R_PBFB                 -0.47             -0.45             -0.44
## PP.Nat_2R_PBFB                 -0.09             -0.06             -0.07
## PP.Nat_3R_PBFB                  0.07              0.10              0.07
## PP.Nat_1_VB                     0.81              0.83              0.76
## PP.Nat_4R_VB                    0.08              0.10             -0.08
## PP.Nat_2R_VB                   -0.16             -0.14             -0.27
## PP.Nat_3R_VB                   -0.29             -0.26             -0.35
## PP.BehavInt1_GFFB              -0.06             -0.06              0.03
## PP.BehavInt2_GFFB              -0.12             -0.11             -0.03
## PP.BehavInt3_GFFB              -0.03             -0.03              0.07
## PP.BehavInt4_GFFB              -0.10             -0.10              0.00
## PP.BehavInt1_GFPRB              0.99              0.99              0.95
## PP.BehavInt2_GFPRB              0.98              0.98              0.96
## PP.BehavInt3_GFPRB              1.00              0.99              0.95
## PP.BehavInt4_GFPRB              0.99              1.00              0.95
## PP.BehavInt1_CBB                0.73              0.70              0.82
## PP.BehavInt2_CBB                0.69              0.66              0.79
## PP.BehavInt3_CBB                0.71              0.69              0.81
## PP.BehavInt4_CBB                0.71              0.68              0.80
## PP.BehavInt1_PBPB               0.99              0.99              0.95
## PP.BehavInt2_PBPB               0.98              0.98              0.96
## PP.BehavInt3_PBPB               1.00              0.99              0.95
## PP.BehavInt4_PBPB               0.99              1.00              0.95
## PP.BehavInt1_PBFB               0.95              0.95              1.00
## PP.BehavInt2_PBFB               0.93              0.92              0.98
## PP.BehavInt3_PBFB               0.95              0.94              0.99
## PP.BehavInt4_PBFB               0.95              0.94              0.99
## PP.BehavInt1_VB                 0.90              0.91              0.85
## PP.BehavInt2_VB                 0.90              0.91              0.86
## PP.BehavInt3_VB                 0.90              0.91              0.84
## PP.BehavInt4_VB                 0.91              0.92              0.85
## PP.CCB_48                       0.46              0.48              0.45
## PP.CCB_49                       0.46              0.48              0.46
## PP.CCB_50                       0.50              0.52              0.50
## PP.CCB_51                       0.60              0.61              0.61
## PP.CNS_1                        0.34              0.34              0.42
## PP.CNS_2                        0.24              0.26              0.30
## PP.CNS_3                        0.27              0.27              0.34
## PP.ATNS_1                      -0.08             -0.06             -0.01
## PP.ATNS_2R                     -0.55             -0.54             -0.68
## PP.ATNS_3                       0.06              0.08              0.11
## PP.ATNS_4                       0.21              0.23              0.23
## PP.ATNS_5                      -0.04             -0.02             -0.01
## PP.Ind_3                        0.22              0.22              0.25
## PP.Ind_4                       -0.02              0.00              0.00
## PP.Ind_7                        0.25              0.25              0.31
## PP.Ind_8                        0.09              0.11              0.09
## PP.Ind_1                       -0.04             -0.02             -0.03
## PP.Ind_2                       -0.08             -0.06             -0.05
## PP.Ind_5                        0.13              0.15              0.13
## PP.Ind_6                       -0.09             -0.07             -0.06
##                    PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB                   0.09              0.06              0.07
## PP.Nat_4R_GFFB                 -0.83             -0.83             -0.82
## PP.Nat_2R_GFFB                 -0.80             -0.83             -0.81
## PP.Nat_3R_GFFB                 -0.77             -0.76             -0.76
## PP.Nat_1_GFPRB                 -0.32             -0.27             -0.26
## PP.Nat_4R_GFPRB                -0.71             -0.67             -0.66
## PP.Nat_2R_GFPRB                -0.75             -0.72             -0.72
## PP.Nat_3R_GFPRB                -0.79             -0.76             -0.77
## PP.Nat_1_CBB                    0.75              0.71              0.72
## PP.Nat_4R_CBB                   0.14              0.08              0.12
## PP.Nat_2R_CBB                   0.01             -0.07             -0.03
## PP.Nat_3R_CBB                  -0.10             -0.19             -0.15
## PP.Nat_1_PBPB                   0.93              0.92              0.93
## PP.Nat_4R_PBPB                  0.15              0.12              0.15
## PP.Nat_2R_PBPB                  0.07              0.04              0.08
## PP.Nat_3R_PBPB                 -0.27             -0.33             -0.31
## PP.Nat_1_PBFB                   0.95              0.95              0.95
## PP.Nat_4R_PBFB                 -0.43             -0.41             -0.42
## PP.Nat_2R_PBFB                 -0.08             -0.05             -0.08
## PP.Nat_3R_PBFB                  0.04              0.09              0.07
## PP.Nat_1_VB                     0.72              0.76              0.75
## PP.Nat_4R_VB                   -0.12             -0.09             -0.09
## PP.Nat_2R_VB                   -0.32             -0.29             -0.28
## PP.Nat_3R_VB                   -0.39             -0.38             -0.37
## PP.BehavInt1_GFFB               0.09              0.08              0.09
## PP.BehavInt2_GFFB               0.02              0.02              0.02
## PP.BehavInt3_GFFB               0.13              0.11              0.12
## PP.BehavInt4_GFFB               0.05              0.04              0.04
## PP.BehavInt1_GFPRB              0.92              0.94              0.94
## PP.BehavInt2_GFPRB              0.95              0.94              0.94
## PP.BehavInt3_GFPRB              0.93              0.95              0.95
## PP.BehavInt4_GFPRB              0.92              0.94              0.94
## PP.BehavInt1_CBB                0.84              0.82              0.83
## PP.BehavInt2_CBB                0.82              0.79              0.80
## PP.BehavInt3_CBB                0.83              0.81              0.82
## PP.BehavInt4_CBB                0.83              0.81              0.82
## PP.BehavInt1_PBPB               0.92              0.94              0.94
## PP.BehavInt2_PBPB               0.95              0.94              0.94
## PP.BehavInt3_PBPB               0.93              0.95              0.95
## PP.BehavInt4_PBPB               0.92              0.94              0.94
## PP.BehavInt1_PBFB               0.98              0.99              0.99
## PP.BehavInt2_PBFB               1.00              0.98              0.98
## PP.BehavInt3_PBFB               0.98              1.00              1.00
## PP.BehavInt4_PBFB               0.98              1.00              1.00
## PP.BehavInt1_VB                 0.82              0.85              0.84
## PP.BehavInt2_VB                 0.85              0.86              0.85
## PP.BehavInt3_VB                 0.80              0.85              0.83
## PP.BehavInt4_VB                 0.82              0.85              0.84
## PP.CCB_48                       0.37              0.44              0.40
## PP.CCB_49                       0.37              0.45              0.41
## PP.CCB_50                       0.42              0.49              0.45
## PP.CCB_51                       0.54              0.60              0.56
## PP.CNS_1                        0.38              0.43              0.39
## PP.CNS_2                        0.25              0.31              0.27
## PP.CNS_3                        0.28              0.34              0.30
## PP.ATNS_1                      -0.02              0.01             -0.03
## PP.ATNS_2R                     -0.73             -0.70             -0.71
## PP.ATNS_3                       0.10              0.13              0.09
## PP.ATNS_4                       0.19              0.25              0.21
## PP.ATNS_5                      -0.04              0.01             -0.04
## PP.Ind_3                        0.29              0.26              0.25
## PP.Ind_4                       -0.02              0.02             -0.01
## PP.Ind_7                        0.33              0.33              0.31
## PP.Ind_8                        0.07              0.10              0.07
## PP.Ind_1                       -0.09             -0.03             -0.06
## PP.Ind_2                       -0.10             -0.04             -0.08
## PP.Ind_5                        0.08              0.14              0.11
## PP.Ind_6                       -0.10             -0.06             -0.10
##                    PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB                -0.12           -0.13           -0.13
## PP.Nat_4R_GFFB               -0.66           -0.70           -0.65
## PP.Nat_2R_GFFB               -0.71           -0.71           -0.72
## PP.Nat_3R_GFFB               -0.52           -0.55           -0.51
## PP.Nat_1_GFPRB               -0.09           -0.19           -0.06
## PP.Nat_4R_GFPRB              -0.46           -0.54           -0.42
## PP.Nat_2R_GFPRB              -0.53           -0.62           -0.50
## PP.Nat_3R_GFPRB              -0.54           -0.61           -0.51
## PP.Nat_1_CBB                  0.38            0.43            0.36
## PP.Nat_4R_CBB                -0.19           -0.15           -0.22
## PP.Nat_2R_CBB                -0.39           -0.31           -0.43
## PP.Nat_3R_CBB                -0.46           -0.38           -0.49
## PP.Nat_1_PBPB                 0.85            0.87            0.84
## PP.Nat_4R_PBPB                0.28            0.34            0.27
## PP.Nat_2R_PBPB                0.11            0.19            0.11
## PP.Nat_3R_PBPB               -0.29           -0.15           -0.28
## PP.Nat_1_PBFB                 0.74            0.77            0.74
## PP.Nat_4R_PBFB               -0.41           -0.42           -0.39
## PP.Nat_2R_PBFB                0.03           -0.04            0.02
## PP.Nat_3R_PBFB                0.17            0.08            0.16
## PP.Nat_1_VB                   0.92            0.88            0.91
## PP.Nat_4R_VB                  0.21            0.19            0.23
## PP.Nat_2R_VB                 -0.03           -0.07            0.00
## PP.Nat_3R_VB                 -0.18           -0.19           -0.15
## PP.BehavInt1_GFFB            -0.09           -0.11           -0.10
## PP.BehavInt2_GFFB            -0.12           -0.15           -0.12
## PP.BehavInt3_GFFB            -0.07           -0.07           -0.08
## PP.BehavInt4_GFFB            -0.13           -0.14           -0.13
## PP.BehavInt1_GFPRB            0.90            0.89            0.90
## PP.BehavInt2_GFPRB            0.88            0.89            0.87
## PP.BehavInt3_GFPRB            0.90            0.90            0.90
## PP.BehavInt4_GFPRB            0.91            0.91            0.91
## PP.BehavInt1_CBB              0.51            0.53            0.49
## PP.BehavInt2_CBB              0.47            0.50            0.45
## PP.BehavInt3_CBB              0.49            0.51            0.48
## PP.BehavInt4_CBB              0.49            0.50            0.48
## PP.BehavInt1_PBPB             0.90            0.89            0.90
## PP.BehavInt2_PBPB             0.88            0.89            0.87
## PP.BehavInt3_PBPB             0.90            0.90            0.90
## PP.BehavInt4_PBPB             0.91            0.91            0.91
## PP.BehavInt1_PBFB             0.85            0.86            0.84
## PP.BehavInt2_PBFB             0.82            0.85            0.80
## PP.BehavInt3_PBFB             0.85            0.86            0.85
## PP.BehavInt4_PBFB             0.84            0.85            0.83
## PP.BehavInt1_VB               1.00            0.96            0.99
## PP.BehavInt2_VB               0.96            1.00            0.95
## PP.BehavInt3_VB               0.99            0.95            1.00
## PP.BehavInt4_VB               0.99            0.96            0.99
## PP.CCB_48                     0.62            0.52            0.62
## PP.CCB_49                     0.62            0.51            0.62
## PP.CCB_50                     0.64            0.55            0.64
## PP.CCB_51                     0.69            0.59            0.68
## PP.CNS_1                      0.46            0.44            0.46
## PP.CNS_2                      0.43            0.37            0.45
## PP.CNS_3                      0.46            0.41            0.46
## PP.ATNS_1                     0.07            0.08            0.08
## PP.ATNS_2R                   -0.43           -0.48           -0.41
## PP.ATNS_3                     0.24            0.24            0.25
## PP.ATNS_4                     0.39            0.36            0.40
## PP.ATNS_5                     0.16            0.14            0.16
## PP.Ind_3                      0.31            0.33            0.28
## PP.Ind_4                      0.21            0.17            0.21
## PP.Ind_7                      0.39            0.37            0.37
## PP.Ind_8                      0.28            0.23            0.27
## PP.Ind_1                      0.21            0.12            0.21
## PP.Ind_2                      0.16            0.08            0.16
## PP.Ind_5                      0.35            0.27            0.35
## PP.Ind_6                      0.13            0.07            0.13
##                    PP.BehavInt4_VB PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51
## PP.Nat_1_GFFB                -0.13     -0.17     -0.13     -0.12      0.00
## PP.Nat_4R_GFFB               -0.66     -0.40     -0.41     -0.44     -0.52
## PP.Nat_2R_GFFB               -0.72     -0.53     -0.53     -0.56     -0.64
## PP.Nat_3R_GFFB               -0.52     -0.26     -0.27     -0.31     -0.43
## PP.Nat_1_GFPRB               -0.09      0.03      0.05      0.00     -0.01
## PP.Nat_4R_GFPRB              -0.46     -0.22     -0.24     -0.29     -0.39
## PP.Nat_2R_GFPRB              -0.53     -0.26     -0.26     -0.32     -0.39
## PP.Nat_3R_GFPRB              -0.53     -0.25     -0.27     -0.31     -0.42
## PP.Nat_1_CBB                  0.37      0.10      0.13      0.18      0.34
## PP.Nat_4R_CBB                -0.20     -0.39     -0.39     -0.35     -0.33
## PP.Nat_2R_CBB                -0.39     -0.53     -0.54     -0.50     -0.48
## PP.Nat_3R_CBB                -0.45     -0.57     -0.58     -0.54     -0.54
## PP.Nat_1_PBPB                 0.85      0.38      0.38      0.43      0.54
## PP.Nat_4R_PBPB                0.28      0.00     -0.05     -0.03     -0.08
## PP.Nat_2R_PBPB                0.13     -0.12     -0.17     -0.15     -0.20
## PP.Nat_3R_PBPB               -0.27     -0.46     -0.50     -0.50     -0.56
## PP.Nat_1_PBFB                 0.74      0.36      0.38      0.42      0.55
## PP.Nat_4R_PBFB               -0.40     -0.08     -0.05     -0.06     -0.09
## PP.Nat_2R_PBFB                0.03      0.30      0.32      0.33      0.32
## PP.Nat_3R_PBFB                0.15      0.45      0.47      0.48      0.47
## PP.Nat_1_VB                   0.91      0.61      0.61      0.61      0.67
## PP.Nat_4R_VB                  0.21      0.07      0.03      0.00     -0.08
## PP.Nat_2R_VB                 -0.03      0.00     -0.02     -0.09     -0.18
## PP.Nat_3R_VB                 -0.18     -0.20     -0.22     -0.29     -0.38
## PP.BehavInt1_GFFB            -0.11     -0.14     -0.10     -0.11      0.01
## PP.BehavInt2_GFFB            -0.14     -0.15     -0.10     -0.13     -0.01
## PP.BehavInt3_GFFB            -0.09     -0.15     -0.11     -0.11      0.02
## PP.BehavInt4_GFFB            -0.14     -0.13     -0.09     -0.10      0.02
## PP.BehavInt1_GFPRB            0.90      0.44      0.44      0.48      0.57
## PP.BehavInt2_GFPRB            0.89      0.40      0.40      0.45      0.55
## PP.BehavInt3_GFPRB            0.91      0.46      0.46      0.50      0.60
## PP.BehavInt4_GFPRB            0.92      0.48      0.48      0.52      0.61
## PP.BehavInt1_CBB              0.50      0.20      0.23      0.27      0.44
## PP.BehavInt2_CBB              0.47      0.16      0.19      0.23      0.40
## PP.BehavInt3_CBB              0.49      0.20      0.22      0.27      0.44
## PP.BehavInt4_CBB              0.49      0.19      0.21      0.26      0.43
## PP.BehavInt1_PBPB             0.90      0.44      0.44      0.48      0.57
## PP.BehavInt2_PBPB             0.89      0.40      0.40      0.45      0.55
## PP.BehavInt3_PBPB             0.91      0.46      0.46      0.50      0.60
## PP.BehavInt4_PBPB             0.92      0.48      0.48      0.52      0.61
## PP.BehavInt1_PBFB             0.85      0.45      0.46      0.50      0.61
## PP.BehavInt2_PBFB             0.82      0.37      0.37      0.42      0.54
## PP.BehavInt3_PBFB             0.85      0.44      0.45      0.49      0.60
## PP.BehavInt4_PBFB             0.84      0.40      0.41      0.45      0.56
## PP.BehavInt1_VB               0.99      0.62      0.62      0.64      0.69
## PP.BehavInt2_VB               0.96      0.52      0.51      0.55      0.59
## PP.BehavInt3_VB               0.99      0.62      0.62      0.64      0.68
## PP.BehavInt4_VB               1.00      0.60      0.59      0.62      0.67
## PP.CCB_48                     0.60      1.00      0.98      0.97      0.93
## PP.CCB_49                     0.59      0.98      1.00      0.96      0.94
## PP.CCB_50                     0.62      0.97      0.96      1.00      0.94
## PP.CCB_51                     0.67      0.93      0.94      0.94      1.00
## PP.CNS_1                      0.46      0.57      0.60      0.62      0.65
## PP.CNS_2                      0.42      0.66      0.68      0.66      0.68
## PP.CNS_3                      0.45      0.70      0.72      0.72      0.72
## PP.ATNS_1                     0.07      0.25      0.28      0.27      0.27
## PP.ATNS_2R                   -0.43     -0.11     -0.14     -0.19     -0.32
## PP.ATNS_3                     0.23      0.38      0.41      0.41      0.40
## PP.ATNS_4                     0.38      0.57      0.58      0.59      0.56
## PP.ATNS_5                     0.14      0.41      0.44      0.42      0.40
## PP.Ind_3                      0.31      0.16      0.17      0.21      0.26
## PP.Ind_4                      0.20      0.35      0.36      0.35      0.34
## PP.Ind_7                      0.37      0.29      0.31      0.32      0.37
## PP.Ind_8                      0.26      0.35      0.37      0.36      0.37
## PP.Ind_1                      0.19      0.54      0.55      0.52      0.48
## PP.Ind_2                      0.14      0.46      0.48      0.45      0.41
## PP.Ind_5                      0.33      0.57      0.58      0.57      0.54
## PP.Ind_6                      0.12      0.41      0.42      0.39      0.37
##                    PP.CNS_1 PP.CNS_2 PP.CNS_3 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3
## PP.Nat_1_GFFB          0.24     0.23     0.17      0.42      -0.54      0.24
## PP.Nat_4R_GFFB        -0.51    -0.36    -0.39     -0.25       0.66     -0.35
## PP.Nat_2R_GFFB        -0.55    -0.46    -0.48     -0.26       0.55     -0.35
## PP.Nat_3R_GFFB        -0.53    -0.40    -0.38     -0.37       0.77     -0.38
## PP.Nat_1_GFPRB         0.08     0.28     0.14      0.26       0.19      0.13
## PP.Nat_4R_GFPRB       -0.52    -0.32    -0.39     -0.33       0.77     -0.42
## PP.Nat_2R_GFPRB       -0.48    -0.30    -0.38     -0.27       0.75     -0.34
## PP.Nat_3R_GFPRB       -0.50    -0.32    -0.36     -0.22       0.80     -0.28
## PP.Nat_1_CBB           0.48     0.26     0.30      0.20      -0.85      0.19
## PP.Nat_4R_CBB         -0.36    -0.53    -0.47     -0.62      -0.04     -0.60
## PP.Nat_2R_CBB         -0.43    -0.61    -0.54     -0.55      -0.06     -0.58
## PP.Nat_3R_CBB         -0.45    -0.59    -0.53     -0.46       0.04     -0.46
## PP.Nat_1_PBPB          0.42     0.29     0.30      0.02      -0.64      0.16
## PP.Nat_4R_PBPB        -0.30    -0.33    -0.30     -0.50       0.28     -0.43
## PP.Nat_2R_PBPB        -0.41    -0.45    -0.41     -0.59       0.33     -0.50
## PP.Nat_3R_PBPB        -0.51    -0.57    -0.52     -0.39       0.39     -0.36
## PP.Nat_1_PBFB          0.49     0.33     0.37      0.07      -0.74      0.19
## PP.Nat_4R_PBFB         0.02     0.14     0.07      0.47      -0.01      0.30
## PP.Nat_2R_PBFB         0.40     0.48     0.43      0.63      -0.22      0.55
## PP.Nat_3R_PBFB         0.39     0.50     0.46      0.50      -0.20      0.46
## PP.Nat_1_VB            0.49     0.47     0.49      0.19      -0.39      0.32
## PP.Nat_4R_VB          -0.35    -0.22    -0.24     -0.45       0.55     -0.32
## PP.Nat_2R_VB          -0.44    -0.26    -0.30     -0.45       0.66     -0.37
## PP.Nat_3R_VB          -0.54    -0.40    -0.44     -0.45       0.64     -0.40
## PP.BehavInt1_GFFB      0.25     0.24     0.20      0.43      -0.54      0.26
## PP.BehavInt2_GFFB      0.22     0.23     0.18      0.43      -0.47      0.25
## PP.BehavInt3_GFFB      0.27     0.24     0.20      0.44      -0.57      0.28
## PP.BehavInt4_GFFB      0.27     0.28     0.23      0.47      -0.50      0.30
## PP.BehavInt1_GFPRB     0.32     0.23     0.24     -0.11      -0.52      0.03
## PP.BehavInt2_GFPRB     0.33     0.22     0.24     -0.08      -0.57      0.06
## PP.BehavInt3_GFPRB     0.34     0.24     0.27     -0.08      -0.55      0.06
## PP.BehavInt4_GFPRB     0.34     0.26     0.27     -0.06      -0.54      0.08
## PP.BehavInt1_CBB       0.44     0.25     0.29      0.07      -0.84      0.08
## PP.BehavInt2_CBB       0.45     0.25     0.29      0.11      -0.86      0.10
## PP.BehavInt3_CBB       0.44     0.25     0.28      0.08      -0.85      0.09
## PP.BehavInt4_CBB       0.44     0.24     0.28      0.07      -0.84      0.08
## PP.BehavInt1_PBPB      0.32     0.23     0.24     -0.11      -0.52      0.03
## PP.BehavInt2_PBPB      0.33     0.22     0.24     -0.08      -0.57      0.06
## PP.BehavInt3_PBPB      0.34     0.24     0.27     -0.08      -0.55      0.06
## PP.BehavInt4_PBPB      0.34     0.26     0.27     -0.06      -0.54      0.08
## PP.BehavInt1_PBFB      0.42     0.30     0.34     -0.01      -0.68      0.11
## PP.BehavInt2_PBFB      0.38     0.25     0.28     -0.02      -0.73      0.10
## PP.BehavInt3_PBFB      0.43     0.31     0.34      0.01      -0.70      0.13
## PP.BehavInt4_PBFB      0.39     0.27     0.30     -0.03      -0.71      0.09
## PP.BehavInt1_VB        0.46     0.43     0.46      0.07      -0.43      0.24
## PP.BehavInt2_VB        0.44     0.37     0.41      0.08      -0.48      0.24
## PP.BehavInt3_VB        0.46     0.45     0.46      0.08      -0.41      0.25
## PP.BehavInt4_VB        0.46     0.42     0.45      0.07      -0.43      0.23
## PP.CCB_48              0.57     0.66     0.70      0.25      -0.11      0.38
## PP.CCB_49              0.60     0.68     0.72      0.28      -0.14      0.41
## PP.CCB_50              0.62     0.66     0.72      0.27      -0.19      0.41
## PP.CCB_51              0.65     0.68     0.72      0.27      -0.32      0.40
## PP.CNS_1               1.00     0.87     0.88      0.62      -0.40      0.67
## PP.CNS_2               0.87     1.00     0.91      0.64      -0.23      0.68
## PP.CNS_3               0.88     0.91     1.00      0.59      -0.25      0.63
## PP.ATNS_1              0.62     0.64     0.59      1.00      -0.24      0.82
## PP.ATNS_2R            -0.40    -0.23    -0.25     -0.24       1.00     -0.19
## PP.ATNS_3              0.67     0.68     0.63      0.82      -0.19      1.00
## PP.ATNS_4              0.71     0.76     0.73      0.73      -0.17      0.86
## PP.ATNS_5              0.61     0.67     0.62      0.82      -0.09      0.88
## PP.Ind_3               0.58     0.51     0.49      0.57      -0.47      0.57
## PP.Ind_4               0.62     0.67     0.64      0.63      -0.13      0.61
## PP.Ind_7               0.61     0.60     0.57      0.60      -0.48      0.60
## PP.Ind_8               0.58     0.66     0.61      0.60      -0.20      0.59
## PP.Ind_1               0.63     0.72     0.73      0.55       0.03      0.56
## PP.Ind_2               0.62     0.69     0.69      0.55       0.02      0.57
## PP.Ind_5               0.70     0.76     0.75      0.56      -0.12      0.59
## PP.Ind_6               0.59     0.67     0.65      0.60      -0.03      0.59
##                    PP.ATNS_4 PP.ATNS_5 PP.Ind_3 PP.Ind_4 PP.Ind_7 PP.Ind_8
## PP.Nat_1_GFFB           0.15      0.23     0.45     0.39     0.44     0.43
## PP.Nat_4R_GFFB         -0.34     -0.22    -0.44    -0.10    -0.44    -0.15
## PP.Nat_2R_GFFB         -0.40     -0.25    -0.40    -0.16    -0.41    -0.21
## PP.Nat_3R_GFFB         -0.36     -0.26    -0.58    -0.25    -0.59    -0.32
## PP.Nat_1_GFPRB          0.17      0.23     0.15     0.46     0.17     0.49
## PP.Nat_4R_GFPRB        -0.36     -0.27    -0.56    -0.18    -0.55    -0.21
## PP.Nat_2R_GFPRB        -0.30     -0.18    -0.49    -0.14    -0.51    -0.16
## PP.Nat_3R_GFPRB        -0.28     -0.12    -0.51    -0.14    -0.51    -0.19
## PP.Nat_1_CBB            0.16      0.05     0.48     0.11     0.45     0.18
## PP.Nat_4R_CBB          -0.59     -0.68    -0.35    -0.59    -0.44    -0.62
## PP.Nat_2R_CBB          -0.61     -0.64    -0.31    -0.59    -0.40    -0.61
## PP.Nat_3R_CBB          -0.54     -0.53    -0.26    -0.51    -0.35    -0.55
## PP.Nat_1_PBPB           0.25      0.00     0.34     0.04     0.36     0.15
## PP.Nat_4R_PBPB         -0.31     -0.46    -0.33    -0.42    -0.39    -0.40
## PP.Nat_2R_PBPB         -0.41     -0.52    -0.42    -0.57    -0.49    -0.54
## PP.Nat_3R_PBPB         -0.44     -0.40    -0.34    -0.46    -0.41    -0.49
## PP.Nat_1_PBFB           0.26      0.04     0.34     0.04     0.38     0.12
## PP.Nat_4R_PBFB          0.22      0.43     0.17     0.31     0.16     0.25
## PP.Nat_2R_PBFB          0.50      0.62     0.43     0.60     0.45     0.54
## PP.Nat_3R_PBFB          0.49      0.53     0.33     0.56     0.37     0.51
## PP.Nat_1_VB             0.45      0.23     0.29     0.22     0.37     0.31
## PP.Nat_4R_VB           -0.21     -0.30    -0.42    -0.28    -0.40    -0.26
## PP.Nat_2R_VB           -0.29     -0.29    -0.56    -0.37    -0.52    -0.34
## PP.Nat_3R_VB           -0.38     -0.35    -0.60    -0.43    -0.58    -0.40
## PP.BehavInt1_GFFB       0.19      0.26     0.44     0.40     0.49     0.47
## PP.BehavInt2_GFFB       0.18      0.26     0.39     0.39     0.46     0.46
## PP.BehavInt3_GFFB       0.20      0.26     0.45     0.37     0.49     0.44
## PP.BehavInt4_GFFB       0.22      0.30     0.44     0.41     0.49     0.48
## PP.BehavInt1_GFPRB      0.19     -0.07     0.19    -0.04     0.22     0.08
## PP.BehavInt2_GFPRB      0.19     -0.07     0.22    -0.06     0.23     0.04
## PP.BehavInt3_GFPRB      0.21     -0.04     0.22    -0.02     0.25     0.09
## PP.BehavInt4_GFPRB      0.23     -0.02     0.22     0.00     0.25     0.11
## PP.BehavInt1_CBB        0.13     -0.05     0.36     0.02     0.36     0.12
## PP.BehavInt2_CBB        0.13     -0.03     0.40     0.05     0.38     0.14
## PP.BehavInt3_CBB        0.14     -0.03     0.38     0.02     0.38     0.12
## PP.BehavInt4_CBB        0.13     -0.05     0.37     0.02     0.36     0.11
## PP.BehavInt1_PBPB       0.19     -0.07     0.19    -0.04     0.22     0.08
## PP.BehavInt2_PBPB       0.19     -0.07     0.22    -0.06     0.23     0.04
## PP.BehavInt3_PBPB       0.21     -0.04     0.22    -0.02     0.25     0.09
## PP.BehavInt4_PBPB       0.23     -0.02     0.22     0.00     0.25     0.11
## PP.BehavInt1_PBFB       0.23     -0.01     0.25     0.00     0.31     0.09
## PP.BehavInt2_PBFB       0.19     -0.04     0.29    -0.02     0.33     0.07
## PP.BehavInt3_PBFB       0.25      0.01     0.26     0.02     0.33     0.10
## PP.BehavInt4_PBFB       0.21     -0.04     0.25    -0.01     0.31     0.07
## PP.BehavInt1_VB         0.39      0.16     0.31     0.21     0.39     0.28
## PP.BehavInt2_VB         0.36      0.14     0.33     0.17     0.37     0.23
## PP.BehavInt3_VB         0.40      0.16     0.28     0.21     0.37     0.27
## PP.BehavInt4_VB         0.38      0.14     0.31     0.20     0.37     0.26
## PP.CCB_48               0.57      0.41     0.16     0.35     0.29     0.35
## PP.CCB_49               0.58      0.44     0.17     0.36     0.31     0.37
## PP.CCB_50               0.59      0.42     0.21     0.35     0.32     0.36
## PP.CCB_51               0.56      0.40     0.26     0.34     0.37     0.37
## PP.CNS_1                0.71      0.61     0.58     0.62     0.61     0.58
## PP.CNS_2                0.76      0.67     0.51     0.67     0.60     0.66
## PP.CNS_3                0.73      0.62     0.49     0.64     0.57     0.61
## PP.ATNS_1               0.73      0.82     0.57     0.63     0.60     0.60
## PP.ATNS_2R             -0.17     -0.09    -0.47    -0.13    -0.48    -0.20
## PP.ATNS_3               0.86      0.88     0.57     0.61     0.60     0.59
## PP.ATNS_4               1.00      0.83     0.46     0.56     0.55     0.55
## PP.ATNS_5               0.83      1.00     0.50     0.63     0.57     0.58
## PP.Ind_3                0.46      0.50     1.00     0.72     0.89     0.70
## PP.Ind_4                0.56      0.63     0.72     1.00     0.73     0.87
## PP.Ind_7                0.55      0.57     0.89     0.73     1.00     0.73
## PP.Ind_8                0.55      0.58     0.70     0.87     0.73     1.00
## PP.Ind_1                0.59      0.59     0.45     0.77     0.54     0.74
## PP.Ind_2                0.57      0.58     0.42     0.70     0.51     0.69
## PP.Ind_5                0.63      0.59     0.53     0.74     0.61     0.76
## PP.Ind_6                0.55      0.60     0.55     0.78     0.62     0.78
##                    PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.Nat_1_GFFB          0.20     0.21     0.24     0.27
## PP.Nat_4R_GFFB        -0.05    -0.08    -0.22    -0.09
## PP.Nat_2R_GFFB        -0.16    -0.17    -0.34    -0.16
## PP.Nat_3R_GFFB        -0.14    -0.15    -0.30    -0.19
## PP.Nat_1_GFPRB         0.46     0.43     0.39     0.45
## PP.Nat_4R_GFPRB       -0.06    -0.10    -0.20    -0.13
## PP.Nat_2R_GFPRB       -0.03    -0.07    -0.17    -0.09
## PP.Nat_3R_GFPRB       -0.05    -0.08    -0.22    -0.08
## PP.Nat_1_CBB          -0.02    -0.01     0.13     0.05
## PP.Nat_4R_CBB         -0.61    -0.59    -0.60    -0.55
## PP.Nat_2R_CBB         -0.65    -0.60    -0.67    -0.57
## PP.Nat_3R_CBB         -0.63    -0.56    -0.65    -0.48
## PP.Nat_1_PBPB         -0.03    -0.04     0.16    -0.03
## PP.Nat_4R_PBPB        -0.38    -0.44    -0.36    -0.41
## PP.Nat_2R_PBPB        -0.50    -0.49    -0.49    -0.52
## PP.Nat_3R_PBPB        -0.50    -0.44    -0.54    -0.40
## PP.Nat_1_PBFB         -0.02    -0.01     0.15    -0.02
## PP.Nat_4R_PBFB         0.29     0.29     0.21     0.30
## PP.Nat_2R_PBFB         0.55     0.51     0.54     0.53
## PP.Nat_3R_PBFB         0.54     0.50     0.54     0.47
## PP.Nat_1_VB            0.28     0.25     0.41     0.20
## PP.Nat_4R_VB          -0.17    -0.21    -0.19    -0.26
## PP.Nat_2R_VB          -0.18    -0.19    -0.26    -0.27
## PP.Nat_3R_VB          -0.26    -0.23    -0.35    -0.30
## PP.BehavInt1_GFFB      0.23     0.23     0.27     0.31
## PP.BehavInt2_GFFB      0.25     0.25     0.28     0.32
## PP.BehavInt3_GFFB      0.19     0.20     0.25     0.29
## PP.BehavInt4_GFFB      0.25     0.24     0.28     0.33
## PP.BehavInt1_GFPRB    -0.04    -0.08     0.12    -0.10
## PP.BehavInt2_GFPRB    -0.09    -0.11     0.09    -0.11
## PP.BehavInt3_GFPRB    -0.04    -0.08     0.13    -0.09
## PP.BehavInt4_GFPRB    -0.02    -0.06     0.15    -0.07
## PP.BehavInt1_CBB      -0.04    -0.03     0.13    -0.02
## PP.BehavInt2_CBB      -0.04    -0.03     0.12    -0.01
## PP.BehavInt3_CBB      -0.04    -0.03     0.13    -0.02
## PP.BehavInt4_CBB      -0.05    -0.04     0.13    -0.02
## PP.BehavInt1_PBPB     -0.04    -0.08     0.12    -0.10
## PP.BehavInt2_PBPB     -0.09    -0.11     0.09    -0.11
## PP.BehavInt3_PBPB     -0.04    -0.08     0.13    -0.09
## PP.BehavInt4_PBPB     -0.02    -0.06     0.15    -0.07
## PP.BehavInt1_PBFB     -0.03    -0.05     0.13    -0.06
## PP.BehavInt2_PBFB     -0.09    -0.10     0.08    -0.10
## PP.BehavInt3_PBFB     -0.03    -0.04     0.14    -0.06
## PP.BehavInt4_PBFB     -0.06    -0.08     0.11    -0.10
## PP.BehavInt1_VB        0.21     0.16     0.35     0.13
## PP.BehavInt2_VB        0.12     0.08     0.27     0.07
## PP.BehavInt3_VB        0.21     0.16     0.35     0.13
## PP.BehavInt4_VB        0.19     0.14     0.33     0.12
## PP.CCB_48              0.54     0.46     0.57     0.41
## PP.CCB_49              0.55     0.48     0.58     0.42
## PP.CCB_50              0.52     0.45     0.57     0.39
## PP.CCB_51              0.48     0.41     0.54     0.37
## PP.CNS_1               0.63     0.62     0.70     0.59
## PP.CNS_2               0.72     0.69     0.76     0.67
## PP.CNS_3               0.73     0.69     0.75     0.65
## PP.ATNS_1              0.55     0.55     0.56     0.60
## PP.ATNS_2R             0.03     0.02    -0.12    -0.03
## PP.ATNS_3              0.56     0.57     0.59     0.59
## PP.ATNS_4              0.59     0.57     0.63     0.55
## PP.ATNS_5              0.59     0.58     0.59     0.60
## PP.Ind_3               0.45     0.42     0.53     0.55
## PP.Ind_4               0.77     0.70     0.74     0.78
## PP.Ind_7               0.54     0.51     0.61     0.62
## PP.Ind_8               0.74     0.69     0.76     0.78
## PP.Ind_1               1.00     0.90     0.90     0.85
## PP.Ind_2               0.90     1.00     0.87     0.82
## PP.Ind_5               0.90     0.87     1.00     0.81
## PP.Ind_6               0.85     0.82     0.81     1.00
## 
## n= 68 
## 
## 
## P
##                    PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB                    0.8446         0.8908         0.0004        
## PP.Nat_4R_GFFB     0.8446                       0.0000         0.0000        
## PP.Nat_2R_GFFB     0.8908        0.0000                        0.0000        
## PP.Nat_3R_GFFB     0.0004        0.0000         0.0000                       
## PP.Nat_1_GFPRB     0.0001        0.0046         0.0721         0.3669        
## PP.Nat_4R_GFPRB    0.0250        0.0000         0.0000         0.0000        
## PP.Nat_2R_GFPRB    0.0683        0.0000         0.0000         0.0000        
## PP.Nat_3R_GFPRB    0.0105        0.0000         0.0000         0.0000        
## PP.Nat_1_CBB       0.0000        0.0000         0.0000         0.0000        
## PP.Nat_4R_CBB      0.0769        0.6710         0.3989         0.5284        
## PP.Nat_2R_CBB      0.4948        0.3310         0.0354         0.4028        
## PP.Nat_3R_CBB      0.3601        0.1873         0.0076         0.2164        
## PP.Nat_1_PBPB      0.7579        0.0000         0.0000         0.0000        
## PP.Nat_4R_PBPB     0.0000        0.9611         0.8901         0.0632        
## PP.Nat_2R_PBPB     0.0000        0.9946         0.7492         0.0200        
## PP.Nat_3R_PBPB     0.0000        0.1058         0.0050         0.0007        
## PP.Nat_1_PBFB      0.2575        0.0000         0.0000         0.0000        
## PP.Nat_4R_PBFB     0.0000        0.0686         0.0508         0.9713        
## PP.Nat_2R_PBFB     0.0000        0.7049         0.2470         0.0305        
## PP.Nat_3R_PBFB     0.0000        0.5294         0.0953         0.0130        
## PP.Nat_1_VB        0.4088        0.0000         0.0000         0.0000        
## PP.Nat_4R_VB       0.0000        0.0209         0.0985         0.0000        
## PP.Nat_2R_VB       0.0000        0.0009         0.0054         0.0000        
## PP.Nat_3R_VB       0.0000        0.0007         0.0007         0.0000        
## PP.BehavInt1_GFFB  0.0000        0.6958         0.9854         0.0002        
## PP.BehavInt2_GFFB  0.0000        0.7999         0.6078         0.0039        
## PP.BehavInt3_GFFB  0.0000        0.4493         0.7700         0.0000        
## PP.BehavInt4_GFFB  0.0000        0.8577         0.8744         0.0007        
## PP.BehavInt1_GFPRB 0.4558        0.0000         0.0000         0.0000        
## PP.BehavInt2_GFPRB 0.4866        0.0000         0.0000         0.0000        
## PP.BehavInt3_GFPRB 0.5389        0.0000         0.0000         0.0000        
## PP.BehavInt4_GFPRB 0.5219        0.0000         0.0000         0.0000        
## PP.BehavInt1_CBB   0.0011        0.0000         0.0000         0.0000        
## PP.BehavInt2_CBB   0.0002        0.0000         0.0000         0.0000        
## PP.BehavInt3_CBB   0.0006        0.0000         0.0000         0.0000        
## PP.BehavInt4_CBB   0.0006        0.0000         0.0000         0.0000        
## PP.BehavInt1_PBPB  0.4558        0.0000         0.0000         0.0000        
## PP.BehavInt2_PBPB  0.4866        0.0000         0.0000         0.0000        
## PP.BehavInt3_PBPB  0.5389        0.0000         0.0000         0.0000        
## PP.BehavInt4_PBPB  0.5219        0.0000         0.0000         0.0000        
## PP.BehavInt1_PBFB  0.9221        0.0000         0.0000         0.0000        
## PP.BehavInt2_PBFB  0.4798        0.0000         0.0000         0.0000        
## PP.BehavInt3_PBFB  0.6266        0.0000         0.0000         0.0000        
## PP.BehavInt4_PBFB  0.5611        0.0000         0.0000         0.0000        
## PP.BehavInt1_VB    0.3418        0.0000         0.0000         0.0000        
## PP.BehavInt2_VB    0.2906        0.0000         0.0000         0.0000        
## PP.BehavInt3_VB    0.3024        0.0000         0.0000         0.0000        
## PP.BehavInt4_VB    0.2989        0.0000         0.0000         0.0000        
## PP.CCB_48          0.1575        0.0008         0.0000         0.0351        
## PP.CCB_49          0.2762        0.0005         0.0000         0.0243        
## PP.CCB_50          0.3391        0.0002         0.0000         0.0095        
## PP.CCB_51          0.9993        0.0000         0.0000         0.0003        
## PP.CNS_1           0.0452        0.0000         0.0000         0.0000        
## PP.CNS_2           0.0636        0.0025         0.0000         0.0008        
## PP.CNS_3           0.1556        0.0009         0.0000         0.0012        
## PP.ATNS_1          0.0004        0.0398         0.0348         0.0021        
## PP.ATNS_2R         0.0000        0.0000         0.0000         0.0000        
## PP.ATNS_3          0.0531        0.0039         0.0035         0.0015        
## PP.ATNS_4          0.2079        0.0040         0.0007         0.0024        
## PP.ATNS_5          0.0595        0.0709         0.0383         0.0317        
## PP.Ind_3           0.0001        0.0002         0.0008         0.0000        
## PP.Ind_4           0.0010        0.4363         0.1926         0.0389        
## PP.Ind_7           0.0002        0.0001         0.0005         0.0000        
## PP.Ind_8           0.0003        0.2254         0.0883         0.0087        
## PP.Ind_1           0.1021        0.6618         0.1830         0.2610        
## PP.Ind_2           0.0852        0.5195         0.1549         0.2347        
## PP.Ind_5           0.0512        0.0719         0.0051         0.0122        
## PP.Ind_6           0.0261        0.4567         0.2028         0.1224        
##                    PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB      0.0001         0.0250          0.0683         
## PP.Nat_4R_GFFB     0.0046         0.0000          0.0000         
## PP.Nat_2R_GFFB     0.0721         0.0000          0.0000         
## PP.Nat_3R_GFFB     0.3669         0.0000          0.0000         
## PP.Nat_1_GFPRB                    0.0001          0.0003         
## PP.Nat_4R_GFPRB    0.0001                         0.0000         
## PP.Nat_2R_GFPRB    0.0003         0.0000                         
## PP.Nat_3R_GFPRB    0.0114         0.0000          0.0000         
## PP.Nat_1_CBB       0.0343         0.0000          0.0000         
## PP.Nat_4R_CBB      0.0001         0.9530          0.6969         
## PP.Nat_2R_CBB      0.0000         0.7173          0.5609         
## PP.Nat_3R_CBB      0.0002         0.9557          0.8117         
## PP.Nat_1_PBPB      0.0163         0.0000          0.0000         
## PP.Nat_4R_PBPB     0.0091         0.1055          0.6681         
## PP.Nat_2R_PBPB     0.0019         0.1197          0.5770         
## PP.Nat_3R_PBPB     0.0000         0.1549          0.4847         
## PP.Nat_1_PBFB      0.0042         0.0000          0.0000         
## PP.Nat_4R_PBFB     0.0000         0.3579          0.0857         
## PP.Nat_2R_PBFB     0.0000         0.2977          0.9140         
## PP.Nat_3R_PBFB     0.0000         0.4908          0.8756         
## PP.Nat_1_VB        0.4852         0.0000          0.0000         
## PP.Nat_4R_VB       0.5047         0.0000          0.0006         
## PP.Nat_2R_VB       0.9601         0.0000          0.0000         
## PP.Nat_3R_VB       0.7210         0.0000          0.0000         
## PP.BehavInt1_GFFB  0.0017         0.0142          0.0546         
## PP.BehavInt2_GFFB  0.0002         0.1079          0.2747         
## PP.BehavInt3_GFFB  0.0053         0.0053          0.0229         
## PP.BehavInt4_GFFB  0.0017         0.0204          0.0740         
## PP.BehavInt1_GFPRB 0.1092         0.0000          0.0000         
## PP.BehavInt2_GFPRB 0.0207         0.0000          0.0000         
## PP.BehavInt3_GFPRB 0.0642         0.0000          0.0000         
## PP.BehavInt4_GFPRB 0.0973         0.0000          0.0000         
## PP.BehavInt1_CBB   0.0449         0.0000          0.0000         
## PP.BehavInt2_CBB   0.0486         0.0000          0.0000         
## PP.BehavInt3_CBB   0.0381         0.0000          0.0000         
## PP.BehavInt4_CBB   0.0447         0.0000          0.0000         
## PP.BehavInt1_PBPB  0.1092         0.0000          0.0000         
## PP.BehavInt2_PBPB  0.0207         0.0000          0.0000         
## PP.BehavInt3_PBPB  0.0642         0.0000          0.0000         
## PP.BehavInt4_PBPB  0.0973         0.0000          0.0000         
## PP.BehavInt1_PBFB  0.0107         0.0000          0.0000         
## PP.BehavInt2_PBFB  0.0084         0.0000          0.0000         
## PP.BehavInt3_PBFB  0.0267         0.0000          0.0000         
## PP.BehavInt4_PBFB  0.0291         0.0000          0.0000         
## PP.BehavInt1_VB    0.4447         0.0000          0.0000         
## PP.BehavInt2_VB    0.1199         0.0000          0.0000         
## PP.BehavInt3_VB    0.6061         0.0003          0.0000         
## PP.BehavInt4_VB    0.4630         0.0000          0.0000         
## PP.CCB_48          0.7977         0.0660          0.0329         
## PP.CCB_49          0.6970         0.0458          0.0308         
## PP.CCB_50          0.9745         0.0159          0.0085         
## PP.CCB_51          0.9558         0.0009          0.0010         
## PP.CNS_1           0.5228         0.0000          0.0000         
## PP.CNS_2           0.0208         0.0079          0.0132         
## PP.CNS_3           0.2428         0.0010          0.0012         
## PP.ATNS_1          0.0316         0.0059          0.0250         
## PP.ATNS_2R         0.1120         0.0000          0.0000         
## PP.ATNS_3          0.2982         0.0004          0.0049         
## PP.ATNS_4          0.1755         0.0026          0.0118         
## PP.ATNS_5          0.0546         0.0261          0.1322         
## PP.Ind_3           0.2126         0.0000          0.0000         
## PP.Ind_4           0.0000         0.1399          0.2646         
## PP.Ind_7           0.1717         0.0000          0.0000         
## PP.Ind_8           0.0000         0.0829          0.1874         
## PP.Ind_1           0.0000         0.6318          0.7991         
## PP.Ind_2           0.0003         0.3962          0.5704         
## PP.Ind_5           0.0009         0.0967          0.1752         
## PP.Ind_6           0.0001         0.2829          0.4690         
##                    PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB      0.0105          0.0000       0.0769        0.4948       
## PP.Nat_4R_GFFB     0.0000          0.0000       0.6710        0.3310       
## PP.Nat_2R_GFFB     0.0000          0.0000       0.3989        0.0354       
## PP.Nat_3R_GFFB     0.0000          0.0000       0.5284        0.4028       
## PP.Nat_1_GFPRB     0.0114          0.0343       0.0001        0.0000       
## PP.Nat_4R_GFPRB    0.0000          0.0000       0.9530        0.7173       
## PP.Nat_2R_GFPRB    0.0000          0.0000       0.6969        0.5609       
## PP.Nat_3R_GFPRB                    0.0000       0.4993        0.5916       
## PP.Nat_1_CBB       0.0000                       0.0861        0.1258       
## PP.Nat_4R_CBB      0.4993          0.0861                     0.0000       
## PP.Nat_2R_CBB      0.5916          0.1258       0.0000                     
## PP.Nat_3R_CBB      0.7788          0.5531       0.0000        0.0000       
## PP.Nat_1_PBPB      0.0000          0.0000       0.4981        0.5982       
## PP.Nat_4R_PBPB     0.6308          0.0636       0.0015        0.0687       
## PP.Nat_2R_PBPB     0.3508          0.0219       0.0000        0.0003       
## PP.Nat_3R_PBPB     0.0348          0.0029       0.0067        0.0003       
## PP.Nat_1_PBFB      0.0000          0.0000       0.2264        0.7796       
## PP.Nat_4R_PBFB     0.1575          0.1825       0.0000        0.0011       
## PP.Nat_2R_PBFB     0.5092          0.4071       0.0000        0.0000       
## PP.Nat_3R_PBFB     0.3336          0.3766       0.0000        0.0000       
## PP.Nat_1_VB        0.0000          0.0020       0.0426        0.0006       
## PP.Nat_4R_VB       0.0001          0.0000       0.4759        0.5536       
## PP.Nat_2R_VB       0.0000          0.0000       0.6403        0.7751       
## PP.Nat_3R_VB       0.0000          0.0000       0.5774        0.8438       
## PP.BehavInt1_GFFB  0.0062          0.0000       0.0097        0.1949       
## PP.BehavInt2_GFFB  0.0424          0.0005       0.0032        0.0957       
## PP.BehavInt3_GFFB  0.0023          0.0000       0.0145        0.2588       
## PP.BehavInt4_GFFB  0.0181          0.0000       0.0050        0.1675       
## PP.BehavInt1_GFPRB 0.0000          0.0000       0.5091        0.3064       
## PP.BehavInt2_GFPRB 0.0000          0.0000       0.3501        0.5338       
## PP.BehavInt3_GFPRB 0.0000          0.0000       0.5284        0.3225       
## PP.BehavInt4_GFPRB 0.0000          0.0000       0.8186        0.1499       
## PP.BehavInt1_CBB   0.0000          0.0000       0.0568        0.2309       
## PP.BehavInt2_CBB   0.0000          0.0000       0.0637        0.1704       
## PP.BehavInt3_CBB   0.0000          0.0000       0.0691        0.2089       
## PP.BehavInt4_CBB   0.0000          0.0000       0.0489        0.1902       
## PP.BehavInt1_PBPB  0.0000          0.0000       0.5091        0.3064       
## PP.BehavInt2_PBPB  0.0000          0.0000       0.3501        0.5338       
## PP.BehavInt3_PBPB  0.0000          0.0000       0.5284        0.3225       
## PP.BehavInt4_PBPB  0.0000          0.0000       0.8186        0.1499       
## PP.BehavInt1_PBFB  0.0000          0.0000       0.4389        0.6407       
## PP.BehavInt2_PBFB  0.0000          0.0000       0.2491        0.9360       
## PP.BehavInt3_PBFB  0.0000          0.0000       0.5382        0.5527       
## PP.BehavInt4_PBFB  0.0000          0.0000       0.3441        0.8124       
## PP.BehavInt1_VB    0.0000          0.0012       0.1152        0.0010       
## PP.BehavInt2_VB    0.0000          0.0003       0.2370        0.0097       
## PP.BehavInt3_VB    0.0000          0.0027       0.0723        0.0003       
## PP.BehavInt4_VB    0.0000          0.0016       0.1051        0.0011       
## PP.CCB_48          0.0416          0.4049       0.0012        0.0000       
## PP.CCB_49          0.0269          0.2777       0.0009        0.0000       
## PP.CCB_50          0.0107          0.1500       0.0033        0.0000       
## PP.CCB_51          0.0004          0.0051       0.0054        0.0000       
## PP.CNS_1           0.0000          0.0000       0.0025        0.0002       
## PP.CNS_2           0.0074          0.0299       0.0000        0.0000       
## PP.CNS_3           0.0024          0.0133       0.0000        0.0000       
## PP.ATNS_1          0.0772          0.0938       0.0000        0.0000       
## PP.ATNS_2R         0.0000          0.0000       0.7531        0.6518       
## PP.ATNS_3          0.0223          0.1135       0.0000        0.0000       
## PP.ATNS_4          0.0218          0.1937       0.0000        0.0000       
## PP.ATNS_5          0.3213          0.6879       0.0000        0.0000       
## PP.Ind_3           0.0000          0.0000       0.0034        0.0093       
## PP.Ind_4           0.2684          0.3737       0.0000        0.0000       
## PP.Ind_7           0.0000          0.0001       0.0002        0.0007       
## PP.Ind_8           0.1217          0.1332       0.0000        0.0000       
## PP.Ind_1           0.6965          0.8438       0.0000        0.0000       
## PP.Ind_2           0.5355          0.9307       0.0000        0.0000       
## PP.Ind_5           0.0752          0.2848       0.0000        0.0000       
## PP.Ind_6           0.5155          0.6812       0.0000        0.0000       
##                    PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB      0.3601        0.7579        0.0000         0.0000        
## PP.Nat_4R_GFFB     0.1873        0.0000        0.9611         0.9946        
## PP.Nat_2R_GFFB     0.0076        0.0000        0.8901         0.7492        
## PP.Nat_3R_GFFB     0.2164        0.0000        0.0632         0.0200        
## PP.Nat_1_GFPRB     0.0002        0.0163        0.0091         0.0019        
## PP.Nat_4R_GFPRB    0.9557        0.0000        0.1055         0.1197        
## PP.Nat_2R_GFPRB    0.8117        0.0000        0.6681         0.5770        
## PP.Nat_3R_GFPRB    0.7788        0.0000        0.6308         0.3508        
## PP.Nat_1_CBB       0.5531        0.0000        0.0636         0.0219        
## PP.Nat_4R_CBB      0.0000        0.4981        0.0015         0.0000        
## PP.Nat_2R_CBB      0.0000        0.5982        0.0687         0.0003        
## PP.Nat_3R_CBB                    0.1734        0.1929         0.0007        
## PP.Nat_1_PBPB      0.1734                      0.0229         0.1988        
## PP.Nat_4R_PBPB     0.1929        0.0229                       0.0000        
## PP.Nat_2R_PBPB     0.0007        0.1988        0.0000                       
## PP.Nat_3R_PBPB     0.0000        0.1029        0.0000         0.0000        
## PP.Nat_1_PBFB      0.6233        0.0000        0.5607         0.8555        
## PP.Nat_4R_PBFB     0.0086        0.0000        0.0000         0.0000        
## PP.Nat_2R_PBFB     0.0000        0.4890        0.0000         0.0000        
## PP.Nat_3R_PBFB     0.0000        0.8514        0.0000         0.0000        
## PP.Nat_1_VB        0.0000        0.0000        0.0414         0.5126        
## PP.Nat_4R_VB       0.6005        0.9911        0.0000         0.0000        
## PP.Nat_2R_VB       0.8863        0.0246        0.0000         0.0000        
## PP.Nat_3R_VB       0.7252        0.0013        0.0000         0.0000        
## PP.BehavInt1_GFFB  0.1370        0.7074        0.0000         0.0000        
## PP.BehavInt2_GFFB  0.0553        0.8096        0.0000         0.0000        
## PP.BehavInt3_GFFB  0.1818        0.4798        0.0000         0.0000        
## PP.BehavInt4_GFFB  0.1272        0.9063        0.0000         0.0000        
## PP.BehavInt1_GFPRB 0.0378        0.0000        0.0068         0.0788        
## PP.BehavInt2_GFPRB 0.1173        0.0000        0.0110         0.0945        
## PP.BehavInt3_GFPRB 0.0549        0.0000        0.0154         0.1231        
## PP.BehavInt4_GFPRB 0.0186        0.0000        0.0193         0.1761        
## PP.BehavInt1_CBB   0.9713        0.0000        0.2162         0.1080        
## PP.BehavInt2_CBB   0.8531        0.0000        0.1551         0.0624        
## PP.BehavInt3_CBB   0.9601        0.0000        0.1858         0.0979        
## PP.BehavInt4_CBB   0.9044        0.0000        0.2256         0.1088        
## PP.BehavInt1_PBPB  0.0378        0.0000        0.0068         0.0788        
## PP.BehavInt2_PBPB  0.1173        0.0000        0.0110         0.0945        
## PP.BehavInt3_PBPB  0.0549        0.0000        0.0154         0.1231        
## PP.BehavInt4_PBPB  0.0186        0.0000        0.0193         0.1761        
## PP.BehavInt1_PBFB  0.1434        0.0000        0.1972         0.5137        
## PP.BehavInt2_PBFB  0.4022        0.0000        0.2147         0.5560        
## PP.BehavInt3_PBFB  0.1239        0.0000        0.3248         0.7166        
## PP.BehavInt4_PBFB  0.2259        0.0000        0.2377         0.5291        
## PP.BehavInt1_VB    0.0000        0.0000        0.0222         0.3927        
## PP.BehavInt2_VB    0.0015        0.0000        0.0043         0.1284        
## PP.BehavInt3_VB    0.0000        0.0000        0.0239         0.3608        
## PP.BehavInt4_VB    0.0001        0.0000        0.0188         0.2822        
## PP.CCB_48          0.0000        0.0013        0.9701         0.3137        
## PP.CCB_49          0.0000        0.0014        0.7033         0.1682        
## PP.CCB_50          0.0000        0.0002        0.8303         0.2353        
## PP.CCB_51          0.0000        0.0000        0.5316         0.1070        
## PP.CNS_1           0.0001        0.0004        0.0141         0.0005        
## PP.CNS_2           0.0000        0.0181        0.0052         0.0001        
## PP.CNS_3           0.0000        0.0121        0.0119         0.0005        
## PP.ATNS_1          0.0000        0.8487        0.0000         0.0000        
## PP.ATNS_2R         0.7356        0.0000        0.0227         0.0068        
## PP.ATNS_3          0.0000        0.2018        0.0002         0.0000        
## PP.ATNS_4          0.0000        0.0416        0.0095         0.0005        
## PP.ATNS_5          0.0000        0.9729        0.0000         0.0000        
## PP.Ind_3           0.0292        0.0043        0.0054         0.0003        
## PP.Ind_4           0.0000        0.7243        0.0004         0.0000        
## PP.Ind_7           0.0034        0.0029        0.0010         0.0000        
## PP.Ind_8           0.0000        0.2272        0.0006         0.0000        
## PP.Ind_1           0.0000        0.8164        0.0016         0.0000        
## PP.Ind_2           0.0000        0.7555        0.0002         0.0000        
## PP.Ind_5           0.0000        0.1826        0.0023         0.0000        
## PP.Ind_6           0.0000        0.8031        0.0005         0.0000        
##                    PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB      0.0000         0.2575        0.0000         0.0000        
## PP.Nat_4R_GFFB     0.1058         0.0000        0.0686         0.7049        
## PP.Nat_2R_GFFB     0.0050         0.0000        0.0508         0.2470        
## PP.Nat_3R_GFFB     0.0007         0.0000        0.9713         0.0305        
## PP.Nat_1_GFPRB     0.0000         0.0042        0.0000         0.0000        
## PP.Nat_4R_GFPRB    0.1549         0.0000        0.3579         0.2977        
## PP.Nat_2R_GFPRB    0.4847         0.0000        0.0857         0.9140        
## PP.Nat_3R_GFPRB    0.0348         0.0000        0.1575         0.5092        
## PP.Nat_1_CBB       0.0029         0.0000        0.1825         0.4071        
## PP.Nat_4R_CBB      0.0067         0.2264        0.0000         0.0000        
## PP.Nat_2R_CBB      0.0003         0.7796        0.0011         0.0000        
## PP.Nat_3R_CBB      0.0000         0.6233        0.0086         0.0000        
## PP.Nat_1_PBPB      0.1029         0.0000        0.0000         0.4890        
## PP.Nat_4R_PBPB     0.0000         0.5607        0.0000         0.0000        
## PP.Nat_2R_PBPB     0.0000         0.8555        0.0000         0.0000        
## PP.Nat_3R_PBPB                    0.0245        0.0005         0.0000        
## PP.Nat_1_PBFB      0.0245                       0.0002         0.4891        
## PP.Nat_4R_PBFB     0.0005         0.0002                       0.0000        
## PP.Nat_2R_PBFB     0.0000         0.4891        0.0000                       
## PP.Nat_3R_PBFB     0.0000         0.8390        0.0000         0.0000        
## PP.Nat_1_VB        0.0349         0.0000        0.0008         0.7995        
## PP.Nat_4R_VB       0.0000         0.1053        0.0000         0.0000        
## PP.Nat_2R_VB       0.0000         0.0010        0.0040         0.0000        
## PP.Nat_3R_VB       0.0000         0.0000        0.0148         0.0000        
## PP.BehavInt1_GFFB  0.0000         0.2098        0.0000         0.0000        
## PP.BehavInt2_GFFB  0.0000         0.5594        0.0000         0.0000        
## PP.BehavInt3_GFFB  0.0000         0.1174        0.0000         0.0000        
## PP.BehavInt4_GFFB  0.0000         0.3261        0.0000         0.0000        
## PP.BehavInt1_GFPRB 0.0396         0.0000        0.0000         0.3069        
## PP.BehavInt2_GFPRB 0.0698         0.0000        0.0000         0.3322        
## PP.BehavInt3_GFPRB 0.0233         0.0000        0.0000         0.4639        
## PP.BehavInt4_GFPRB 0.0184         0.0000        0.0001         0.6058        
## PP.BehavInt1_CBB   0.0002         0.0000        0.0536         0.6444        
## PP.BehavInt2_CBB   0.0003         0.0000        0.0869         0.5397        
## PP.BehavInt3_CBB   0.0002         0.0000        0.0743         0.5727        
## PP.BehavInt4_CBB   0.0003         0.0000        0.0569         0.6339        
## PP.BehavInt1_PBPB  0.0396         0.0000        0.0000         0.3069        
## PP.BehavInt2_PBPB  0.0698         0.0000        0.0000         0.3322        
## PP.BehavInt3_PBPB  0.0233         0.0000        0.0000         0.4639        
## PP.BehavInt4_PBPB  0.0184         0.0000        0.0001         0.6058        
## PP.BehavInt1_PBFB  0.0129         0.0000        0.0002         0.5451        
## PP.BehavInt2_PBFB  0.0284         0.0000        0.0003         0.4922        
## PP.BehavInt3_PBFB  0.0064         0.0000        0.0005         0.6802        
## PP.BehavInt4_PBFB  0.0111         0.0000        0.0003         0.5125        
## PP.BehavInt1_VB    0.0166         0.0000        0.0005         0.8003        
## PP.BehavInt2_VB    0.2263         0.0000        0.0004         0.7411        
## PP.BehavInt3_VB    0.0211         0.0000        0.0009         0.8488        
## PP.BehavInt4_VB    0.0286         0.0000        0.0008         0.8307        
## PP.CCB_48          0.0000         0.0023        0.5318         0.0141        
## PP.CCB_49          0.0000         0.0013        0.6659         0.0085        
## PP.CCB_50          0.0000         0.0004        0.6150         0.0067        
## PP.CCB_51          0.0000         0.0000        0.4664         0.0076        
## PP.CNS_1           0.0000         0.0000        0.8426         0.0007        
## PP.CNS_2           0.0000         0.0063        0.2630         0.0000        
## PP.CNS_3           0.0000         0.0020        0.5629         0.0003        
## PP.ATNS_1          0.0009         0.5788        0.0000         0.0000        
## PP.ATNS_2R         0.0010         0.0000        0.9186         0.0673        
## PP.ATNS_3          0.0028         0.1152        0.0145         0.0000        
## PP.ATNS_4          0.0002         0.0304        0.0696         0.0000        
## PP.ATNS_5          0.0007         0.7314        0.0003         0.0000        
## PP.Ind_3           0.0051         0.0044        0.1558         0.0002        
## PP.Ind_4           0.0000         0.7513        0.0101         0.0000        
## PP.Ind_7           0.0005         0.0013        0.1838         0.0001        
## PP.Ind_8           0.0000         0.3163        0.0405         0.0000        
## PP.Ind_1           0.0000         0.8717        0.0182         0.0000        
## PP.Ind_2           0.0002         0.9220        0.0178         0.0000        
## PP.Ind_5           0.0000         0.2275        0.0808         0.0000        
## PP.Ind_6           0.0007         0.8578        0.0137         0.0000        
##                    PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB      0.0000         0.4088      0.0000       0.0000      
## PP.Nat_4R_GFFB     0.5294         0.0000      0.0209       0.0009      
## PP.Nat_2R_GFFB     0.0953         0.0000      0.0985       0.0054      
## PP.Nat_3R_GFFB     0.0130         0.0000      0.0000       0.0000      
## PP.Nat_1_GFPRB     0.0000         0.4852      0.5047       0.9601      
## PP.Nat_4R_GFPRB    0.4908         0.0000      0.0000       0.0000      
## PP.Nat_2R_GFPRB    0.8756         0.0000      0.0006       0.0000      
## PP.Nat_3R_GFPRB    0.3336         0.0000      0.0001       0.0000      
## PP.Nat_1_CBB       0.3766         0.0020      0.0000       0.0000      
## PP.Nat_4R_CBB      0.0000         0.0426      0.4759       0.6403      
## PP.Nat_2R_CBB      0.0000         0.0006      0.5536       0.7751      
## PP.Nat_3R_CBB      0.0000         0.0000      0.6005       0.8863      
## PP.Nat_1_PBPB      0.8514         0.0000      0.9911       0.0246      
## PP.Nat_4R_PBPB     0.0000         0.0414      0.0000       0.0000      
## PP.Nat_2R_PBPB     0.0000         0.5126      0.0000       0.0000      
## PP.Nat_3R_PBPB     0.0000         0.0349      0.0000       0.0000      
## PP.Nat_1_PBFB      0.8390         0.0000      0.1053       0.0010      
## PP.Nat_4R_PBFB     0.0000         0.0008      0.0000       0.0040      
## PP.Nat_2R_PBFB     0.0000         0.7995      0.0000       0.0000      
## PP.Nat_3R_PBFB                    0.2946      0.0001       0.0002      
## PP.Nat_1_VB        0.2946                     0.0385       0.8168      
## PP.Nat_4R_VB       0.0001         0.0385                   0.0000      
## PP.Nat_2R_VB       0.0002         0.8168      0.0000                   
## PP.Nat_3R_VB       0.0000         0.3023      0.0000       0.0000      
## PP.BehavInt1_GFFB  0.0000         0.6640      0.0000       0.0000      
## PP.BehavInt2_GFFB  0.0000         0.4795      0.0000       0.0000      
## PP.BehavInt3_GFFB  0.0001         0.7812      0.0000       0.0000      
## PP.BehavInt4_GFFB  0.0000         0.4956      0.0000       0.0000      
## PP.BehavInt1_GFPRB 0.7821         0.0000      0.2762       0.4225      
## PP.BehavInt2_GFPRB 0.9536         0.0000      0.5107       0.2231      
## PP.BehavInt3_GFPRB 0.5689         0.0000      0.5037       0.1925      
## PP.BehavInt4_GFPRB 0.4068         0.0000      0.4147       0.2634      
## PP.BehavInt1_CBB   0.3463         0.0001      0.0000       0.0000      
## PP.BehavInt2_CBB   0.3348         0.0003      0.0000       0.0000      
## PP.BehavInt3_CBB   0.3247         0.0002      0.0000       0.0000      
## PP.BehavInt4_CBB   0.3518         0.0003      0.0000       0.0000      
## PP.BehavInt1_PBPB  0.7821         0.0000      0.2762       0.4225      
## PP.BehavInt2_PBPB  0.9536         0.0000      0.5107       0.2231      
## PP.BehavInt3_PBPB  0.5689         0.0000      0.5037       0.1925      
## PP.BehavInt4_PBPB  0.4068         0.0000      0.4147       0.2634      
## PP.BehavInt1_PBFB  0.5976         0.0000      0.5388       0.0248      
## PP.BehavInt2_PBFB  0.7570         0.0000      0.3384       0.0077      
## PP.BehavInt3_PBFB  0.4411         0.0000      0.4616       0.0173      
## PP.BehavInt4_PBFB  0.5755         0.0000      0.4858       0.0196      
## PP.BehavInt1_VB    0.1772         0.0000      0.0872       0.8096      
## PP.BehavInt2_VB    0.5317         0.0000      0.1168       0.5824      
## PP.BehavInt3_VB    0.1873         0.0000      0.0572       0.9854      
## PP.BehavInt4_VB    0.2192         0.0000      0.0900       0.7806      
## PP.CCB_48          0.0001         0.0000      0.5742       0.9960      
## PP.CCB_49          0.0000         0.0000      0.8025       0.8942      
## PP.CCB_50          0.0000         0.0000      0.9716       0.4797      
## PP.CCB_51          0.0000         0.0000      0.4994       0.1518      
## PP.CNS_1           0.0010         0.0000      0.0034       0.0002      
## PP.CNS_2           0.0000         0.0000      0.0735       0.0292      
## PP.CNS_3           0.0000         0.0000      0.0443       0.0135      
## PP.ATNS_1          0.0000         0.1299      0.0001       0.0001      
## PP.ATNS_2R         0.1059         0.0010      0.0000       0.0000      
## PP.ATNS_3          0.0000         0.0087      0.0075       0.0021      
## PP.ATNS_4          0.0000         0.0001      0.0792       0.0179      
## PP.ATNS_5          0.0000         0.0641      0.0124       0.0153      
## PP.Ind_3           0.0060         0.0158      0.0003       0.0000      
## PP.Ind_4           0.0000         0.0674      0.0213       0.0020      
## PP.Ind_7           0.0018         0.0017      0.0006       0.0000      
## PP.Ind_8           0.0000         0.0091      0.0312       0.0041      
## PP.Ind_1           0.0000         0.0215      0.1741       0.1514      
## PP.Ind_2           0.0000         0.0432      0.0788       0.1117      
## PP.Ind_5           0.0000         0.0005      0.1253       0.0341      
## PP.Ind_6           0.0000         0.1109      0.0343       0.0235      
##                    PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB      0.0000       0.0000            0.0000           
## PP.Nat_4R_GFFB     0.0007       0.6958            0.7999           
## PP.Nat_2R_GFFB     0.0007       0.9854            0.6078           
## PP.Nat_3R_GFFB     0.0000       0.0002            0.0039           
## PP.Nat_1_GFPRB     0.7210       0.0017            0.0002           
## PP.Nat_4R_GFPRB    0.0000       0.0142            0.1079           
## PP.Nat_2R_GFPRB    0.0000       0.0546            0.2747           
## PP.Nat_3R_GFPRB    0.0000       0.0062            0.0424           
## PP.Nat_1_CBB       0.0000       0.0000            0.0005           
## PP.Nat_4R_CBB      0.5774       0.0097            0.0032           
## PP.Nat_2R_CBB      0.8438       0.1949            0.0957           
## PP.Nat_3R_CBB      0.7252       0.1370            0.0553           
## PP.Nat_1_PBPB      0.0013       0.7074            0.8096           
## PP.Nat_4R_PBPB     0.0000       0.0000            0.0000           
## PP.Nat_2R_PBPB     0.0000       0.0000            0.0000           
## PP.Nat_3R_PBPB     0.0000       0.0000            0.0000           
## PP.Nat_1_PBFB      0.0000       0.2098            0.5594           
## PP.Nat_4R_PBFB     0.0148       0.0000            0.0000           
## PP.Nat_2R_PBFB     0.0000       0.0000            0.0000           
## PP.Nat_3R_PBFB     0.0000       0.0000            0.0000           
## PP.Nat_1_VB        0.3023       0.6640            0.4795           
## PP.Nat_4R_VB       0.0000       0.0000            0.0000           
## PP.Nat_2R_VB       0.0000       0.0000            0.0000           
## PP.Nat_3R_VB                    0.0000            0.0000           
## PP.BehavInt1_GFFB  0.0000                         0.0000           
## PP.BehavInt2_GFFB  0.0000       0.0000                             
## PP.BehavInt3_GFFB  0.0000       0.0000            0.0000           
## PP.BehavInt4_GFFB  0.0000       0.0000            0.0000           
## PP.BehavInt1_GFPRB 0.0752       0.4678            0.2823           
## PP.BehavInt2_GFPRB 0.0350       0.5077            0.2574           
## PP.BehavInt3_GFPRB 0.0159       0.6042            0.3434           
## PP.BehavInt4_GFPRB 0.0293       0.6208            0.3708           
## PP.BehavInt1_CBB   0.0000       0.0010            0.0081           
## PP.BehavInt2_CBB   0.0000       0.0002            0.0022           
## PP.BehavInt3_CBB   0.0000       0.0006            0.0053           
## PP.BehavInt4_CBB   0.0000       0.0006            0.0063           
## PP.BehavInt1_PBPB  0.0752       0.4678            0.2823           
## PP.BehavInt2_PBPB  0.0350       0.5077            0.2574           
## PP.BehavInt3_PBPB  0.0159       0.6042            0.3434           
## PP.BehavInt4_PBPB  0.0293       0.6208            0.3708           
## PP.BehavInt1_PBFB  0.0032       0.7896            0.7934           
## PP.BehavInt2_PBFB  0.0010       0.4489            0.8755           
## PP.BehavInt3_PBFB  0.0014       0.5183            0.9012           
## PP.BehavInt4_PBFB  0.0018       0.4849            0.8689           
## PP.BehavInt1_VB    0.1363       0.4421            0.3103           
## PP.BehavInt2_VB    0.1249       0.3915            0.2180           
## PP.BehavInt3_VB    0.2100       0.4268            0.3195           
## PP.BehavInt4_VB    0.1412       0.3789            0.2492           
## PP.CCB_48          0.1082       0.2430            0.2231           
## PP.CCB_49          0.0720       0.4182            0.4077           
## PP.CCB_50          0.0154       0.3527            0.3066           
## PP.CCB_51          0.0015       0.9205            0.9530           
## PP.CNS_1           0.0000       0.0397            0.0706           
## PP.CNS_2           0.0007       0.0456            0.0642           
## PP.CNS_3           0.0002       0.0967            0.1444           
## PP.ATNS_1          0.0001       0.0002            0.0003           
## PP.ATNS_2R         0.0000       0.0000            0.0000           
## PP.ATNS_3          0.0007       0.0290            0.0420           
## PP.ATNS_4          0.0014       0.1226            0.1516           
## PP.ATNS_5          0.0032       0.0344            0.0306           
## PP.Ind_3           0.0000       0.0002            0.0009           
## PP.Ind_4           0.0003       0.0007            0.0011           
## PP.Ind_7           0.0000       0.0000            0.0000           
## PP.Ind_8           0.0007       0.0000            0.0000           
## PP.Ind_1           0.0344       0.0594            0.0389           
## PP.Ind_2           0.0615       0.0572            0.0365           
## PP.Ind_5           0.0039       0.0236            0.0217           
## PP.Ind_6           0.0132       0.0090            0.0079           
##                    PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB      0.0000            0.0000            0.4558            
## PP.Nat_4R_GFFB     0.4493            0.8577            0.0000            
## PP.Nat_2R_GFFB     0.7700            0.8744            0.0000            
## PP.Nat_3R_GFFB     0.0000            0.0007            0.0000            
## PP.Nat_1_GFPRB     0.0053            0.0017            0.1092            
## PP.Nat_4R_GFPRB    0.0053            0.0204            0.0000            
## PP.Nat_2R_GFPRB    0.0229            0.0740            0.0000            
## PP.Nat_3R_GFPRB    0.0023            0.0181            0.0000            
## PP.Nat_1_CBB       0.0000            0.0000            0.0000            
## PP.Nat_4R_CBB      0.0145            0.0050            0.5091            
## PP.Nat_2R_CBB      0.2588            0.1675            0.3064            
## PP.Nat_3R_CBB      0.1818            0.1272            0.0378            
## PP.Nat_1_PBPB      0.4798            0.9063            0.0000            
## PP.Nat_4R_PBPB     0.0000            0.0000            0.0068            
## PP.Nat_2R_PBPB     0.0000            0.0000            0.0788            
## PP.Nat_3R_PBPB     0.0000            0.0000            0.0396            
## PP.Nat_1_PBFB      0.1174            0.3261            0.0000            
## PP.Nat_4R_PBFB     0.0000            0.0000            0.0000            
## PP.Nat_2R_PBFB     0.0000            0.0000            0.3069            
## PP.Nat_3R_PBFB     0.0001            0.0000            0.7821            
## PP.Nat_1_VB        0.7812            0.4956            0.0000            
## PP.Nat_4R_VB       0.0000            0.0000            0.2762            
## PP.Nat_2R_VB       0.0000            0.0000            0.4225            
## PP.Nat_3R_VB       0.0000            0.0000            0.0752            
## PP.BehavInt1_GFFB  0.0000            0.0000            0.4678            
## PP.BehavInt2_GFFB  0.0000            0.0000            0.2823            
## PP.BehavInt3_GFFB                    0.0000            0.6567            
## PP.BehavInt4_GFFB  0.0000                              0.2929            
## PP.BehavInt1_GFPRB 0.6567            0.2929                              
## PP.BehavInt2_GFPRB 0.7465            0.3110            0.0000            
## PP.BehavInt3_GFPRB 0.8299            0.3991            0.0000            
## PP.BehavInt4_GFPRB 0.8350            0.4001            0.0000            
## PP.BehavInt1_CBB   0.0003            0.0033            0.0000            
## PP.BehavInt2_CBB   0.0000            0.0006            0.0000            
## PP.BehavInt3_CBB   0.0001            0.0019            0.0000            
## PP.BehavInt4_CBB   0.0002            0.0020            0.0000            
## PP.BehavInt1_PBPB  0.6567            0.2929            0.0000            
## PP.BehavInt2_PBPB  0.7465            0.3110            0.0000            
## PP.BehavInt3_PBPB  0.8299            0.3991            0.0000            
## PP.BehavInt4_PBPB  0.8350            0.4001            0.0000            
## PP.BehavInt1_PBFB  0.5847            0.9681            0.0000            
## PP.BehavInt2_PBFB  0.2873            0.6779            0.0000            
## PP.BehavInt3_PBFB  0.3584            0.7547            0.0000            
## PP.BehavInt4_PBFB  0.3251            0.7337            0.0000            
## PP.BehavInt1_VB    0.5511            0.3057            0.0000            
## PP.BehavInt2_VB    0.5461            0.2702            0.0000            
## PP.BehavInt3_VB    0.5303            0.2965            0.0000            
## PP.BehavInt4_VB    0.4883            0.2498            0.0000            
## PP.CCB_48          0.2245            0.3019            0.0002            
## PP.CCB_49          0.3818            0.4759            0.0002            
## PP.CCB_50          0.3601            0.4214            0.0000            
## PP.CCB_51          0.8813            0.8424            0.0000            
## PP.CNS_1           0.0285            0.0248            0.0083            
## PP.CNS_2           0.0501            0.0222            0.0541            
## PP.CNS_3           0.1058            0.0558            0.0517            
## PP.ATNS_1          0.0002            0.0000            0.3720            
## PP.ATNS_2R         0.0000            0.0000            0.0000            
## PP.ATNS_3          0.0223            0.0139            0.7787            
## PP.ATNS_4          0.1028            0.0654            0.1281            
## PP.ATNS_5          0.0347            0.0136            0.5459            
## PP.Ind_3           0.0001            0.0002            0.1219            
## PP.Ind_4           0.0019            0.0004            0.7716            
## PP.Ind_7           0.0000            0.0000            0.0734            
## PP.Ind_8           0.0002            0.0000            0.5186            
## PP.Ind_1           0.1150            0.0403            0.7170            
## PP.Ind_2           0.1088            0.0488            0.5226            
## PP.Ind_5           0.0405            0.0194            0.3201            
## PP.Ind_6           0.0164            0.0060            0.4200            
##                    PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB      0.4866             0.5389             0.5219            
## PP.Nat_4R_GFFB     0.0000             0.0000             0.0000            
## PP.Nat_2R_GFFB     0.0000             0.0000             0.0000            
## PP.Nat_3R_GFFB     0.0000             0.0000             0.0000            
## PP.Nat_1_GFPRB     0.0207             0.0642             0.0973            
## PP.Nat_4R_GFPRB    0.0000             0.0000             0.0000            
## PP.Nat_2R_GFPRB    0.0000             0.0000             0.0000            
## PP.Nat_3R_GFPRB    0.0000             0.0000             0.0000            
## PP.Nat_1_CBB       0.0000             0.0000             0.0000            
## PP.Nat_4R_CBB      0.3501             0.5284             0.8186            
## PP.Nat_2R_CBB      0.5338             0.3225             0.1499            
## PP.Nat_3R_CBB      0.1173             0.0549             0.0186            
## PP.Nat_1_PBPB      0.0000             0.0000             0.0000            
## PP.Nat_4R_PBPB     0.0110             0.0154             0.0193            
## PP.Nat_2R_PBPB     0.0945             0.1231             0.1761            
## PP.Nat_3R_PBPB     0.0698             0.0233             0.0184            
## PP.Nat_1_PBFB      0.0000             0.0000             0.0000            
## PP.Nat_4R_PBFB     0.0000             0.0000             0.0001            
## PP.Nat_2R_PBFB     0.3322             0.4639             0.6058            
## PP.Nat_3R_PBFB     0.9536             0.5689             0.4068            
## PP.Nat_1_VB        0.0000             0.0000             0.0000            
## PP.Nat_4R_VB       0.5107             0.5037             0.4147            
## PP.Nat_2R_VB       0.2231             0.1925             0.2634            
## PP.Nat_3R_VB       0.0350             0.0159             0.0293            
## PP.BehavInt1_GFFB  0.5077             0.6042             0.6208            
## PP.BehavInt2_GFFB  0.2574             0.3434             0.3708            
## PP.BehavInt3_GFFB  0.7465             0.8299             0.8350            
## PP.BehavInt4_GFFB  0.3110             0.3991             0.4001            
## PP.BehavInt1_GFPRB 0.0000             0.0000             0.0000            
## PP.BehavInt2_GFPRB                    0.0000             0.0000            
## PP.BehavInt3_GFPRB 0.0000                                0.0000            
## PP.BehavInt4_GFPRB 0.0000             0.0000                               
## PP.BehavInt1_CBB   0.0000             0.0000             0.0000            
## PP.BehavInt2_CBB   0.0000             0.0000             0.0000            
## PP.BehavInt3_CBB   0.0000             0.0000             0.0000            
## PP.BehavInt4_CBB   0.0000             0.0000             0.0000            
## PP.BehavInt1_PBPB  0.0000             0.0000             0.0000            
## PP.BehavInt2_PBPB  0.0000             0.0000             0.0000            
## PP.BehavInt3_PBPB  0.0000             0.0000             0.0000            
## PP.BehavInt4_PBPB  0.0000             0.0000             0.0000            
## PP.BehavInt1_PBFB  0.0000             0.0000             0.0000            
## PP.BehavInt2_PBFB  0.0000             0.0000             0.0000            
## PP.BehavInt3_PBFB  0.0000             0.0000             0.0000            
## PP.BehavInt4_PBFB  0.0000             0.0000             0.0000            
## PP.BehavInt1_VB    0.0000             0.0000             0.0000            
## PP.BehavInt2_VB    0.0000             0.0000             0.0000            
## PP.BehavInt3_VB    0.0000             0.0000             0.0000            
## PP.BehavInt4_VB    0.0000             0.0000             0.0000            
## PP.CCB_48          0.0007             0.0000             0.0000            
## PP.CCB_49          0.0007             0.0000             0.0000            
## PP.CCB_50          0.0001             0.0000             0.0000            
## PP.CCB_51          0.0000             0.0000             0.0000            
## PP.CNS_1           0.0065             0.0047             0.0040            
## PP.CNS_2           0.0748             0.0448             0.0337            
## PP.CNS_3           0.0521             0.0277             0.0232            
## PP.ATNS_1          0.4942             0.5269             0.6322            
## PP.ATNS_2R         0.0000             0.0000             0.0000            
## PP.ATNS_3          0.6279             0.6312             0.5006            
## PP.ATNS_4          0.1261             0.0895             0.0640            
## PP.ATNS_5          0.5960             0.7192             0.8689            
## PP.Ind_3           0.0712             0.0710             0.0692            
## PP.Ind_4           0.6162             0.8857             0.9744            
## PP.Ind_7           0.0612             0.0419             0.0382            
## PP.Ind_8           0.7217             0.4904             0.3679            
## PP.Ind_1           0.4727             0.7401             0.8765            
## PP.Ind_2           0.3806             0.5288             0.6327            
## PP.Ind_5           0.4729             0.2779             0.2253            
## PP.Ind_6           0.3575             0.4722             0.5916            
##                    PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB      0.0011           0.0002           0.0006          
## PP.Nat_4R_GFFB     0.0000           0.0000           0.0000          
## PP.Nat_2R_GFFB     0.0000           0.0000           0.0000          
## PP.Nat_3R_GFFB     0.0000           0.0000           0.0000          
## PP.Nat_1_GFPRB     0.0449           0.0486           0.0381          
## PP.Nat_4R_GFPRB    0.0000           0.0000           0.0000          
## PP.Nat_2R_GFPRB    0.0000           0.0000           0.0000          
## PP.Nat_3R_GFPRB    0.0000           0.0000           0.0000          
## PP.Nat_1_CBB       0.0000           0.0000           0.0000          
## PP.Nat_4R_CBB      0.0568           0.0637           0.0691          
## PP.Nat_2R_CBB      0.2309           0.1704           0.2089          
## PP.Nat_3R_CBB      0.9713           0.8531           0.9601          
## PP.Nat_1_PBPB      0.0000           0.0000           0.0000          
## PP.Nat_4R_PBPB     0.2162           0.1551           0.1858          
## PP.Nat_2R_PBPB     0.1080           0.0624           0.0979          
## PP.Nat_3R_PBPB     0.0002           0.0003           0.0002          
## PP.Nat_1_PBFB      0.0000           0.0000           0.0000          
## PP.Nat_4R_PBFB     0.0536           0.0869           0.0743          
## PP.Nat_2R_PBFB     0.6444           0.5397           0.5727          
## PP.Nat_3R_PBFB     0.3463           0.3348           0.3247          
## PP.Nat_1_VB        0.0001           0.0003           0.0002          
## PP.Nat_4R_VB       0.0000           0.0000           0.0000          
## PP.Nat_2R_VB       0.0000           0.0000           0.0000          
## PP.Nat_3R_VB       0.0000           0.0000           0.0000          
## PP.BehavInt1_GFFB  0.0010           0.0002           0.0006          
## PP.BehavInt2_GFFB  0.0081           0.0022           0.0053          
## PP.BehavInt3_GFFB  0.0003           0.0000           0.0001          
## PP.BehavInt4_GFFB  0.0033           0.0006           0.0019          
## PP.BehavInt1_GFPRB 0.0000           0.0000           0.0000          
## PP.BehavInt2_GFPRB 0.0000           0.0000           0.0000          
## PP.BehavInt3_GFPRB 0.0000           0.0000           0.0000          
## PP.BehavInt4_GFPRB 0.0000           0.0000           0.0000          
## PP.BehavInt1_CBB                    0.0000           0.0000          
## PP.BehavInt2_CBB   0.0000                            0.0000          
## PP.BehavInt3_CBB   0.0000           0.0000                           
## PP.BehavInt4_CBB   0.0000           0.0000           0.0000          
## PP.BehavInt1_PBPB  0.0000           0.0000           0.0000          
## PP.BehavInt2_PBPB  0.0000           0.0000           0.0000          
## PP.BehavInt3_PBPB  0.0000           0.0000           0.0000          
## PP.BehavInt4_PBPB  0.0000           0.0000           0.0000          
## PP.BehavInt1_PBFB  0.0000           0.0000           0.0000          
## PP.BehavInt2_PBFB  0.0000           0.0000           0.0000          
## PP.BehavInt3_PBFB  0.0000           0.0000           0.0000          
## PP.BehavInt4_PBFB  0.0000           0.0000           0.0000          
## PP.BehavInt1_VB    0.0000           0.0000           0.0000          
## PP.BehavInt2_VB    0.0000           0.0000           0.0000          
## PP.BehavInt3_VB    0.0000           0.0001           0.0000          
## PP.BehavInt4_VB    0.0000           0.0000           0.0000          
## PP.CCB_48          0.1039           0.1959           0.1100          
## PP.CCB_49          0.0636           0.1247           0.0677          
## PP.CCB_50          0.0254           0.0543           0.0268          
## PP.CCB_51          0.0002           0.0006           0.0002          
## PP.CNS_1           0.0002           0.0001           0.0002          
## PP.CNS_2           0.0363           0.0414           0.0432          
## PP.CNS_3           0.0175           0.0178           0.0205          
## PP.ATNS_1          0.5605           0.3939           0.5134          
## PP.ATNS_2R         0.0000           0.0000           0.0000          
## PP.ATNS_3          0.5279           0.4236           0.4574          
## PP.ATNS_4          0.2970           0.3082           0.2699          
## PP.ATNS_5          0.6884           0.7899           0.7890          
## PP.Ind_3           0.0025           0.0008           0.0016          
## PP.Ind_4           0.8824           0.7066           0.8514          
## PP.Ind_7           0.0028           0.0013           0.0015          
## PP.Ind_8           0.3255           0.2416           0.3309          
## PP.Ind_1           0.7604           0.7346           0.7288          
## PP.Ind_2           0.7981           0.8079           0.7858          
## PP.Ind_5           0.2901           0.3138           0.2844          
## PP.Ind_6           0.8666           0.9528           0.8522          
##                    PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB      0.0006           0.4558            0.4866           
## PP.Nat_4R_GFFB     0.0000           0.0000            0.0000           
## PP.Nat_2R_GFFB     0.0000           0.0000            0.0000           
## PP.Nat_3R_GFFB     0.0000           0.0000            0.0000           
## PP.Nat_1_GFPRB     0.0447           0.1092            0.0207           
## PP.Nat_4R_GFPRB    0.0000           0.0000            0.0000           
## PP.Nat_2R_GFPRB    0.0000           0.0000            0.0000           
## PP.Nat_3R_GFPRB    0.0000           0.0000            0.0000           
## PP.Nat_1_CBB       0.0000           0.0000            0.0000           
## PP.Nat_4R_CBB      0.0489           0.5091            0.3501           
## PP.Nat_2R_CBB      0.1902           0.3064            0.5338           
## PP.Nat_3R_CBB      0.9044           0.0378            0.1173           
## PP.Nat_1_PBPB      0.0000           0.0000            0.0000           
## PP.Nat_4R_PBPB     0.2256           0.0068            0.0110           
## PP.Nat_2R_PBPB     0.1088           0.0788            0.0945           
## PP.Nat_3R_PBPB     0.0003           0.0396            0.0698           
## PP.Nat_1_PBFB      0.0000           0.0000            0.0000           
## PP.Nat_4R_PBFB     0.0569           0.0000            0.0000           
## PP.Nat_2R_PBFB     0.6339           0.3069            0.3322           
## PP.Nat_3R_PBFB     0.3518           0.7821            0.9536           
## PP.Nat_1_VB        0.0003           0.0000            0.0000           
## PP.Nat_4R_VB       0.0000           0.2762            0.5107           
## PP.Nat_2R_VB       0.0000           0.4225            0.2231           
## PP.Nat_3R_VB       0.0000           0.0752            0.0350           
## PP.BehavInt1_GFFB  0.0006           0.4678            0.5077           
## PP.BehavInt2_GFFB  0.0063           0.2823            0.2574           
## PP.BehavInt3_GFFB  0.0002           0.6567            0.7465           
## PP.BehavInt4_GFFB  0.0020           0.2929            0.3110           
## PP.BehavInt1_GFPRB 0.0000           0.0000            0.0000           
## PP.BehavInt2_GFPRB 0.0000           0.0000            0.0000           
## PP.BehavInt3_GFPRB 0.0000           0.0000            0.0000           
## PP.BehavInt4_GFPRB 0.0000           0.0000            0.0000           
## PP.BehavInt1_CBB   0.0000           0.0000            0.0000           
## PP.BehavInt2_CBB   0.0000           0.0000            0.0000           
## PP.BehavInt3_CBB   0.0000           0.0000            0.0000           
## PP.BehavInt4_CBB                    0.0000            0.0000           
## PP.BehavInt1_PBPB  0.0000                             0.0000           
## PP.BehavInt2_PBPB  0.0000           0.0000                             
## PP.BehavInt3_PBPB  0.0000           0.0000            0.0000           
## PP.BehavInt4_PBPB  0.0000           0.0000            0.0000           
## PP.BehavInt1_PBFB  0.0000           0.0000            0.0000           
## PP.BehavInt2_PBFB  0.0000           0.0000            0.0000           
## PP.BehavInt3_PBFB  0.0000           0.0000            0.0000           
## PP.BehavInt4_PBFB  0.0000           0.0000            0.0000           
## PP.BehavInt1_VB    0.0000           0.0000            0.0000           
## PP.BehavInt2_VB    0.0000           0.0000            0.0000           
## PP.BehavInt3_VB    0.0000           0.0000            0.0000           
## PP.BehavInt4_VB    0.0000           0.0000            0.0000           
## PP.CCB_48          0.1212           0.0002            0.0007           
## PP.CCB_49          0.0815           0.0002            0.0007           
## PP.CCB_50          0.0303           0.0000            0.0001           
## PP.CCB_51          0.0003           0.0000            0.0000           
## PP.CNS_1           0.0002           0.0083            0.0065           
## PP.CNS_2           0.0451           0.0541            0.0748           
## PP.CNS_3           0.0203           0.0517            0.0521           
## PP.ATNS_1          0.5740           0.3720            0.4942           
## PP.ATNS_2R         0.0000           0.0000            0.0000           
## PP.ATNS_3          0.5258           0.7787            0.6279           
## PP.ATNS_4          0.3061           0.1281            0.1261           
## PP.ATNS_5          0.7145           0.5459            0.5960           
## PP.Ind_3           0.0021           0.1219            0.0712           
## PP.Ind_4           0.8645           0.7716            0.6162           
## PP.Ind_7           0.0025           0.0734            0.0612           
## PP.Ind_8           0.3651           0.5186            0.7217           
## PP.Ind_1           0.7020           0.7170            0.4727           
## PP.Ind_2           0.7596           0.5226            0.3806           
## PP.Ind_5           0.3060           0.3201            0.4729           
## PP.Ind_6           0.8506           0.4200            0.3575           
##                    PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB      0.5389            0.5219            0.9221           
## PP.Nat_4R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_2R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_3R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_1_GFPRB     0.0642            0.0973            0.0107           
## PP.Nat_4R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_2R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_3R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_1_CBB       0.0000            0.0000            0.0000           
## PP.Nat_4R_CBB      0.5284            0.8186            0.4389           
## PP.Nat_2R_CBB      0.3225            0.1499            0.6407           
## PP.Nat_3R_CBB      0.0549            0.0186            0.1434           
## PP.Nat_1_PBPB      0.0000            0.0000            0.0000           
## PP.Nat_4R_PBPB     0.0154            0.0193            0.1972           
## PP.Nat_2R_PBPB     0.1231            0.1761            0.5137           
## PP.Nat_3R_PBPB     0.0233            0.0184            0.0129           
## PP.Nat_1_PBFB      0.0000            0.0000            0.0000           
## PP.Nat_4R_PBFB     0.0000            0.0001            0.0002           
## PP.Nat_2R_PBFB     0.4639            0.6058            0.5451           
## PP.Nat_3R_PBFB     0.5689            0.4068            0.5976           
## PP.Nat_1_VB        0.0000            0.0000            0.0000           
## PP.Nat_4R_VB       0.5037            0.4147            0.5388           
## PP.Nat_2R_VB       0.1925            0.2634            0.0248           
## PP.Nat_3R_VB       0.0159            0.0293            0.0032           
## PP.BehavInt1_GFFB  0.6042            0.6208            0.7896           
## PP.BehavInt2_GFFB  0.3434            0.3708            0.7934           
## PP.BehavInt3_GFFB  0.8299            0.8350            0.5847           
## PP.BehavInt4_GFFB  0.3991            0.4001            0.9681           
## PP.BehavInt1_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt2_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt3_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt4_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt1_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt2_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt3_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt4_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt1_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt2_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt3_PBPB                    0.0000            0.0000           
## PP.BehavInt4_PBPB  0.0000                              0.0000           
## PP.BehavInt1_PBFB  0.0000            0.0000                             
## PP.BehavInt2_PBFB  0.0000            0.0000            0.0000           
## PP.BehavInt3_PBFB  0.0000            0.0000            0.0000           
## PP.BehavInt4_PBFB  0.0000            0.0000            0.0000           
## PP.BehavInt1_VB    0.0000            0.0000            0.0000           
## PP.BehavInt2_VB    0.0000            0.0000            0.0000           
## PP.BehavInt3_VB    0.0000            0.0000            0.0000           
## PP.BehavInt4_VB    0.0000            0.0000            0.0000           
## PP.CCB_48          0.0000            0.0000            0.0001           
## PP.CCB_49          0.0000            0.0000            0.0000           
## PP.CCB_50          0.0000            0.0000            0.0000           
## PP.CCB_51          0.0000            0.0000            0.0000           
## PP.CNS_1           0.0047            0.0040            0.0004           
## PP.CNS_2           0.0448            0.0337            0.0123           
## PP.CNS_3           0.0277            0.0232            0.0050           
## PP.ATNS_1          0.5269            0.6322            0.9126           
## PP.ATNS_2R         0.0000            0.0000            0.0000           
## PP.ATNS_3          0.6312            0.5006            0.3613           
## PP.ATNS_4          0.0895            0.0640            0.0564           
## PP.ATNS_5          0.7192            0.8689            0.9410           
## PP.Ind_3           0.0710            0.0692            0.0376           
## PP.Ind_4           0.8857            0.9744            0.9785           
## PP.Ind_7           0.0419            0.0382            0.0099           
## PP.Ind_8           0.4904            0.3679            0.4878           
## PP.Ind_1           0.7401            0.8765            0.8368           
## PP.Ind_2           0.5288            0.6327            0.7076           
## PP.Ind_5           0.2779            0.2253            0.2813           
## PP.Ind_6           0.4722            0.5916            0.6013           
##                    PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB      0.4798            0.6266            0.5611           
## PP.Nat_4R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_2R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_3R_GFFB     0.0000            0.0000            0.0000           
## PP.Nat_1_GFPRB     0.0084            0.0267            0.0291           
## PP.Nat_4R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_2R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_3R_GFPRB    0.0000            0.0000            0.0000           
## PP.Nat_1_CBB       0.0000            0.0000            0.0000           
## PP.Nat_4R_CBB      0.2491            0.5382            0.3441           
## PP.Nat_2R_CBB      0.9360            0.5527            0.8124           
## PP.Nat_3R_CBB      0.4022            0.1239            0.2259           
## PP.Nat_1_PBPB      0.0000            0.0000            0.0000           
## PP.Nat_4R_PBPB     0.2147            0.3248            0.2377           
## PP.Nat_2R_PBPB     0.5560            0.7166            0.5291           
## PP.Nat_3R_PBPB     0.0284            0.0064            0.0111           
## PP.Nat_1_PBFB      0.0000            0.0000            0.0000           
## PP.Nat_4R_PBFB     0.0003            0.0005            0.0003           
## PP.Nat_2R_PBFB     0.4922            0.6802            0.5125           
## PP.Nat_3R_PBFB     0.7570            0.4411            0.5755           
## PP.Nat_1_VB        0.0000            0.0000            0.0000           
## PP.Nat_4R_VB       0.3384            0.4616            0.4858           
## PP.Nat_2R_VB       0.0077            0.0173            0.0196           
## PP.Nat_3R_VB       0.0010            0.0014            0.0018           
## PP.BehavInt1_GFFB  0.4489            0.5183            0.4849           
## PP.BehavInt2_GFFB  0.8755            0.9012            0.8689           
## PP.BehavInt3_GFFB  0.2873            0.3584            0.3251           
## PP.BehavInt4_GFFB  0.6779            0.7547            0.7337           
## PP.BehavInt1_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt2_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt3_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt4_GFPRB 0.0000            0.0000            0.0000           
## PP.BehavInt1_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt2_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt3_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt4_CBB   0.0000            0.0000            0.0000           
## PP.BehavInt1_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt2_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt3_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt4_PBPB  0.0000            0.0000            0.0000           
## PP.BehavInt1_PBFB  0.0000            0.0000            0.0000           
## PP.BehavInt2_PBFB                    0.0000            0.0000           
## PP.BehavInt3_PBFB  0.0000                              0.0000           
## PP.BehavInt4_PBFB  0.0000            0.0000                             
## PP.BehavInt1_VB    0.0000            0.0000            0.0000           
## PP.BehavInt2_VB    0.0000            0.0000            0.0000           
## PP.BehavInt3_VB    0.0000            0.0000            0.0000           
## PP.BehavInt4_VB    0.0000            0.0000            0.0000           
## PP.CCB_48          0.0021            0.0002            0.0007           
## PP.CCB_49          0.0017            0.0001            0.0005           
## PP.CCB_50          0.0004            0.0000            0.0001           
## PP.CCB_51          0.0000            0.0000            0.0000           
## PP.CNS_1           0.0014            0.0003            0.0011           
## PP.CNS_2           0.0431            0.0099            0.0264           
## PP.CNS_3           0.0188            0.0041            0.0132           
## PP.ATNS_1          0.8475            0.9246            0.8386           
## PP.ATNS_2R         0.0000            0.0000            0.0000           
## PP.ATNS_3          0.4259            0.2782            0.4693           
## PP.ATNS_4          0.1141            0.0412            0.0931           
## PP.ATNS_5          0.7678            0.9393            0.7664           
## PP.Ind_3           0.0167            0.0313            0.0382           
## PP.Ind_4           0.8681            0.8692            0.9129           
## PP.Ind_7           0.0056            0.0059            0.0107           
## PP.Ind_8           0.5845            0.4130            0.5571           
## PP.Ind_1           0.4682            0.8318            0.6013           
## PP.Ind_2           0.4219            0.7483            0.5272           
## PP.Ind_5           0.5113            0.2552            0.3938           
## PP.Ind_6           0.4090            0.6262            0.4196           
##                    PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB      0.3418          0.2906          0.3024         
## PP.Nat_4R_GFFB     0.0000          0.0000          0.0000         
## PP.Nat_2R_GFFB     0.0000          0.0000          0.0000         
## PP.Nat_3R_GFFB     0.0000          0.0000          0.0000         
## PP.Nat_1_GFPRB     0.4447          0.1199          0.6061         
## PP.Nat_4R_GFPRB    0.0000          0.0000          0.0003         
## PP.Nat_2R_GFPRB    0.0000          0.0000          0.0000         
## PP.Nat_3R_GFPRB    0.0000          0.0000          0.0000         
## PP.Nat_1_CBB       0.0012          0.0003          0.0027         
## PP.Nat_4R_CBB      0.1152          0.2370          0.0723         
## PP.Nat_2R_CBB      0.0010          0.0097          0.0003         
## PP.Nat_3R_CBB      0.0000          0.0015          0.0000         
## PP.Nat_1_PBPB      0.0000          0.0000          0.0000         
## PP.Nat_4R_PBPB     0.0222          0.0043          0.0239         
## PP.Nat_2R_PBPB     0.3927          0.1284          0.3608         
## PP.Nat_3R_PBPB     0.0166          0.2263          0.0211         
## PP.Nat_1_PBFB      0.0000          0.0000          0.0000         
## PP.Nat_4R_PBFB     0.0005          0.0004          0.0009         
## PP.Nat_2R_PBFB     0.8003          0.7411          0.8488         
## PP.Nat_3R_PBFB     0.1772          0.5317          0.1873         
## PP.Nat_1_VB        0.0000          0.0000          0.0000         
## PP.Nat_4R_VB       0.0872          0.1168          0.0572         
## PP.Nat_2R_VB       0.8096          0.5824          0.9854         
## PP.Nat_3R_VB       0.1363          0.1249          0.2100         
## PP.BehavInt1_GFFB  0.4421          0.3915          0.4268         
## PP.BehavInt2_GFFB  0.3103          0.2180          0.3195         
## PP.BehavInt3_GFFB  0.5511          0.5461          0.5303         
## PP.BehavInt4_GFFB  0.3057          0.2702          0.2965         
## PP.BehavInt1_GFPRB 0.0000          0.0000          0.0000         
## PP.BehavInt2_GFPRB 0.0000          0.0000          0.0000         
## PP.BehavInt3_GFPRB 0.0000          0.0000          0.0000         
## PP.BehavInt4_GFPRB 0.0000          0.0000          0.0000         
## PP.BehavInt1_CBB   0.0000          0.0000          0.0000         
## PP.BehavInt2_CBB   0.0000          0.0000          0.0001         
## PP.BehavInt3_CBB   0.0000          0.0000          0.0000         
## PP.BehavInt4_CBB   0.0000          0.0000          0.0000         
## PP.BehavInt1_PBPB  0.0000          0.0000          0.0000         
## PP.BehavInt2_PBPB  0.0000          0.0000          0.0000         
## PP.BehavInt3_PBPB  0.0000          0.0000          0.0000         
## PP.BehavInt4_PBPB  0.0000          0.0000          0.0000         
## PP.BehavInt1_PBFB  0.0000          0.0000          0.0000         
## PP.BehavInt2_PBFB  0.0000          0.0000          0.0000         
## PP.BehavInt3_PBFB  0.0000          0.0000          0.0000         
## PP.BehavInt4_PBFB  0.0000          0.0000          0.0000         
## PP.BehavInt1_VB                    0.0000          0.0000         
## PP.BehavInt2_VB    0.0000                          0.0000         
## PP.BehavInt3_VB    0.0000          0.0000                         
## PP.BehavInt4_VB    0.0000          0.0000          0.0000         
## PP.CCB_48          0.0000          0.0000          0.0000         
## PP.CCB_49          0.0000          0.0000          0.0000         
## PP.CCB_50          0.0000          0.0000          0.0000         
## PP.CCB_51          0.0000          0.0000          0.0000         
## PP.CNS_1           0.0000          0.0001          0.0000         
## PP.CNS_2           0.0002          0.0017          0.0001         
## PP.CNS_3           0.0000          0.0005          0.0000         
## PP.ATNS_1          0.5499          0.5164          0.5079         
## PP.ATNS_2R         0.0002          0.0000          0.0005         
## PP.ATNS_3          0.0455          0.0520          0.0419         
## PP.ATNS_4          0.0012          0.0025          0.0008         
## PP.ATNS_5          0.2041          0.2513          0.1838         
## PP.Ind_3           0.0110          0.0058          0.0203         
## PP.Ind_4           0.0834          0.1760          0.0923         
## PP.Ind_7           0.0010          0.0018          0.0020         
## PP.Ind_8           0.0223          0.0588          0.0274         
## PP.Ind_1           0.0871          0.3395          0.0835         
## PP.Ind_2           0.1976          0.5038          0.1901         
## PP.Ind_5           0.0030          0.0284          0.0032         
## PP.Ind_6           0.2923          0.5868          0.3084         
##                    PP.BehavInt4_VB PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51
## PP.Nat_1_GFFB      0.2989          0.1575    0.2762    0.3391    0.9993   
## PP.Nat_4R_GFFB     0.0000          0.0008    0.0005    0.0002    0.0000   
## PP.Nat_2R_GFFB     0.0000          0.0000    0.0000    0.0000    0.0000   
## PP.Nat_3R_GFFB     0.0000          0.0351    0.0243    0.0095    0.0003   
## PP.Nat_1_GFPRB     0.4630          0.7977    0.6970    0.9745    0.9558   
## PP.Nat_4R_GFPRB    0.0000          0.0660    0.0458    0.0159    0.0009   
## PP.Nat_2R_GFPRB    0.0000          0.0329    0.0308    0.0085    0.0010   
## PP.Nat_3R_GFPRB    0.0000          0.0416    0.0269    0.0107    0.0004   
## PP.Nat_1_CBB       0.0016          0.4049    0.2777    0.1500    0.0051   
## PP.Nat_4R_CBB      0.1051          0.0012    0.0009    0.0033    0.0054   
## PP.Nat_2R_CBB      0.0011          0.0000    0.0000    0.0000    0.0000   
## PP.Nat_3R_CBB      0.0001          0.0000    0.0000    0.0000    0.0000   
## PP.Nat_1_PBPB      0.0000          0.0013    0.0014    0.0002    0.0000   
## PP.Nat_4R_PBPB     0.0188          0.9701    0.7033    0.8303    0.5316   
## PP.Nat_2R_PBPB     0.2822          0.3137    0.1682    0.2353    0.1070   
## PP.Nat_3R_PBPB     0.0286          0.0000    0.0000    0.0000    0.0000   
## PP.Nat_1_PBFB      0.0000          0.0023    0.0013    0.0004    0.0000   
## PP.Nat_4R_PBFB     0.0008          0.5318    0.6659    0.6150    0.4664   
## PP.Nat_2R_PBFB     0.8307          0.0141    0.0085    0.0067    0.0076   
## PP.Nat_3R_PBFB     0.2192          0.0001    0.0000    0.0000    0.0000   
## PP.Nat_1_VB        0.0000          0.0000    0.0000    0.0000    0.0000   
## PP.Nat_4R_VB       0.0900          0.5742    0.8025    0.9716    0.4994   
## PP.Nat_2R_VB       0.7806          0.9960    0.8942    0.4797    0.1518   
## PP.Nat_3R_VB       0.1412          0.1082    0.0720    0.0154    0.0015   
## PP.BehavInt1_GFFB  0.3789          0.2430    0.4182    0.3527    0.9205   
## PP.BehavInt2_GFFB  0.2492          0.2231    0.4077    0.3066    0.9530   
## PP.BehavInt3_GFFB  0.4883          0.2245    0.3818    0.3601    0.8813   
## PP.BehavInt4_GFFB  0.2498          0.3019    0.4759    0.4214    0.8424   
## PP.BehavInt1_GFPRB 0.0000          0.0002    0.0002    0.0000    0.0000   
## PP.BehavInt2_GFPRB 0.0000          0.0007    0.0007    0.0001    0.0000   
## PP.BehavInt3_GFPRB 0.0000          0.0000    0.0000    0.0000    0.0000   
## PP.BehavInt4_GFPRB 0.0000          0.0000    0.0000    0.0000    0.0000   
## PP.BehavInt1_CBB   0.0000          0.1039    0.0636    0.0254    0.0002   
## PP.BehavInt2_CBB   0.0000          0.1959    0.1247    0.0543    0.0006   
## PP.BehavInt3_CBB   0.0000          0.1100    0.0677    0.0268    0.0002   
## PP.BehavInt4_CBB   0.0000          0.1212    0.0815    0.0303    0.0003   
## PP.BehavInt1_PBPB  0.0000          0.0002    0.0002    0.0000    0.0000   
## PP.BehavInt2_PBPB  0.0000          0.0007    0.0007    0.0001    0.0000   
## PP.BehavInt3_PBPB  0.0000          0.0000    0.0000    0.0000    0.0000   
## PP.BehavInt4_PBPB  0.0000          0.0000    0.0000    0.0000    0.0000   
## PP.BehavInt1_PBFB  0.0000          0.0001    0.0000    0.0000    0.0000   
## PP.BehavInt2_PBFB  0.0000          0.0021    0.0017    0.0004    0.0000   
## PP.BehavInt3_PBFB  0.0000          0.0002    0.0001    0.0000    0.0000   
## PP.BehavInt4_PBFB  0.0000          0.0007    0.0005    0.0001    0.0000   
## PP.BehavInt1_VB    0.0000          0.0000    0.0000    0.0000    0.0000   
## PP.BehavInt2_VB    0.0000          0.0000    0.0000    0.0000    0.0000   
## PP.BehavInt3_VB    0.0000          0.0000    0.0000    0.0000    0.0000   
## PP.BehavInt4_VB                    0.0000    0.0000    0.0000    0.0000   
## PP.CCB_48          0.0000                    0.0000    0.0000    0.0000   
## PP.CCB_49          0.0000          0.0000              0.0000    0.0000   
## PP.CCB_50          0.0000          0.0000    0.0000              0.0000   
## PP.CCB_51          0.0000          0.0000    0.0000    0.0000             
## PP.CNS_1           0.0000          0.0000    0.0000    0.0000    0.0000   
## PP.CNS_2           0.0003          0.0000    0.0000    0.0000    0.0000   
## PP.CNS_3           0.0001          0.0000    0.0000    0.0000    0.0000   
## PP.ATNS_1          0.5795          0.0375    0.0208    0.0242    0.0258   
## PP.ATNS_2R         0.0003          0.3555    0.2537    0.1264    0.0070   
## PP.ATNS_3          0.0543          0.0014    0.0005    0.0005    0.0008   
## PP.ATNS_4          0.0014          0.0000    0.0000    0.0000    0.0000   
## PP.ATNS_5          0.2390          0.0005    0.0002    0.0003    0.0008   
## PP.Ind_3           0.0109          0.1913    0.1541    0.0847    0.0343   
## PP.Ind_4           0.0950          0.0036    0.0029    0.0032    0.0052   
## PP.Ind_7           0.0016          0.0152    0.0102    0.0071    0.0021   
## PP.Ind_8           0.0319          0.0030    0.0020    0.0026    0.0020   
## PP.Ind_1           0.1202          0.0000    0.0000    0.0000    0.0000   
## PP.Ind_2           0.2504          0.0000    0.0000    0.0001    0.0006   
## PP.Ind_5           0.0054          0.0000    0.0000    0.0000    0.0000   
## PP.Ind_6           0.3326          0.0006    0.0003    0.0009    0.0021   
##                    PP.CNS_1 PP.CNS_2 PP.CNS_3 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3
## PP.Nat_1_GFFB      0.0452   0.0636   0.1556   0.0004    0.0000     0.0531   
## PP.Nat_4R_GFFB     0.0000   0.0025   0.0009   0.0398    0.0000     0.0039   
## PP.Nat_2R_GFFB     0.0000   0.0000   0.0000   0.0348    0.0000     0.0035   
## PP.Nat_3R_GFFB     0.0000   0.0008   0.0012   0.0021    0.0000     0.0015   
## PP.Nat_1_GFPRB     0.5228   0.0208   0.2428   0.0316    0.1120     0.2982   
## PP.Nat_4R_GFPRB    0.0000   0.0079   0.0010   0.0059    0.0000     0.0004   
## PP.Nat_2R_GFPRB    0.0000   0.0132   0.0012   0.0250    0.0000     0.0049   
## PP.Nat_3R_GFPRB    0.0000   0.0074   0.0024   0.0772    0.0000     0.0223   
## PP.Nat_1_CBB       0.0000   0.0299   0.0133   0.0938    0.0000     0.1135   
## PP.Nat_4R_CBB      0.0025   0.0000   0.0000   0.0000    0.7531     0.0000   
## PP.Nat_2R_CBB      0.0002   0.0000   0.0000   0.0000    0.6518     0.0000   
## PP.Nat_3R_CBB      0.0001   0.0000   0.0000   0.0000    0.7356     0.0000   
## PP.Nat_1_PBPB      0.0004   0.0181   0.0121   0.8487    0.0000     0.2018   
## PP.Nat_4R_PBPB     0.0141   0.0052   0.0119   0.0000    0.0227     0.0002   
## PP.Nat_2R_PBPB     0.0005   0.0001   0.0005   0.0000    0.0068     0.0000   
## PP.Nat_3R_PBPB     0.0000   0.0000   0.0000   0.0009    0.0010     0.0028   
## PP.Nat_1_PBFB      0.0000   0.0063   0.0020   0.5788    0.0000     0.1152   
## PP.Nat_4R_PBFB     0.8426   0.2630   0.5629   0.0000    0.9186     0.0145   
## PP.Nat_2R_PBFB     0.0007   0.0000   0.0003   0.0000    0.0673     0.0000   
## PP.Nat_3R_PBFB     0.0010   0.0000   0.0000   0.0000    0.1059     0.0000   
## PP.Nat_1_VB        0.0000   0.0000   0.0000   0.1299    0.0010     0.0087   
## PP.Nat_4R_VB       0.0034   0.0735   0.0443   0.0001    0.0000     0.0075   
## PP.Nat_2R_VB       0.0002   0.0292   0.0135   0.0001    0.0000     0.0021   
## PP.Nat_3R_VB       0.0000   0.0007   0.0002   0.0001    0.0000     0.0007   
## PP.BehavInt1_GFFB  0.0397   0.0456   0.0967   0.0002    0.0000     0.0290   
## PP.BehavInt2_GFFB  0.0706   0.0642   0.1444   0.0003    0.0000     0.0420   
## PP.BehavInt3_GFFB  0.0285   0.0501   0.1058   0.0002    0.0000     0.0223   
## PP.BehavInt4_GFFB  0.0248   0.0222   0.0558   0.0000    0.0000     0.0139   
## PP.BehavInt1_GFPRB 0.0083   0.0541   0.0517   0.3720    0.0000     0.7787   
## PP.BehavInt2_GFPRB 0.0065   0.0748   0.0521   0.4942    0.0000     0.6279   
## PP.BehavInt3_GFPRB 0.0047   0.0448   0.0277   0.5269    0.0000     0.6312   
## PP.BehavInt4_GFPRB 0.0040   0.0337   0.0232   0.6322    0.0000     0.5006   
## PP.BehavInt1_CBB   0.0002   0.0363   0.0175   0.5605    0.0000     0.5279   
## PP.BehavInt2_CBB   0.0001   0.0414   0.0178   0.3939    0.0000     0.4236   
## PP.BehavInt3_CBB   0.0002   0.0432   0.0205   0.5134    0.0000     0.4574   
## PP.BehavInt4_CBB   0.0002   0.0451   0.0203   0.5740    0.0000     0.5258   
## PP.BehavInt1_PBPB  0.0083   0.0541   0.0517   0.3720    0.0000     0.7787   
## PP.BehavInt2_PBPB  0.0065   0.0748   0.0521   0.4942    0.0000     0.6279   
## PP.BehavInt3_PBPB  0.0047   0.0448   0.0277   0.5269    0.0000     0.6312   
## PP.BehavInt4_PBPB  0.0040   0.0337   0.0232   0.6322    0.0000     0.5006   
## PP.BehavInt1_PBFB  0.0004   0.0123   0.0050   0.9126    0.0000     0.3613   
## PP.BehavInt2_PBFB  0.0014   0.0431   0.0188   0.8475    0.0000     0.4259   
## PP.BehavInt3_PBFB  0.0003   0.0099   0.0041   0.9246    0.0000     0.2782   
## PP.BehavInt4_PBFB  0.0011   0.0264   0.0132   0.8386    0.0000     0.4693   
## PP.BehavInt1_VB    0.0000   0.0002   0.0000   0.5499    0.0002     0.0455   
## PP.BehavInt2_VB    0.0001   0.0017   0.0005   0.5164    0.0000     0.0520   
## PP.BehavInt3_VB    0.0000   0.0001   0.0000   0.5079    0.0005     0.0419   
## PP.BehavInt4_VB    0.0000   0.0003   0.0001   0.5795    0.0003     0.0543   
## PP.CCB_48          0.0000   0.0000   0.0000   0.0375    0.3555     0.0014   
## PP.CCB_49          0.0000   0.0000   0.0000   0.0208    0.2537     0.0005   
## PP.CCB_50          0.0000   0.0000   0.0000   0.0242    0.1264     0.0005   
## PP.CCB_51          0.0000   0.0000   0.0000   0.0258    0.0070     0.0008   
## PP.CNS_1                    0.0000   0.0000   0.0000    0.0007     0.0000   
## PP.CNS_2           0.0000            0.0000   0.0000    0.0547     0.0000   
## PP.CNS_3           0.0000   0.0000            0.0000    0.0361     0.0000   
## PP.ATNS_1          0.0000   0.0000   0.0000             0.0447     0.0000   
## PP.ATNS_2R         0.0007   0.0547   0.0361   0.0447               0.1253   
## PP.ATNS_3          0.0000   0.0000   0.0000   0.0000    0.1253              
## PP.ATNS_4          0.0000   0.0000   0.0000   0.0000    0.1596     0.0000   
## PP.ATNS_5          0.0000   0.0000   0.0000   0.0000    0.4737     0.0000   
## PP.Ind_3           0.0000   0.0000   0.0000   0.0000    0.0000     0.0000   
## PP.Ind_4           0.0000   0.0000   0.0000   0.0000    0.2908     0.0000   
## PP.Ind_7           0.0000   0.0000   0.0000   0.0000    0.0000     0.0000   
## PP.Ind_8           0.0000   0.0000   0.0000   0.0000    0.1037     0.0000   
## PP.Ind_1           0.0000   0.0000   0.0000   0.0000    0.8249     0.0000   
## PP.Ind_2           0.0000   0.0000   0.0000   0.0000    0.8826     0.0000   
## PP.Ind_5           0.0000   0.0000   0.0000   0.0000    0.3117     0.0000   
## PP.Ind_6           0.0000   0.0000   0.0000   0.0000    0.8007     0.0000   
##                    PP.ATNS_4 PP.ATNS_5 PP.Ind_3 PP.Ind_4 PP.Ind_7 PP.Ind_8
## PP.Nat_1_GFFB      0.2079    0.0595    0.0001   0.0010   0.0002   0.0003  
## PP.Nat_4R_GFFB     0.0040    0.0709    0.0002   0.4363   0.0001   0.2254  
## PP.Nat_2R_GFFB     0.0007    0.0383    0.0008   0.1926   0.0005   0.0883  
## PP.Nat_3R_GFFB     0.0024    0.0317    0.0000   0.0389   0.0000   0.0087  
## PP.Nat_1_GFPRB     0.1755    0.0546    0.2126   0.0000   0.1717   0.0000  
## PP.Nat_4R_GFPRB    0.0026    0.0261    0.0000   0.1399   0.0000   0.0829  
## PP.Nat_2R_GFPRB    0.0118    0.1322    0.0000   0.2646   0.0000   0.1874  
## PP.Nat_3R_GFPRB    0.0218    0.3213    0.0000   0.2684   0.0000   0.1217  
## PP.Nat_1_CBB       0.1937    0.6879    0.0000   0.3737   0.0001   0.1332  
## PP.Nat_4R_CBB      0.0000    0.0000    0.0034   0.0000   0.0002   0.0000  
## PP.Nat_2R_CBB      0.0000    0.0000    0.0093   0.0000   0.0007   0.0000  
## PP.Nat_3R_CBB      0.0000    0.0000    0.0292   0.0000   0.0034   0.0000  
## PP.Nat_1_PBPB      0.0416    0.9729    0.0043   0.7243   0.0029   0.2272  
## PP.Nat_4R_PBPB     0.0095    0.0000    0.0054   0.0004   0.0010   0.0006  
## PP.Nat_2R_PBPB     0.0005    0.0000    0.0003   0.0000   0.0000   0.0000  
## PP.Nat_3R_PBPB     0.0002    0.0007    0.0051   0.0000   0.0005   0.0000  
## PP.Nat_1_PBFB      0.0304    0.7314    0.0044   0.7513   0.0013   0.3163  
## PP.Nat_4R_PBFB     0.0696    0.0003    0.1558   0.0101   0.1838   0.0405  
## PP.Nat_2R_PBFB     0.0000    0.0000    0.0002   0.0000   0.0001   0.0000  
## PP.Nat_3R_PBFB     0.0000    0.0000    0.0060   0.0000   0.0018   0.0000  
## PP.Nat_1_VB        0.0001    0.0641    0.0158   0.0674   0.0017   0.0091  
## PP.Nat_4R_VB       0.0792    0.0124    0.0003   0.0213   0.0006   0.0312  
## PP.Nat_2R_VB       0.0179    0.0153    0.0000   0.0020   0.0000   0.0041  
## PP.Nat_3R_VB       0.0014    0.0032    0.0000   0.0003   0.0000   0.0007  
## PP.BehavInt1_GFFB  0.1226    0.0344    0.0002   0.0007   0.0000   0.0000  
## PP.BehavInt2_GFFB  0.1516    0.0306    0.0009   0.0011   0.0000   0.0000  
## PP.BehavInt3_GFFB  0.1028    0.0347    0.0001   0.0019   0.0000   0.0002  
## PP.BehavInt4_GFFB  0.0654    0.0136    0.0002   0.0004   0.0000   0.0000  
## PP.BehavInt1_GFPRB 0.1281    0.5459    0.1219   0.7716   0.0734   0.5186  
## PP.BehavInt2_GFPRB 0.1261    0.5960    0.0712   0.6162   0.0612   0.7217  
## PP.BehavInt3_GFPRB 0.0895    0.7192    0.0710   0.8857   0.0419   0.4904  
## PP.BehavInt4_GFPRB 0.0640    0.8689    0.0692   0.9744   0.0382   0.3679  
## PP.BehavInt1_CBB   0.2970    0.6884    0.0025   0.8824   0.0028   0.3255  
## PP.BehavInt2_CBB   0.3082    0.7899    0.0008   0.7066   0.0013   0.2416  
## PP.BehavInt3_CBB   0.2699    0.7890    0.0016   0.8514   0.0015   0.3309  
## PP.BehavInt4_CBB   0.3061    0.7145    0.0021   0.8645   0.0025   0.3651  
## PP.BehavInt1_PBPB  0.1281    0.5459    0.1219   0.7716   0.0734   0.5186  
## PP.BehavInt2_PBPB  0.1261    0.5960    0.0712   0.6162   0.0612   0.7217  
## PP.BehavInt3_PBPB  0.0895    0.7192    0.0710   0.8857   0.0419   0.4904  
## PP.BehavInt4_PBPB  0.0640    0.8689    0.0692   0.9744   0.0382   0.3679  
## PP.BehavInt1_PBFB  0.0564    0.9410    0.0376   0.9785   0.0099   0.4878  
## PP.BehavInt2_PBFB  0.1141    0.7678    0.0167   0.8681   0.0056   0.5845  
## PP.BehavInt3_PBFB  0.0412    0.9393    0.0313   0.8692   0.0059   0.4130  
## PP.BehavInt4_PBFB  0.0931    0.7664    0.0382   0.9129   0.0107   0.5571  
## PP.BehavInt1_VB    0.0012    0.2041    0.0110   0.0834   0.0010   0.0223  
## PP.BehavInt2_VB    0.0025    0.2513    0.0058   0.1760   0.0018   0.0588  
## PP.BehavInt3_VB    0.0008    0.1838    0.0203   0.0923   0.0020   0.0274  
## PP.BehavInt4_VB    0.0014    0.2390    0.0109   0.0950   0.0016   0.0319  
## PP.CCB_48          0.0000    0.0005    0.1913   0.0036   0.0152   0.0030  
## PP.CCB_49          0.0000    0.0002    0.1541   0.0029   0.0102   0.0020  
## PP.CCB_50          0.0000    0.0003    0.0847   0.0032   0.0071   0.0026  
## PP.CCB_51          0.0000    0.0008    0.0343   0.0052   0.0021   0.0020  
## PP.CNS_1           0.0000    0.0000    0.0000   0.0000   0.0000   0.0000  
## PP.CNS_2           0.0000    0.0000    0.0000   0.0000   0.0000   0.0000  
## PP.CNS_3           0.0000    0.0000    0.0000   0.0000   0.0000   0.0000  
## PP.ATNS_1          0.0000    0.0000    0.0000   0.0000   0.0000   0.0000  
## PP.ATNS_2R         0.1596    0.4737    0.0000   0.2908   0.0000   0.1037  
## PP.ATNS_3          0.0000    0.0000    0.0000   0.0000   0.0000   0.0000  
## PP.ATNS_4                    0.0000    0.0000   0.0000   0.0000   0.0000  
## PP.ATNS_5          0.0000              0.0000   0.0000   0.0000   0.0000  
## PP.Ind_3           0.0000    0.0000             0.0000   0.0000   0.0000  
## PP.Ind_4           0.0000    0.0000    0.0000            0.0000   0.0000  
## PP.Ind_7           0.0000    0.0000    0.0000   0.0000            0.0000  
## PP.Ind_8           0.0000    0.0000    0.0000   0.0000   0.0000           
## PP.Ind_1           0.0000    0.0000    0.0001   0.0000   0.0000   0.0000  
## PP.Ind_2           0.0000    0.0000    0.0004   0.0000   0.0000   0.0000  
## PP.Ind_5           0.0000    0.0000    0.0000   0.0000   0.0000   0.0000  
## PP.Ind_6           0.0000    0.0000    0.0000   0.0000   0.0000   0.0000  
##                    PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.Nat_1_GFFB      0.1021   0.0852   0.0512   0.0261  
## PP.Nat_4R_GFFB     0.6618   0.5195   0.0719   0.4567  
## PP.Nat_2R_GFFB     0.1830   0.1549   0.0051   0.2028  
## PP.Nat_3R_GFFB     0.2610   0.2347   0.0122   0.1224  
## PP.Nat_1_GFPRB     0.0000   0.0003   0.0009   0.0001  
## PP.Nat_4R_GFPRB    0.6318   0.3962   0.0967   0.2829  
## PP.Nat_2R_GFPRB    0.7991   0.5704   0.1752   0.4690  
## PP.Nat_3R_GFPRB    0.6965   0.5355   0.0752   0.5155  
## PP.Nat_1_CBB       0.8438   0.9307   0.2848   0.6812  
## PP.Nat_4R_CBB      0.0000   0.0000   0.0000   0.0000  
## PP.Nat_2R_CBB      0.0000   0.0000   0.0000   0.0000  
## PP.Nat_3R_CBB      0.0000   0.0000   0.0000   0.0000  
## PP.Nat_1_PBPB      0.8164   0.7555   0.1826   0.8031  
## PP.Nat_4R_PBPB     0.0016   0.0002   0.0023   0.0005  
## PP.Nat_2R_PBPB     0.0000   0.0000   0.0000   0.0000  
## PP.Nat_3R_PBPB     0.0000   0.0002   0.0000   0.0007  
## PP.Nat_1_PBFB      0.8717   0.9220   0.2275   0.8578  
## PP.Nat_4R_PBFB     0.0182   0.0178   0.0808   0.0137  
## PP.Nat_2R_PBFB     0.0000   0.0000   0.0000   0.0000  
## PP.Nat_3R_PBFB     0.0000   0.0000   0.0000   0.0000  
## PP.Nat_1_VB        0.0215   0.0432   0.0005   0.1109  
## PP.Nat_4R_VB       0.1741   0.0788   0.1253   0.0343  
## PP.Nat_2R_VB       0.1514   0.1117   0.0341   0.0235  
## PP.Nat_3R_VB       0.0344   0.0615   0.0039   0.0132  
## PP.BehavInt1_GFFB  0.0594   0.0572   0.0236   0.0090  
## PP.BehavInt2_GFFB  0.0389   0.0365   0.0217   0.0079  
## PP.BehavInt3_GFFB  0.1150   0.1088   0.0405   0.0164  
## PP.BehavInt4_GFFB  0.0403   0.0488   0.0194   0.0060  
## PP.BehavInt1_GFPRB 0.7170   0.5226   0.3201   0.4200  
## PP.BehavInt2_GFPRB 0.4727   0.3806   0.4729   0.3575  
## PP.BehavInt3_GFPRB 0.7401   0.5288   0.2779   0.4722  
## PP.BehavInt4_GFPRB 0.8765   0.6327   0.2253   0.5916  
## PP.BehavInt1_CBB   0.7604   0.7981   0.2901   0.8666  
## PP.BehavInt2_CBB   0.7346   0.8079   0.3138   0.9528  
## PP.BehavInt3_CBB   0.7288   0.7858   0.2844   0.8522  
## PP.BehavInt4_CBB   0.7020   0.7596   0.3060   0.8506  
## PP.BehavInt1_PBPB  0.7170   0.5226   0.3201   0.4200  
## PP.BehavInt2_PBPB  0.4727   0.3806   0.4729   0.3575  
## PP.BehavInt3_PBPB  0.7401   0.5288   0.2779   0.4722  
## PP.BehavInt4_PBPB  0.8765   0.6327   0.2253   0.5916  
## PP.BehavInt1_PBFB  0.8368   0.7076   0.2813   0.6013  
## PP.BehavInt2_PBFB  0.4682   0.4219   0.5113   0.4090  
## PP.BehavInt3_PBFB  0.8318   0.7483   0.2552   0.6262  
## PP.BehavInt4_PBFB  0.6013   0.5272   0.3938   0.4196  
## PP.BehavInt1_VB    0.0871   0.1976   0.0030   0.2923  
## PP.BehavInt2_VB    0.3395   0.5038   0.0284   0.5868  
## PP.BehavInt3_VB    0.0835   0.1901   0.0032   0.3084  
## PP.BehavInt4_VB    0.1202   0.2504   0.0054   0.3326  
## PP.CCB_48          0.0000   0.0000   0.0000   0.0006  
## PP.CCB_49          0.0000   0.0000   0.0000   0.0003  
## PP.CCB_50          0.0000   0.0001   0.0000   0.0009  
## PP.CCB_51          0.0000   0.0006   0.0000   0.0021  
## PP.CNS_1           0.0000   0.0000   0.0000   0.0000  
## PP.CNS_2           0.0000   0.0000   0.0000   0.0000  
## PP.CNS_3           0.0000   0.0000   0.0000   0.0000  
## PP.ATNS_1          0.0000   0.0000   0.0000   0.0000  
## PP.ATNS_2R         0.8249   0.8826   0.3117   0.8007  
## PP.ATNS_3          0.0000   0.0000   0.0000   0.0000  
## PP.ATNS_4          0.0000   0.0000   0.0000   0.0000  
## PP.ATNS_5          0.0000   0.0000   0.0000   0.0000  
## PP.Ind_3           0.0001   0.0004   0.0000   0.0000  
## PP.Ind_4           0.0000   0.0000   0.0000   0.0000  
## PP.Ind_7           0.0000   0.0000   0.0000   0.0000  
## PP.Ind_8           0.0000   0.0000   0.0000   0.0000  
## PP.Ind_1                    0.0000   0.0000   0.0000  
## PP.Ind_2           0.0000            0.0000   0.0000  
## PP.Ind_5           0.0000   0.0000            0.0000  
## PP.Ind_6           0.0000   0.0000   0.0000
library(corrplot)
corrplot(mydata.cor6, method="color")

corrplot(mydata.cor6, addCoef.col = 1,  number.cex = 0.3, method = 'number')

#Naturalness (TOTAL SCALE), Risk, Benefit, Support
PP$corGroup <- data.frame(PP$Risk_Score_GFFB, PP$Risk_Score_GFPRB, PP$Risk_Score_CBB, PP$Risk_Score_PBFB, PP$Risk_Score_PBPB, PP$Risk_Score_VB, PP$Ben_Score_GFFB, PP$Ben_Score_GFPRB, PP$Ben_Score_CBB, PP$Ben_Score_PBFB, PP$Ben_Score_PBPB, PP$Ben_Score_VB, PP$Behav_Scale_GFFB, PP$Behav_Scale_GFPRB, PP$Behav_Scale_CBB, PP$Behav_Scale_PBPB, PP$Behav_Scale_PBFB, PP$Behav_Scale_VB, PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot)


mydata.cor7 = cor(PP$corGroup, use = "pairwise.complete.obs")
head(round(mydata.cor7,2))
##                     PP.Risk_Score_GFFB PP.Risk_Score_GFPRB PP.Risk_Score_CBB
## PP.Risk_Score_GFFB                1.00                0.59              0.31
## PP.Risk_Score_GFPRB               0.59                1.00              0.35
## PP.Risk_Score_CBB                 0.31                0.35              1.00
## PP.Risk_Score_PBFB                0.21                0.18              0.37
## PP.Risk_Score_PBPB                0.27                0.28              0.32
## PP.Risk_Score_VB                  0.33                0.59              0.26
##                     PP.Risk_Score_PBFB PP.Risk_Score_PBPB PP.Risk_Score_VB
## PP.Risk_Score_GFFB                0.21               0.27             0.33
## PP.Risk_Score_GFPRB               0.18               0.28             0.59
## PP.Risk_Score_CBB                 0.37               0.32             0.26
## PP.Risk_Score_PBFB                1.00               0.97             0.42
## PP.Risk_Score_PBPB                0.97               1.00             0.61
## PP.Risk_Score_VB                  0.42               0.61             1.00
##                     PP.Ben_Score_GFFB PP.Ben_Score_GFPRB PP.Ben_Score_CBB
## PP.Risk_Score_GFFB              -0.16              -0.16             0.28
## PP.Risk_Score_GFPRB              0.05              -0.21             0.36
## PP.Risk_Score_CBB                0.21               0.02            -0.17
## PP.Risk_Score_PBFB               0.23               0.20             0.03
## PP.Risk_Score_PBPB               0.33               0.13             0.22
## PP.Risk_Score_VB                 0.28               0.11             0.39
##                     PP.Ben_Score_PBFB PP.Ben_Score_PBPB PP.Ben_Score_VB
## PP.Risk_Score_GFFB               0.32              0.30            0.15
## PP.Risk_Score_GFPRB              0.37              0.22            0.14
## PP.Risk_Score_CBB               -0.07             -0.02            0.16
## PP.Risk_Score_PBFB              -0.32             -0.25           -0.20
## PP.Risk_Score_PBPB              -0.23             -0.28           -0.24
## PP.Risk_Score_VB                 0.08             -0.13           -0.21
##                     PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Risk_Score_GFFB              -0.26             -0.24             -0.22
## PP.Risk_Score_GFPRB             -0.06             -0.11             -0.02
## PP.Risk_Score_CBB                0.24              0.23              0.26
## PP.Risk_Score_PBFB               0.23              0.15              0.22
## PP.Risk_Score_PBPB               0.30              0.15              0.31
## PP.Risk_Score_VB                 0.26              0.20              0.27
##                     PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Risk_Score_GFFB              -0.26               0.29               0.29
## PP.Risk_Score_GFPRB             -0.08               0.21               0.27
## PP.Risk_Score_CBB                0.25              -0.04               0.02
## PP.Risk_Score_PBFB               0.22              -0.32              -0.22
## PP.Risk_Score_PBPB               0.27              -0.33              -0.24
## PP.Risk_Score_VB                 0.26              -0.12              -0.06
##                     PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Risk_Score_GFFB                0.29               0.28             0.30
## PP.Risk_Score_GFPRB               0.25               0.20             0.29
## PP.Risk_Score_CBB                -0.04              -0.02            -0.25
## PP.Risk_Score_PBFB               -0.28              -0.27             0.00
## PP.Risk_Score_PBPB               -0.31              -0.29             0.16
## PP.Risk_Score_VB                 -0.05              -0.07             0.30
##                     PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Risk_Score_GFFB              0.28             0.31             0.32
## PP.Risk_Score_GFPRB             0.30             0.35             0.30
## PP.Risk_Score_CBB              -0.21            -0.24            -0.23
## PP.Risk_Score_PBFB              0.02            -0.01             0.00
## PP.Risk_Score_PBPB              0.14             0.15             0.17
## PP.Risk_Score_VB                0.40             0.34             0.31
##                     PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Risk_Score_GFFB               0.29              0.29              0.29
## PP.Risk_Score_GFPRB              0.21              0.27              0.25
## PP.Risk_Score_CBB               -0.04              0.02             -0.04
## PP.Risk_Score_PBFB              -0.32             -0.22             -0.28
## PP.Risk_Score_PBPB              -0.33             -0.24             -0.31
## PP.Risk_Score_VB                -0.12             -0.06             -0.05
##                     PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Risk_Score_GFFB               0.28              0.40              0.37
## PP.Risk_Score_GFPRB              0.20              0.47              0.45
## PP.Risk_Score_CBB               -0.02             -0.04             -0.04
## PP.Risk_Score_PBFB              -0.27             -0.31             -0.26
## PP.Risk_Score_PBPB              -0.29             -0.14             -0.10
## PP.Risk_Score_VB                -0.07              0.15              0.12
##                     PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Risk_Score_GFFB               0.37              0.38            0.18
## PP.Risk_Score_GFPRB              0.35              0.37            0.20
## PP.Risk_Score_CBB               -0.07             -0.08            0.09
## PP.Risk_Score_PBFB              -0.30             -0.30           -0.22
## PP.Risk_Score_PBPB              -0.11             -0.16           -0.30
## PP.Risk_Score_VB                 0.06              0.11           -0.17
##                     PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Risk_Score_GFFB             0.23            0.16            0.17
## PP.Risk_Score_GFPRB            0.31            0.13            0.19
## PP.Risk_Score_CBB              0.18            0.18            0.14
## PP.Risk_Score_PBFB            -0.17           -0.26           -0.20
## PP.Risk_Score_PBPB            -0.26           -0.33           -0.28
## PP.Risk_Score_VB              -0.06           -0.21           -0.15
##                     PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Risk_Score_GFFB          -0.20          -0.58          -0.54          -0.35
## PP.Risk_Score_GFPRB         -0.10          -0.45          -0.31          -0.35
## PP.Risk_Score_CBB            0.14          -0.12          -0.09          -0.14
## PP.Risk_Score_PBFB           0.18          -0.07          -0.02          -0.12
## PP.Risk_Score_PBPB           0.25          -0.14          -0.10          -0.22
## PP.Risk_Score_VB             0.27          -0.32          -0.25          -0.39
##                     PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Risk_Score_GFFB           -0.17           -0.46           -0.50
## PP.Risk_Score_GFPRB          -0.35           -0.64           -0.60
## PP.Risk_Score_CBB            -0.04           -0.25           -0.27
## PP.Risk_Score_PBFB           -0.07           -0.27           -0.18
## PP.Risk_Score_PBPB           -0.26           -0.39           -0.33
## PP.Risk_Score_VB             -0.16           -0.67           -0.48
##                     PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Risk_Score_GFFB            -0.40         0.34         -0.02         -0.09
## PP.Risk_Score_GFPRB           -0.43         0.33         -0.12          0.01
## PP.Risk_Score_CBB             -0.13        -0.10         -0.48         -0.36
## PP.Risk_Score_PBFB            -0.09         0.22         -0.19         -0.02
## PP.Risk_Score_PBPB            -0.15         0.30         -0.12          0.05
## PP.Risk_Score_VB              -0.45         0.45          0.00          0.16
##                     PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Risk_Score_GFFB          -0.08          0.24          -0.06          -0.03
## PP.Risk_Score_GFPRB         -0.04          0.33           0.03          -0.02
## PP.Risk_Score_CBB           -0.20         -0.05          -0.28          -0.23
## PP.Risk_Score_PBFB           0.07         -0.09          -0.38          -0.32
## PP.Risk_Score_PBPB           0.16         -0.12          -0.41          -0.36
## PP.Risk_Score_VB             0.15          0.02          -0.30          -0.27
##                     PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Risk_Score_GFFB           -0.12          0.33           0.06           0.09
## PP.Risk_Score_GFPRB           0.08          0.42           0.00           0.10
## PP.Risk_Score_CBB            -0.08         -0.10           0.27           0.24
## PP.Risk_Score_PBFB            0.05         -0.21           0.39           0.30
## PP.Risk_Score_PBPB            0.02         -0.10           0.29           0.12
## PP.Risk_Score_VB             -0.04          0.22           0.17           0.25
##                     PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Risk_Score_GFFB            0.07        0.11        -0.21        -0.13
## PP.Risk_Score_GFPRB           0.04        0.14        -0.27        -0.21
## PP.Risk_Score_CBB             0.09        0.13        -0.12        -0.09
## PP.Risk_Score_PBFB            0.12       -0.13        -0.26        -0.24
## PP.Risk_Score_PBPB           -0.05       -0.24        -0.44        -0.35
## PP.Risk_Score_VB              0.02       -0.11        -0.55        -0.47
##                     PP.Nat_3R_VB
## PP.Risk_Score_GFFB         -0.07
## PP.Risk_Score_GFPRB        -0.20
## PP.Risk_Score_CBB           0.00
## PP.Risk_Score_PBFB         -0.05
## PP.Risk_Score_PBPB         -0.07
## PP.Risk_Score_VB           -0.23
library("Hmisc")
mydata.rcorr7 = rcorr(as.matrix(mydata.cor7))
mydata.rcorr7
##                     PP.Risk_Score_GFFB PP.Risk_Score_GFPRB PP.Risk_Score_CBB
## PP.Risk_Score_GFFB                1.00                0.92              0.22
## PP.Risk_Score_GFPRB               0.92                1.00              0.30
## PP.Risk_Score_CBB                 0.22                0.30              1.00
## PP.Risk_Score_PBFB                0.00                0.09              0.57
## PP.Risk_Score_PBPB                0.15                0.27              0.48
## PP.Risk_Score_VB                  0.51                0.67              0.39
## PP.Ben_Score_GFFB                 0.05                0.23              0.35
## PP.Ben_Score_GFPRB               -0.24               -0.19              0.32
## PP.Ben_Score_CBB                  0.66                0.71             -0.06
## PP.Ben_Score_PBFB                 0.69                0.67             -0.09
## PP.Ben_Score_PBPB                 0.63                0.55             -0.09
## PP.Ben_Score_VB                   0.46                0.39              0.14
## PP.BehavInt1_GFFB                -0.16                0.01              0.37
## PP.BehavInt2_GFFB                -0.23               -0.08              0.35
## PP.BehavInt3_GFFB                -0.12                0.06              0.38
## PP.BehavInt4_GFFB                -0.19               -0.01              0.37
## PP.BehavInt1_GFPRB                0.60                0.51             -0.15
## PP.BehavInt2_GFPRB                0.66                0.58             -0.13
## PP.BehavInt3_GFPRB                0.63                0.56             -0.13
## PP.BehavInt4_GFPRB                0.63                0.54             -0.10
## PP.BehavInt1_CBB                  0.65                0.67             -0.15
## PP.BehavInt2_CBB                  0.63                0.68             -0.11
## PP.BehavInt3_CBB                  0.65                0.69             -0.13
## PP.BehavInt4_CBB                  0.65                0.67             -0.14
## PP.BehavInt1_PBPB                 0.60                0.51             -0.15
## PP.BehavInt2_PBPB                 0.66                0.58             -0.13
## PP.BehavInt3_PBPB                 0.63                0.56             -0.13
## PP.BehavInt4_PBPB                 0.63                0.54             -0.10
## PP.BehavInt1_PBFB                 0.75                0.72             -0.07
## PP.BehavInt2_PBFB                 0.74                0.73             -0.07
## PP.BehavInt3_PBFB                 0.72                0.69             -0.07
## PP.BehavInt4_PBFB                 0.72                0.68             -0.09
## PP.BehavInt1_VB                   0.52                0.45              0.05
## PP.BehavInt2_VB                   0.58                0.55              0.09
## PP.BehavInt3_VB                   0.49                0.41              0.05
## PP.BehavInt4_VB                   0.52                0.45              0.06
## PP.Nat_1_GFFB                    -0.16               -0.03              0.27
## PP.Nat_4R_GFFB                   -0.94               -0.90             -0.20
## PP.Nat_2R_GFFB                   -0.90               -0.80             -0.13
## PP.Nat_3R_GFFB                   -0.77               -0.80             -0.26
## PP.Nat_1_GFPRB                   -0.49               -0.59              0.02
## PP.Nat_4R_GFPRB                  -0.81               -0.93             -0.35
## PP.Nat_2R_GFPRB                  -0.82               -0.92             -0.33
## PP.Nat_3R_GFPRB                  -0.79               -0.87             -0.19
## PP.Nat_1_CBB                      0.64                0.71              0.01
## PP.Nat_4R_CBB                    -0.02               -0.07             -0.82
## PP.Nat_2R_CBB                    -0.10               -0.03             -0.60
## PP.Nat_3R_CBB                    -0.16               -0.08             -0.44
## PP.Nat_1_PBPB                     0.67                0.66             -0.06
## PP.Nat_4R_PBPB                   -0.06               -0.12             -0.51
## PP.Nat_2R_PBPB                   -0.02               -0.10             -0.54
## PP.Nat_3R_PBPB                   -0.21               -0.14             -0.18
## PP.Nat_1_PBFB                     0.73                0.75             -0.10
## PP.Nat_4R_PBFB                   -0.19               -0.16              0.57
## PP.Nat_2R_PBFB                    0.07                0.10              0.59
## PP.Nat_3R_PBFB                    0.08                0.06              0.40
## PP.Nat_1_VB                       0.46                0.41              0.07
## PP.Nat_4R_VB                     -0.32               -0.43             -0.32
## PP.Nat_2R_VB                     -0.40               -0.53             -0.30
## PP.Nat_3R_VB                     -0.39               -0.50             -0.16
##                     PP.Risk_Score_PBFB PP.Risk_Score_PBPB PP.Risk_Score_VB
## PP.Risk_Score_GFFB                0.00               0.15             0.51
## PP.Risk_Score_GFPRB               0.09               0.27             0.67
## PP.Risk_Score_CBB                 0.57               0.48             0.39
## PP.Risk_Score_PBFB                1.00               0.94             0.66
## PP.Risk_Score_PBPB                0.94               1.00             0.82
## PP.Risk_Score_VB                  0.66               0.82             1.00
## PP.Ben_Score_GFFB                 0.41               0.52             0.62
## PP.Ben_Score_GFPRB                0.36               0.31             0.25
## PP.Ben_Score_CBB                 -0.03               0.22             0.62
## PP.Ben_Score_PBFB                -0.50              -0.31             0.17
## PP.Ben_Score_PBPB                -0.60              -0.48            -0.05
## PP.Ben_Score_VB                  -0.55              -0.53            -0.21
## PP.BehavInt1_GFFB                 0.48               0.53             0.52
## PP.BehavInt2_GFFB                 0.41               0.45             0.42
## PP.BehavInt3_GFFB                 0.48               0.54             0.55
## PP.BehavInt4_GFFB                 0.47               0.53             0.51
## PP.BehavInt1_GFPRB               -0.66              -0.54            -0.11
## PP.BehavInt2_GFPRB               -0.59              -0.46            -0.03
## PP.BehavInt3_GFPRB               -0.61              -0.49            -0.05
## PP.BehavInt4_GFPRB               -0.61              -0.49            -0.07
## PP.BehavInt1_CBB                 -0.12               0.13             0.54
## PP.BehavInt2_CBB                 -0.06               0.19             0.60
## PP.BehavInt3_CBB                 -0.09               0.16             0.57
## PP.BehavInt4_CBB                 -0.09               0.16             0.56
## PP.BehavInt1_PBPB                -0.66              -0.54            -0.11
## PP.BehavInt2_PBPB                -0.59              -0.46            -0.03
## PP.BehavInt3_PBPB                -0.61              -0.49            -0.05
## PP.BehavInt4_PBPB                -0.61              -0.49            -0.07
## PP.BehavInt1_PBFB                -0.49              -0.29             0.18
## PP.BehavInt2_PBFB                -0.45              -0.24             0.23
## PP.BehavInt3_PBFB                -0.48              -0.29             0.18
## PP.BehavInt4_PBFB                -0.49              -0.30             0.18
## PP.BehavInt1_VB                  -0.60              -0.55            -0.19
## PP.BehavInt2_VB                  -0.56              -0.49            -0.11
## PP.BehavInt3_VB                  -0.63              -0.58            -0.23
## PP.BehavInt4_VB                  -0.59              -0.55            -0.19
## PP.Nat_1_GFFB                     0.45               0.51             0.52
## PP.Nat_4R_GFFB                    0.03              -0.15            -0.54
## PP.Nat_2R_GFFB                    0.14              -0.01            -0.39
## PP.Nat_3R_GFFB                   -0.14              -0.32            -0.69
## PP.Nat_1_GFPRB                   -0.12              -0.27            -0.36
## PP.Nat_4R_GFPRB                  -0.32              -0.51            -0.83
## PP.Nat_2R_GFPRB                  -0.20              -0.39            -0.74
## PP.Nat_3R_GFPRB                  -0.09              -0.29            -0.71
## PP.Nat_1_CBB                      0.15               0.38             0.73
## PP.Nat_4R_CBB                    -0.36              -0.21            -0.08
## PP.Nat_2R_CBB                    -0.01               0.14             0.18
## PP.Nat_3R_CBB                     0.12               0.24             0.18
## PP.Nat_1_PBPB                    -0.47              -0.33             0.12
## PP.Nat_4R_PBPB                   -0.76              -0.79            -0.65
## PP.Nat_2R_PBPB                   -0.67              -0.68            -0.58
## PP.Nat_3R_PBPB                   -0.04              -0.06            -0.22
## PP.Nat_1_PBFB                    -0.38              -0.16             0.33
## PP.Nat_4R_PBFB                    0.73               0.60             0.36
## PP.Nat_2R_PBFB                    0.51               0.41             0.39
## PP.Nat_3R_PBFB                    0.20               0.12             0.18
## PP.Nat_1_VB                      -0.56              -0.52            -0.19
## PP.Nat_4R_VB                     -0.68              -0.81            -0.89
## PP.Nat_2R_VB                     -0.56              -0.70            -0.88
## PP.Nat_3R_VB                     -0.27              -0.41            -0.67
##                     PP.Ben_Score_GFFB PP.Ben_Score_GFPRB PP.Ben_Score_CBB
## PP.Risk_Score_GFFB               0.05              -0.24             0.66
## PP.Risk_Score_GFPRB              0.23              -0.19             0.71
## PP.Risk_Score_CBB                0.35               0.32            -0.06
## PP.Risk_Score_PBFB               0.41               0.36            -0.03
## PP.Risk_Score_PBPB               0.52               0.31             0.22
## PP.Risk_Score_VB                 0.62               0.25             0.62
## PP.Ben_Score_GFFB                1.00               0.72             0.60
## PP.Ben_Score_GFPRB               0.72               1.00             0.19
## PP.Ben_Score_CBB                 0.60               0.19             1.00
## PP.Ben_Score_PBFB                0.24              -0.04             0.78
## PP.Ben_Score_PBPB                0.09              -0.07             0.63
## PP.Ben_Score_VB                  0.06               0.08             0.36
## PP.BehavInt1_GFFB                0.96               0.78             0.42
## PP.BehavInt2_GFFB                0.92               0.78             0.35
## PP.BehavInt3_GFFB                0.97               0.77             0.45
## PP.BehavInt4_GFFB                0.95               0.78             0.39
## PP.BehavInt1_GFPRB               0.02              -0.13             0.59
## PP.BehavInt2_GFPRB               0.04              -0.15             0.63
## PP.BehavInt3_GFPRB               0.05              -0.11             0.63
## PP.BehavInt4_GFPRB               0.05              -0.10             0.60
## PP.BehavInt1_CBB                 0.52               0.12             0.98
## PP.BehavInt2_CBB                 0.58               0.16             0.98
## PP.BehavInt3_CBB                 0.54               0.13             0.99
## PP.BehavInt4_CBB                 0.54               0.14             0.99
## PP.BehavInt1_PBPB                0.02              -0.13             0.59
## PP.BehavInt2_PBPB                0.04              -0.15             0.63
## PP.BehavInt3_PBPB                0.05              -0.11             0.63
## PP.BehavInt4_PBPB                0.05              -0.10             0.60
## PP.BehavInt1_PBFB                0.17              -0.12             0.76
## PP.BehavInt2_PBFB                0.23              -0.09             0.79
## PP.BehavInt3_PBFB                0.23              -0.05             0.77
## PP.BehavInt4_PBFB                0.23              -0.06             0.78
## PP.BehavInt1_VB                  0.00              -0.01             0.41
## PP.BehavInt2_VB                  0.01              -0.07             0.43
## PP.BehavInt3_VB                  0.00               0.00             0.40
## PP.BehavInt4_VB                  0.00              -0.01             0.41
## PP.Nat_1_GFFB                    0.89               0.77             0.41
## PP.Nat_4R_GFFB                  -0.20               0.07            -0.73
## PP.Nat_2R_GFFB                  -0.15               0.05            -0.72
## PP.Nat_3R_GFFB                  -0.56              -0.24            -0.84
## PP.Nat_1_GFPRB                   0.23               0.63            -0.20
## PP.Nat_4R_GFPRB                 -0.41               0.00            -0.72
## PP.Nat_2R_GFPRB                 -0.37               0.01            -0.70
## PP.Nat_3R_GFPRB                 -0.46              -0.09            -0.84
## PP.Nat_1_CBB                     0.64               0.21             0.94
## PP.Nat_4R_CBB                   -0.31              -0.41             0.15
## PP.Nat_2R_CBB                   -0.13              -0.34             0.10
## PP.Nat_3R_CBB                   -0.16              -0.31            -0.06
## PP.Nat_1_PBPB                    0.18              -0.06             0.70
## PP.Nat_4R_PBPB                  -0.60              -0.44            -0.23
## PP.Nat_2R_PBPB                  -0.73              -0.60            -0.28
## PP.Nat_3R_PBPB                  -0.52              -0.45            -0.48
## PP.Nat_1_PBFB                    0.32              -0.04             0.85
## PP.Nat_4R_PBFB                   0.41               0.50            -0.16
## PP.Nat_2R_PBFB                   0.52               0.52             0.15
## PP.Nat_3R_PBFB                   0.48               0.51             0.21
## PP.Nat_1_VB                      0.04               0.02             0.38
## PP.Nat_4R_VB                    -0.63              -0.35            -0.54
## PP.Nat_2R_VB                    -0.71              -0.39            -0.67
## PP.Nat_3R_VB                    -0.71              -0.37            -0.74
##                     PP.Ben_Score_PBFB PP.Ben_Score_PBPB PP.Ben_Score_VB
## PP.Risk_Score_GFFB               0.69              0.63            0.46
## PP.Risk_Score_GFPRB              0.67              0.55            0.39
## PP.Risk_Score_CBB               -0.09             -0.09            0.14
## PP.Risk_Score_PBFB              -0.50             -0.60           -0.55
## PP.Risk_Score_PBPB              -0.31             -0.48           -0.53
## PP.Risk_Score_VB                 0.17             -0.05           -0.21
## PP.Ben_Score_GFFB                0.24              0.09            0.06
## PP.Ben_Score_GFPRB              -0.04             -0.07            0.08
## PP.Ben_Score_CBB                 0.78              0.63            0.36
## PP.Ben_Score_PBFB                1.00              0.95            0.79
## PP.Ben_Score_PBPB                0.95              1.00            0.89
## PP.Ben_Score_VB                  0.79              0.89            1.00
## PP.BehavInt1_GFFB                0.04             -0.10           -0.08
## PP.BehavInt2_GFFB                0.00             -0.11           -0.07
## PP.BehavInt3_GFFB                0.07             -0.07           -0.06
## PP.BehavInt4_GFFB                0.01             -0.12           -0.09
## PP.BehavInt1_GFPRB               0.94              0.98            0.86
## PP.BehavInt2_GFPRB               0.94              0.98            0.84
## PP.BehavInt3_GFPRB               0.95              0.99            0.86
## PP.BehavInt4_GFPRB               0.94              0.99            0.88
## PP.BehavInt1_CBB                 0.81              0.67            0.39
## PP.BehavInt2_CBB                 0.77              0.62            0.34
## PP.BehavInt3_CBB                 0.80              0.65            0.37
## PP.BehavInt4_CBB                 0.79              0.65            0.37
## PP.BehavInt1_PBPB                0.94              0.98            0.86
## PP.BehavInt2_PBPB                0.94              0.98            0.84
## PP.BehavInt3_PBPB                0.95              0.99            0.86
## PP.BehavInt4_PBPB                0.94              0.99            0.88
## PP.BehavInt1_PBFB                0.99              0.94            0.78
## PP.BehavInt2_PBFB                0.98              0.91            0.75
## PP.BehavInt3_PBFB                0.99              0.94            0.79
## PP.BehavInt4_PBFB                0.99              0.94            0.78
## PP.BehavInt1_VB                  0.84              0.93            0.98
## PP.BehavInt2_VB                  0.85              0.92            0.93
## PP.BehavInt3_VB                  0.84              0.93            0.98
## PP.BehavInt4_VB                  0.85              0.93            0.98
## PP.Nat_1_GFFB                    0.02             -0.12           -0.12
## PP.Nat_4R_GFFB                  -0.75             -0.66           -0.49
## PP.Nat_2R_GFFB                  -0.80             -0.76           -0.59
## PP.Nat_3R_GFFB                  -0.71             -0.58           -0.38
## PP.Nat_1_GFPRB                  -0.14             -0.06            0.11
## PP.Nat_4R_GFPRB                 -0.53             -0.37           -0.21
## PP.Nat_2R_GFPRB                 -0.59             -0.43           -0.31
## PP.Nat_3R_GFPRB                 -0.69             -0.55           -0.36
## PP.Nat_1_CBB                     0.66              0.49            0.22
## PP.Nat_4R_CBB                    0.08              0.02           -0.27
## PP.Nat_2R_CBB                   -0.13             -0.27           -0.55
## PP.Nat_3R_CBB                   -0.27             -0.40           -0.62
## PP.Nat_1_PBPB                    0.94              0.94            0.82
## PP.Nat_4R_PBPB                   0.19              0.34            0.34
## PP.Nat_2R_PBPB                   0.09              0.20            0.12
## PP.Nat_3R_PBPB                  -0.39             -0.36           -0.35
## PP.Nat_1_PBFB                    0.96              0.87            0.67
## PP.Nat_4R_PBFB                  -0.48             -0.50           -0.40
## PP.Nat_2R_PBFB                  -0.06             -0.05            0.06
## PP.Nat_3R_PBFB                   0.15              0.18            0.26
## PP.Nat_1_VB                      0.78              0.88            0.93
## PP.Nat_4R_VB                    -0.03              0.17            0.33
## PP.Nat_2R_VB                    -0.23             -0.06            0.11
## PP.Nat_3R_VB                    -0.42             -0.30           -0.13
##                     PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Risk_Score_GFFB              -0.16             -0.23             -0.12
## PP.Risk_Score_GFPRB              0.01             -0.08              0.06
## PP.Risk_Score_CBB                0.37              0.35              0.38
## PP.Risk_Score_PBFB               0.48              0.41              0.48
## PP.Risk_Score_PBPB               0.53              0.45              0.54
## PP.Risk_Score_VB                 0.52              0.42              0.55
## PP.Ben_Score_GFFB                0.96              0.92              0.97
## PP.Ben_Score_GFPRB               0.78              0.78              0.77
## PP.Ben_Score_CBB                 0.42              0.35              0.45
## PP.Ben_Score_PBFB                0.04              0.00              0.07
## PP.Ben_Score_PBPB               -0.10             -0.11             -0.07
## PP.Ben_Score_VB                 -0.08             -0.07             -0.06
## PP.BehavInt1_GFFB                1.00              0.98              0.99
## PP.BehavInt2_GFFB                0.98              1.00              0.97
## PP.BehavInt3_GFFB                0.99              0.97              1.00
## PP.BehavInt4_GFFB                0.99              0.97              0.99
## PP.BehavInt1_GFPRB              -0.16             -0.17             -0.14
## PP.BehavInt2_GFPRB              -0.16             -0.19             -0.13
## PP.BehavInt3_GFPRB              -0.14             -0.15             -0.10
## PP.BehavInt4_GFPRB              -0.13             -0.15             -0.10
## PP.BehavInt1_CBB                 0.34              0.28              0.38
## PP.BehavInt2_CBB                 0.40              0.33              0.43
## PP.BehavInt3_CBB                 0.36              0.30              0.39
## PP.BehavInt4_CBB                 0.36              0.29              0.39
## PP.BehavInt1_PBPB               -0.16             -0.17             -0.14
## PP.BehavInt2_PBPB               -0.16             -0.19             -0.13
## PP.BehavInt3_PBPB               -0.14             -0.15             -0.10
## PP.BehavInt4_PBPB               -0.13             -0.15             -0.10
## PP.BehavInt1_PBFB               -0.04             -0.08             -0.01
## PP.BehavInt2_PBFB                0.01             -0.04              0.05
## PP.BehavInt3_PBFB                0.01             -0.03              0.04
## PP.BehavInt4_PBFB                0.01             -0.03              0.04
## PP.BehavInt1_VB                 -0.16             -0.15             -0.14
## PP.BehavInt2_VB                 -0.17             -0.19             -0.14
## PP.BehavInt3_VB                 -0.15             -0.14             -0.13
## PP.BehavInt4_VB                 -0.16             -0.16             -0.14
## PP.Nat_1_GFFB                    0.92              0.90              0.92
## PP.Nat_4R_GFFB                   0.02              0.10             -0.03
## PP.Nat_2R_GFFB                   0.06              0.12              0.01
## PP.Nat_3R_GFFB                  -0.38             -0.29             -0.41
## PP.Nat_1_GFPRB                   0.36              0.45              0.33
## PP.Nat_4R_GFPRB                 -0.22             -0.11             -0.26
## PP.Nat_2R_GFPRB                 -0.16             -0.06             -0.20
## PP.Nat_3R_GFPRB                 -0.26             -0.18             -0.30
## PP.Nat_1_CBB                     0.46              0.37              0.50
## PP.Nat_4R_CBB                   -0.35             -0.37             -0.35
## PP.Nat_2R_CBB                   -0.16             -0.21             -0.15
## PP.Nat_3R_CBB                   -0.16             -0.23             -0.16
## PP.Nat_1_PBPB                   -0.03             -0.08              0.01
## PP.Nat_4R_PBPB                  -0.64             -0.60             -0.63
## PP.Nat_2R_PBPB                  -0.78             -0.77             -0.77
## PP.Nat_3R_PBPB                  -0.51             -0.54             -0.50
## PP.Nat_1_PBFB                    0.09              0.03              0.12
## PP.Nat_4R_PBFB                   0.53              0.54              0.52
## PP.Nat_2R_PBFB                   0.57              0.59              0.56
## PP.Nat_3R_PBFB                   0.51              0.54              0.49
## PP.Nat_1_VB                     -0.10             -0.10             -0.08
## PP.Nat_4R_VB                    -0.60             -0.54             -0.62
## PP.Nat_2R_VB                    -0.63             -0.54             -0.66
## PP.Nat_3R_VB                    -0.61             -0.55             -0.63
##                     PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Risk_Score_GFFB              -0.19               0.60               0.66
## PP.Risk_Score_GFPRB             -0.01               0.51               0.58
## PP.Risk_Score_CBB                0.37              -0.15              -0.13
## PP.Risk_Score_PBFB               0.47              -0.66              -0.59
## PP.Risk_Score_PBPB               0.53              -0.54              -0.46
## PP.Risk_Score_VB                 0.51              -0.11              -0.03
## PP.Ben_Score_GFFB                0.95               0.02               0.04
## PP.Ben_Score_GFPRB               0.78              -0.13              -0.15
## PP.Ben_Score_CBB                 0.39               0.59               0.63
## PP.Ben_Score_PBFB                0.01               0.94               0.94
## PP.Ben_Score_PBPB               -0.12               0.98               0.98
## PP.Ben_Score_VB                 -0.09               0.86               0.84
## PP.BehavInt1_GFFB                0.99              -0.16              -0.16
## PP.BehavInt2_GFFB                0.97              -0.17              -0.19
## PP.BehavInt3_GFFB                0.99              -0.14              -0.13
## PP.BehavInt4_GFFB                1.00              -0.18              -0.18
## PP.BehavInt1_GFPRB              -0.18               1.00               0.98
## PP.BehavInt2_GFPRB              -0.18               0.98               1.00
## PP.BehavInt3_GFPRB              -0.15               0.99               0.98
## PP.BehavInt4_GFPRB              -0.15               0.99               0.98
## PP.BehavInt1_CBB                 0.31               0.65               0.69
## PP.BehavInt2_CBB                 0.37               0.60               0.65
## PP.BehavInt3_CBB                 0.33               0.63               0.66
## PP.BehavInt4_CBB                 0.33               0.62               0.67
## PP.BehavInt1_PBPB               -0.18               1.00               0.98
## PP.BehavInt2_PBPB               -0.18               0.98               1.00
## PP.BehavInt3_PBPB               -0.15               0.99               0.98
## PP.BehavInt4_PBPB               -0.15               0.99               0.98
## PP.BehavInt1_PBFB               -0.07               0.94               0.95
## PP.BehavInt2_PBFB               -0.01               0.91               0.94
## PP.BehavInt3_PBFB               -0.01               0.93               0.94
## PP.BehavInt4_PBFB               -0.01               0.93               0.94
## PP.BehavInt1_VB                 -0.17               0.92               0.91
## PP.BehavInt2_VB                 -0.19               0.91               0.91
## PP.BehavInt3_VB                 -0.17               0.92               0.89
## PP.BehavInt4_VB                 -0.18               0.92               0.91
## PP.Nat_1_GFFB                    0.92              -0.17              -0.17
## PP.Nat_4R_GFFB                   0.04              -0.63              -0.69
## PP.Nat_2R_GFFB                   0.08              -0.73              -0.77
## PP.Nat_3R_GFFB                  -0.35              -0.52              -0.57
## PP.Nat_1_GFPRB                   0.37              -0.05              -0.14
## PP.Nat_4R_GFPRB                 -0.20              -0.31              -0.40
## PP.Nat_2R_GFPRB                 -0.15              -0.38              -0.46
## PP.Nat_3R_GFPRB                 -0.23              -0.50              -0.56
## PP.Nat_1_CBB                     0.44               0.45               0.51
## PP.Nat_4R_CBB                   -0.35               0.07               0.09
## PP.Nat_2R_CBB                   -0.15              -0.23              -0.19
## PP.Nat_3R_CBB                   -0.15              -0.37              -0.32
## PP.Nat_1_PBPB                   -0.05               0.92               0.93
## PP.Nat_4R_PBPB                  -0.63               0.40               0.37
## PP.Nat_2R_PBPB                  -0.77               0.27               0.25
## PP.Nat_3R_PBPB                  -0.48              -0.31              -0.29
## PP.Nat_1_PBFB                    0.07               0.85               0.87
## PP.Nat_4R_PBFB                   0.52              -0.57              -0.56
## PP.Nat_2R_PBFB                   0.55              -0.14              -0.12
## PP.Nat_3R_PBFB                   0.49               0.10               0.08
## PP.Nat_1_VB                     -0.12               0.85               0.84
## PP.Nat_4R_VB                    -0.59               0.23               0.17
## PP.Nat_2R_VB                    -0.62               0.01              -0.05
## PP.Nat_3R_VB                    -0.59              -0.22              -0.26
##                     PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Risk_Score_GFFB                0.63               0.63             0.65
## PP.Risk_Score_GFPRB               0.56               0.54             0.67
## PP.Risk_Score_CBB                -0.13              -0.10            -0.15
## PP.Risk_Score_PBFB               -0.61              -0.61            -0.12
## PP.Risk_Score_PBPB               -0.49              -0.49             0.13
## PP.Risk_Score_VB                 -0.05              -0.07             0.54
## PP.Ben_Score_GFFB                 0.05               0.05             0.52
## PP.Ben_Score_GFPRB               -0.11              -0.10             0.12
## PP.Ben_Score_CBB                  0.63               0.60             0.98
## PP.Ben_Score_PBFB                 0.95               0.94             0.81
## PP.Ben_Score_PBPB                 0.99               0.99             0.67
## PP.Ben_Score_VB                   0.86               0.88             0.39
## PP.BehavInt1_GFFB                -0.14              -0.13             0.34
## PP.BehavInt2_GFFB                -0.15              -0.15             0.28
## PP.BehavInt3_GFFB                -0.10              -0.10             0.38
## PP.BehavInt4_GFFB                -0.15              -0.15             0.31
## PP.BehavInt1_GFPRB                0.99               0.99             0.65
## PP.BehavInt2_GFPRB                0.98               0.98             0.69
## PP.BehavInt3_GFPRB                1.00               0.99             0.68
## PP.BehavInt4_GFPRB                0.99               1.00             0.66
## PP.BehavInt1_CBB                  0.68               0.66             1.00
## PP.BehavInt2_CBB                  0.63               0.61             0.99
## PP.BehavInt3_CBB                  0.66               0.63             0.99
## PP.BehavInt4_CBB                  0.66               0.63             0.99
## PP.BehavInt1_PBPB                 0.99               0.99             0.65
## PP.BehavInt2_PBPB                 0.98               0.98             0.69
## PP.BehavInt3_PBPB                 1.00               0.99             0.68
## PP.BehavInt4_PBPB                 0.99               1.00             0.66
## PP.BehavInt1_PBFB                 0.95               0.94             0.79
## PP.BehavInt2_PBFB                 0.92               0.91             0.82
## PP.BehavInt3_PBFB                 0.94               0.94             0.80
## PP.BehavInt4_PBFB                 0.95               0.94             0.81
## PP.BehavInt1_VB                   0.92               0.93             0.45
## PP.BehavInt2_VB                   0.91               0.92             0.47
## PP.BehavInt3_VB                   0.92               0.93             0.43
## PP.BehavInt4_VB                   0.92               0.93             0.45
## PP.Nat_1_GFFB                    -0.15              -0.15             0.34
## PP.Nat_4R_GFFB                   -0.66              -0.66            -0.71
## PP.Nat_2R_GFFB                   -0.76              -0.76            -0.71
## PP.Nat_3R_GFFB                   -0.56              -0.56            -0.79
## PP.Nat_1_GFPRB                   -0.08              -0.06            -0.20
## PP.Nat_4R_GFPRB                  -0.37              -0.35            -0.66
## PP.Nat_2R_GFPRB                  -0.44              -0.41            -0.64
## PP.Nat_3R_GFPRB                  -0.54              -0.52            -0.79
## PP.Nat_1_CBB                      0.49               0.47             0.92
## PP.Nat_4R_CBB                     0.07               0.02             0.23
## PP.Nat_2R_CBB                    -0.22              -0.27             0.13
## PP.Nat_3R_CBB                    -0.34              -0.39            -0.04
## PP.Nat_1_PBPB                     0.94               0.93             0.72
## PP.Nat_4R_PBPB                    0.36               0.35            -0.15
## PP.Nat_2R_PBPB                    0.24               0.22            -0.21
## PP.Nat_3R_PBPB                   -0.33              -0.34            -0.48
## PP.Nat_1_PBFB                     0.87               0.85             0.87
## PP.Nat_4R_PBFB                   -0.54              -0.51            -0.24
## PP.Nat_2R_PBFB                   -0.10              -0.08             0.07
## PP.Nat_3R_PBFB                    0.13               0.16             0.16
## PP.Nat_1_VB                       0.86               0.87             0.42
## PP.Nat_4R_VB                      0.18               0.20            -0.46
## PP.Nat_2R_VB                     -0.06              -0.04            -0.59
## PP.Nat_3R_VB                     -0.29              -0.26            -0.70
##                     PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Risk_Score_GFFB              0.63             0.65             0.65
## PP.Risk_Score_GFPRB             0.68             0.69             0.67
## PP.Risk_Score_CBB              -0.11            -0.13            -0.14
## PP.Risk_Score_PBFB             -0.06            -0.09            -0.09
## PP.Risk_Score_PBPB              0.19             0.16             0.16
## PP.Risk_Score_VB                0.60             0.57             0.56
## PP.Ben_Score_GFFB               0.58             0.54             0.54
## PP.Ben_Score_GFPRB              0.16             0.13             0.14
## PP.Ben_Score_CBB                0.98             0.99             0.99
## PP.Ben_Score_PBFB               0.77             0.80             0.79
## PP.Ben_Score_PBPB               0.62             0.65             0.65
## PP.Ben_Score_VB                 0.34             0.37             0.37
## PP.BehavInt1_GFFB               0.40             0.36             0.36
## PP.BehavInt2_GFFB               0.33             0.30             0.29
## PP.BehavInt3_GFFB               0.43             0.39             0.39
## PP.BehavInt4_GFFB               0.37             0.33             0.33
## PP.BehavInt1_GFPRB              0.60             0.63             0.62
## PP.BehavInt2_GFPRB              0.65             0.66             0.67
## PP.BehavInt3_GFPRB              0.63             0.66             0.66
## PP.BehavInt4_GFPRB              0.61             0.63             0.63
## PP.BehavInt1_CBB                0.99             0.99             0.99
## PP.BehavInt2_CBB                1.00             0.99             0.99
## PP.BehavInt3_CBB                0.99             1.00             0.99
## PP.BehavInt4_CBB                0.99             0.99             1.00
## PP.BehavInt1_PBPB               0.60             0.63             0.62
## PP.BehavInt2_PBPB               0.65             0.66             0.67
## PP.BehavInt3_PBPB               0.63             0.66             0.66
## PP.BehavInt4_PBPB               0.61             0.63             0.63
## PP.BehavInt1_PBFB               0.76             0.78             0.77
## PP.BehavInt2_PBFB               0.79             0.81             0.80
## PP.BehavInt3_PBFB               0.76             0.79             0.78
## PP.BehavInt4_PBFB               0.77             0.79             0.79
## PP.BehavInt1_VB                 0.40             0.43             0.43
## PP.BehavInt2_VB                 0.43             0.45             0.44
## PP.BehavInt3_VB                 0.38             0.41             0.41
## PP.BehavInt4_VB                 0.40             0.43             0.43
## PP.Nat_1_GFFB                   0.40             0.36             0.36
## PP.Nat_4R_GFFB                 -0.70            -0.72            -0.71
## PP.Nat_2R_GFFB                 -0.69            -0.71            -0.71
## PP.Nat_3R_GFFB                 -0.81            -0.81            -0.81
## PP.Nat_1_GFPRB                 -0.21            -0.22            -0.21
## PP.Nat_4R_GFPRB                -0.70            -0.69            -0.68
## PP.Nat_2R_GFPRB                -0.67            -0.66            -0.65
## PP.Nat_3R_GFPRB                -0.81            -0.81            -0.80
## PP.Nat_1_CBB                    0.95             0.93             0.93
## PP.Nat_4R_CBB                   0.22             0.22             0.23
## PP.Nat_2R_CBB                   0.16             0.14             0.14
## PP.Nat_3R_CBB                  -0.01            -0.02            -0.02
## PP.Nat_1_PBPB                   0.70             0.71             0.72
## PP.Nat_4R_PBPB                 -0.19            -0.17            -0.16
## PP.Nat_2R_PBPB                 -0.25            -0.22            -0.22
## PP.Nat_3R_PBPB                 -0.46            -0.47            -0.47
## PP.Nat_1_PBFB                   0.85             0.86             0.85
## PP.Nat_4R_PBFB                 -0.21            -0.22            -0.23
## PP.Nat_2R_PBFB                  0.10             0.09             0.08
## PP.Nat_3R_PBFB                  0.16             0.16             0.16
## PP.Nat_1_VB                     0.38             0.39             0.39
## PP.Nat_4R_VB                   -0.51            -0.50            -0.48
## PP.Nat_2R_VB                   -0.65            -0.63            -0.63
## PP.Nat_3R_VB                   -0.73            -0.72            -0.72
##                     PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Risk_Score_GFFB               0.60              0.66              0.63
## PP.Risk_Score_GFPRB              0.51              0.58              0.56
## PP.Risk_Score_CBB               -0.15             -0.13             -0.13
## PP.Risk_Score_PBFB              -0.66             -0.59             -0.61
## PP.Risk_Score_PBPB              -0.54             -0.46             -0.49
## PP.Risk_Score_VB                -0.11             -0.03             -0.05
## PP.Ben_Score_GFFB                0.02              0.04              0.05
## PP.Ben_Score_GFPRB              -0.13             -0.15             -0.11
## PP.Ben_Score_CBB                 0.59              0.63              0.63
## PP.Ben_Score_PBFB                0.94              0.94              0.95
## PP.Ben_Score_PBPB                0.98              0.98              0.99
## PP.Ben_Score_VB                  0.86              0.84              0.86
## PP.BehavInt1_GFFB               -0.16             -0.16             -0.14
## PP.BehavInt2_GFFB               -0.17             -0.19             -0.15
## PP.BehavInt3_GFFB               -0.14             -0.13             -0.10
## PP.BehavInt4_GFFB               -0.18             -0.18             -0.15
## PP.BehavInt1_GFPRB               1.00              0.98              0.99
## PP.BehavInt2_GFPRB               0.98              1.00              0.98
## PP.BehavInt3_GFPRB               0.99              0.98              1.00
## PP.BehavInt4_GFPRB               0.99              0.98              0.99
## PP.BehavInt1_CBB                 0.65              0.69              0.68
## PP.BehavInt2_CBB                 0.60              0.65              0.63
## PP.BehavInt3_CBB                 0.63              0.66              0.66
## PP.BehavInt4_CBB                 0.62              0.67              0.66
## PP.BehavInt1_PBPB                1.00              0.98              0.99
## PP.BehavInt2_PBPB                0.98              1.00              0.98
## PP.BehavInt3_PBPB                0.99              0.98              1.00
## PP.BehavInt4_PBPB                0.99              0.98              0.99
## PP.BehavInt1_PBFB                0.94              0.95              0.95
## PP.BehavInt2_PBFB                0.91              0.94              0.92
## PP.BehavInt3_PBFB                0.93              0.94              0.94
## PP.BehavInt4_PBFB                0.93              0.94              0.95
## PP.BehavInt1_VB                  0.92              0.91              0.92
## PP.BehavInt2_VB                  0.91              0.91              0.91
## PP.BehavInt3_VB                  0.92              0.89              0.92
## PP.BehavInt4_VB                  0.92              0.91              0.92
## PP.Nat_1_GFFB                   -0.17             -0.17             -0.15
## PP.Nat_4R_GFFB                  -0.63             -0.69             -0.66
## PP.Nat_2R_GFFB                  -0.73             -0.77             -0.76
## PP.Nat_3R_GFFB                  -0.52             -0.57             -0.56
## PP.Nat_1_GFPRB                  -0.05             -0.14             -0.08
## PP.Nat_4R_GFPRB                 -0.31             -0.40             -0.37
## PP.Nat_2R_GFPRB                 -0.38             -0.46             -0.44
## PP.Nat_3R_GFPRB                 -0.50             -0.56             -0.54
## PP.Nat_1_CBB                     0.45              0.51              0.49
## PP.Nat_4R_CBB                    0.07              0.09              0.07
## PP.Nat_2R_CBB                   -0.23             -0.19             -0.22
## PP.Nat_3R_CBB                   -0.37             -0.32             -0.34
## PP.Nat_1_PBPB                    0.92              0.93              0.94
## PP.Nat_4R_PBPB                   0.40              0.37              0.36
## PP.Nat_2R_PBPB                   0.27              0.25              0.24
## PP.Nat_3R_PBPB                  -0.31             -0.29             -0.33
## PP.Nat_1_PBFB                    0.85              0.87              0.87
## PP.Nat_4R_PBFB                  -0.57             -0.56             -0.54
## PP.Nat_2R_PBFB                  -0.14             -0.12             -0.10
## PP.Nat_3R_PBFB                   0.10              0.08              0.13
## PP.Nat_1_VB                      0.85              0.84              0.86
## PP.Nat_4R_VB                     0.23              0.17              0.18
## PP.Nat_2R_VB                     0.01             -0.05             -0.06
## PP.Nat_3R_VB                    -0.22             -0.26             -0.29
##                     PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Risk_Score_GFFB               0.63              0.75              0.74
## PP.Risk_Score_GFPRB              0.54              0.72              0.73
## PP.Risk_Score_CBB               -0.10             -0.07             -0.07
## PP.Risk_Score_PBFB              -0.61             -0.49             -0.45
## PP.Risk_Score_PBPB              -0.49             -0.29             -0.24
## PP.Risk_Score_VB                -0.07              0.18              0.23
## PP.Ben_Score_GFFB                0.05              0.17              0.23
## PP.Ben_Score_GFPRB              -0.10             -0.12             -0.09
## PP.Ben_Score_CBB                 0.60              0.76              0.79
## PP.Ben_Score_PBFB                0.94              0.99              0.98
## PP.Ben_Score_PBPB                0.99              0.94              0.91
## PP.Ben_Score_VB                  0.88              0.78              0.75
## PP.BehavInt1_GFFB               -0.13             -0.04              0.01
## PP.BehavInt2_GFFB               -0.15             -0.08             -0.04
## PP.BehavInt3_GFFB               -0.10             -0.01              0.05
## PP.BehavInt4_GFFB               -0.15             -0.07             -0.01
## PP.BehavInt1_GFPRB               0.99              0.94              0.91
## PP.BehavInt2_GFPRB               0.98              0.95              0.94
## PP.BehavInt3_GFPRB               0.99              0.95              0.92
## PP.BehavInt4_GFPRB               1.00              0.94              0.91
## PP.BehavInt1_CBB                 0.66              0.79              0.82
## PP.BehavInt2_CBB                 0.61              0.76              0.79
## PP.BehavInt3_CBB                 0.63              0.78              0.81
## PP.BehavInt4_CBB                 0.63              0.77              0.80
## PP.BehavInt1_PBPB                0.99              0.94              0.91
## PP.BehavInt2_PBPB                0.98              0.95              0.94
## PP.BehavInt3_PBPB                0.99              0.95              0.92
## PP.BehavInt4_PBPB                1.00              0.94              0.91
## PP.BehavInt1_PBFB                0.94              1.00              0.99
## PP.BehavInt2_PBFB                0.91              0.99              1.00
## PP.BehavInt3_PBFB                0.94              0.99              0.98
## PP.BehavInt4_PBFB                0.94              0.99              0.98
## PP.BehavInt1_VB                  0.93              0.84              0.81
## PP.BehavInt2_VB                  0.92              0.86              0.84
## PP.BehavInt3_VB                  0.93              0.83              0.80
## PP.BehavInt4_VB                  0.93              0.84              0.81
## PP.Nat_1_GFFB                   -0.15             -0.06              0.00
## PP.Nat_4R_GFFB                  -0.66             -0.79             -0.79
## PP.Nat_2R_GFFB                  -0.76             -0.83             -0.80
## PP.Nat_3R_GFFB                  -0.56             -0.71             -0.74
## PP.Nat_1_GFPRB                  -0.06             -0.23             -0.23
## PP.Nat_4R_GFPRB                 -0.35             -0.56             -0.60
## PP.Nat_2R_GFPRB                 -0.41             -0.62             -0.66
## PP.Nat_3R_GFPRB                 -0.52             -0.70             -0.74
## PP.Nat_1_CBB                     0.47              0.64              0.69
## PP.Nat_4R_CBB                    0.02              0.08              0.11
## PP.Nat_2R_CBB                   -0.27             -0.13             -0.07
## PP.Nat_3R_CBB                   -0.39             -0.26             -0.20
## PP.Nat_1_PBPB                    0.93              0.93              0.93
## PP.Nat_4R_PBPB                   0.35              0.21              0.19
## PP.Nat_2R_PBPB                   0.22              0.12              0.09
## PP.Nat_3R_PBPB                  -0.34             -0.34             -0.32
## PP.Nat_1_PBFB                    0.85              0.95              0.96
## PP.Nat_4R_PBFB                  -0.51             -0.49             -0.48
## PP.Nat_2R_PBFB                  -0.08             -0.09             -0.08
## PP.Nat_3R_PBFB                   0.16              0.10              0.09
## PP.Nat_1_VB                      0.87              0.77              0.74
## PP.Nat_4R_VB                     0.20             -0.02             -0.06
## PP.Nat_2R_VB                    -0.04             -0.21             -0.26
## PP.Nat_3R_VB                    -0.26             -0.37             -0.42
##                     PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Risk_Score_GFFB               0.72              0.72            0.52
## PP.Risk_Score_GFPRB              0.69              0.68            0.45
## PP.Risk_Score_CBB               -0.07             -0.09            0.05
## PP.Risk_Score_PBFB              -0.48             -0.49           -0.60
## PP.Risk_Score_PBPB              -0.29             -0.30           -0.55
## PP.Risk_Score_VB                 0.18              0.18           -0.19
## PP.Ben_Score_GFFB                0.23              0.23            0.00
## PP.Ben_Score_GFPRB              -0.05             -0.06           -0.01
## PP.Ben_Score_CBB                 0.77              0.78            0.41
## PP.Ben_Score_PBFB                0.99              0.99            0.84
## PP.Ben_Score_PBPB                0.94              0.94            0.93
## PP.Ben_Score_VB                  0.79              0.78            0.98
## PP.BehavInt1_GFFB                0.01              0.01           -0.16
## PP.BehavInt2_GFFB               -0.03             -0.03           -0.15
## PP.BehavInt3_GFFB                0.04              0.04           -0.14
## PP.BehavInt4_GFFB               -0.01             -0.01           -0.17
## PP.BehavInt1_GFPRB               0.93              0.93            0.92
## PP.BehavInt2_GFPRB               0.94              0.94            0.91
## PP.BehavInt3_GFPRB               0.94              0.95            0.92
## PP.BehavInt4_GFPRB               0.94              0.94            0.93
## PP.BehavInt1_CBB                 0.80              0.81            0.45
## PP.BehavInt2_CBB                 0.76              0.77            0.40
## PP.BehavInt3_CBB                 0.79              0.79            0.43
## PP.BehavInt4_CBB                 0.78              0.79            0.43
## PP.BehavInt1_PBPB                0.93              0.93            0.92
## PP.BehavInt2_PBPB                0.94              0.94            0.91
## PP.BehavInt3_PBPB                0.94              0.95            0.92
## PP.BehavInt4_PBPB                0.94              0.94            0.93
## PP.BehavInt1_PBFB                0.99              0.99            0.84
## PP.BehavInt2_PBFB                0.98              0.98            0.81
## PP.BehavInt3_PBFB                1.00              1.00            0.85
## PP.BehavInt4_PBFB                1.00              1.00            0.84
## PP.BehavInt1_VB                  0.85              0.84            1.00
## PP.BehavInt2_VB                  0.86              0.85            0.97
## PP.BehavInt3_VB                  0.84              0.84            0.99
## PP.BehavInt4_VB                  0.85              0.84            0.99
## PP.Nat_1_GFFB                   -0.01              0.00           -0.18
## PP.Nat_4R_GFFB                  -0.78             -0.77           -0.54
## PP.Nat_2R_GFFB                  -0.81             -0.80           -0.63
## PP.Nat_3R_GFFB                  -0.72             -0.72           -0.42
## PP.Nat_1_GFPRB                  -0.17             -0.16            0.03
## PP.Nat_4R_GFPRB                 -0.54             -0.54           -0.26
## PP.Nat_2R_GFPRB                 -0.61             -0.61           -0.35
## PP.Nat_3R_GFPRB                 -0.70             -0.71           -0.42
## PP.Nat_1_CBB                     0.65              0.66            0.27
## PP.Nat_4R_CBB                    0.07              0.09           -0.15
## PP.Nat_2R_CBB                   -0.14             -0.12           -0.44
## PP.Nat_3R_CBB                   -0.28             -0.25           -0.51
## PP.Nat_1_PBPB                    0.93              0.93            0.86
## PP.Nat_4R_PBPB                   0.17              0.19            0.40
## PP.Nat_2R_PBPB                   0.08              0.10            0.21
## PP.Nat_3R_PBPB                  -0.38             -0.37           -0.30
## PP.Nat_1_PBFB                    0.95              0.96            0.73
## PP.Nat_4R_PBFB                  -0.47             -0.48           -0.49
## PP.Nat_2R_PBFB                  -0.06             -0.08           -0.04
## PP.Nat_3R_PBFB                   0.14              0.13            0.18
## PP.Nat_1_VB                      0.78              0.78            0.93
## PP.Nat_4R_VB                    -0.02             -0.02            0.33
## PP.Nat_2R_VB                    -0.22             -0.22            0.10
## PP.Nat_3R_VB                    -0.40             -0.40           -0.13
##                     PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Risk_Score_GFFB             0.58            0.49            0.52
## PP.Risk_Score_GFPRB            0.55            0.41            0.45
## PP.Risk_Score_CBB              0.09            0.05            0.06
## PP.Risk_Score_PBFB            -0.56           -0.63           -0.59
## PP.Risk_Score_PBPB            -0.49           -0.58           -0.55
## PP.Risk_Score_VB              -0.11           -0.23           -0.19
## PP.Ben_Score_GFFB              0.01            0.00            0.00
## PP.Ben_Score_GFPRB            -0.07            0.00           -0.01
## PP.Ben_Score_CBB               0.43            0.40            0.41
## PP.Ben_Score_PBFB              0.85            0.84            0.85
## PP.Ben_Score_PBPB              0.92            0.93            0.93
## PP.Ben_Score_VB                0.93            0.98            0.98
## PP.BehavInt1_GFFB             -0.17           -0.15           -0.16
## PP.BehavInt2_GFFB             -0.19           -0.14           -0.16
## PP.BehavInt3_GFFB             -0.14           -0.13           -0.14
## PP.BehavInt4_GFFB             -0.19           -0.17           -0.18
## PP.BehavInt1_GFPRB             0.91            0.92            0.92
## PP.BehavInt2_GFPRB             0.91            0.89            0.91
## PP.BehavInt3_GFPRB             0.91            0.92            0.92
## PP.BehavInt4_GFPRB             0.92            0.93            0.93
## PP.BehavInt1_CBB               0.47            0.43            0.45
## PP.BehavInt2_CBB               0.43            0.38            0.40
## PP.BehavInt3_CBB               0.45            0.41            0.43
## PP.BehavInt4_CBB               0.44            0.41            0.43
## PP.BehavInt1_PBPB              0.91            0.92            0.92
## PP.BehavInt2_PBPB              0.91            0.89            0.91
## PP.BehavInt3_PBPB              0.91            0.92            0.92
## PP.BehavInt4_PBPB              0.92            0.93            0.93
## PP.BehavInt1_PBFB              0.86            0.83            0.84
## PP.BehavInt2_PBFB              0.84            0.80            0.81
## PP.BehavInt3_PBFB              0.86            0.84            0.85
## PP.BehavInt4_PBFB              0.85            0.84            0.84
## PP.BehavInt1_VB                0.97            0.99            0.99
## PP.BehavInt2_VB                1.00            0.95            0.97
## PP.BehavInt3_VB                0.95            1.00            0.99
## PP.BehavInt4_VB                0.97            0.99            1.00
## PP.Nat_1_GFFB                 -0.20           -0.18           -0.18
## PP.Nat_4R_GFFB                -0.61           -0.53           -0.56
## PP.Nat_2R_GFFB                -0.66           -0.63           -0.64
## PP.Nat_3R_GFFB                -0.47           -0.40           -0.42
## PP.Nat_1_GFPRB                -0.08            0.07            0.03
## PP.Nat_4R_GFPRB               -0.37           -0.22           -0.27
## PP.Nat_2R_GFPRB               -0.47           -0.32           -0.36
## PP.Nat_3R_GFPRB               -0.51           -0.38           -0.42
## PP.Nat_1_CBB                   0.32            0.25            0.27
## PP.Nat_4R_CBB                 -0.13           -0.17           -0.17
## PP.Nat_2R_CBB                 -0.38           -0.47           -0.45
## PP.Nat_3R_CBB                 -0.46           -0.55           -0.52
## PP.Nat_1_PBPB                  0.88            0.85            0.86
## PP.Nat_4R_PBPB                 0.43            0.40            0.39
## PP.Nat_2R_PBPB                 0.26            0.22            0.22
## PP.Nat_3R_PBPB                -0.18           -0.29           -0.28
## PP.Nat_1_PBFB                  0.76            0.72            0.72
## PP.Nat_4R_PBFB                -0.48           -0.48           -0.47
## PP.Nat_2R_PBFB                -0.09           -0.05           -0.03
## PP.Nat_3R_PBFB                 0.11            0.17            0.17
## PP.Nat_1_VB                    0.91            0.93            0.93
## PP.Nat_4R_VB                   0.29            0.35            0.32
## PP.Nat_2R_VB                   0.05            0.13            0.09
## PP.Nat_3R_VB                  -0.15           -0.10           -0.13
##                     PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Risk_Score_GFFB          -0.16          -0.94          -0.90          -0.77
## PP.Risk_Score_GFPRB         -0.03          -0.90          -0.80          -0.80
## PP.Risk_Score_CBB            0.27          -0.20          -0.13          -0.26
## PP.Risk_Score_PBFB           0.45           0.03           0.14          -0.14
## PP.Risk_Score_PBPB           0.51          -0.15          -0.01          -0.32
## PP.Risk_Score_VB             0.52          -0.54          -0.39          -0.69
## PP.Ben_Score_GFFB            0.89          -0.20          -0.15          -0.56
## PP.Ben_Score_GFPRB           0.77           0.07           0.05          -0.24
## PP.Ben_Score_CBB             0.41          -0.73          -0.72          -0.84
## PP.Ben_Score_PBFB            0.02          -0.75          -0.80          -0.71
## PP.Ben_Score_PBPB           -0.12          -0.66          -0.76          -0.58
## PP.Ben_Score_VB             -0.12          -0.49          -0.59          -0.38
## PP.BehavInt1_GFFB            0.92           0.02           0.06          -0.38
## PP.BehavInt2_GFFB            0.90           0.10           0.12          -0.29
## PP.BehavInt3_GFFB            0.92          -0.03           0.01          -0.41
## PP.BehavInt4_GFFB            0.92           0.04           0.08          -0.35
## PP.BehavInt1_GFPRB          -0.17          -0.63          -0.73          -0.52
## PP.BehavInt2_GFPRB          -0.17          -0.69          -0.77          -0.57
## PP.BehavInt3_GFPRB          -0.15          -0.66          -0.76          -0.56
## PP.BehavInt4_GFPRB          -0.15          -0.66          -0.76          -0.56
## PP.BehavInt1_CBB             0.34          -0.71          -0.71          -0.79
## PP.BehavInt2_CBB             0.40          -0.70          -0.69          -0.81
## PP.BehavInt3_CBB             0.36          -0.72          -0.71          -0.81
## PP.BehavInt4_CBB             0.36          -0.71          -0.71          -0.81
## PP.BehavInt1_PBPB           -0.17          -0.63          -0.73          -0.52
## PP.BehavInt2_PBPB           -0.17          -0.69          -0.77          -0.57
## PP.BehavInt3_PBPB           -0.15          -0.66          -0.76          -0.56
## PP.BehavInt4_PBPB           -0.15          -0.66          -0.76          -0.56
## PP.BehavInt1_PBFB           -0.06          -0.79          -0.83          -0.71
## PP.BehavInt2_PBFB            0.00          -0.79          -0.80          -0.74
## PP.BehavInt3_PBFB           -0.01          -0.78          -0.81          -0.72
## PP.BehavInt4_PBFB            0.00          -0.77          -0.80          -0.72
## PP.BehavInt1_VB             -0.18          -0.54          -0.63          -0.42
## PP.BehavInt2_VB             -0.20          -0.61          -0.66          -0.47
## PP.BehavInt3_VB             -0.18          -0.53          -0.63          -0.40
## PP.BehavInt4_VB             -0.18          -0.56          -0.64          -0.42
## PP.Nat_1_GFFB                1.00           0.05           0.07          -0.36
## PP.Nat_4R_GFFB               0.05           1.00           0.93           0.85
## PP.Nat_2R_GFFB               0.07           0.93           1.00           0.80
## PP.Nat_3R_GFFB              -0.36           0.85           0.80           1.00
## PP.Nat_1_GFPRB               0.45           0.41           0.28           0.19
## PP.Nat_4R_GFPRB             -0.18           0.82           0.66           0.79
## PP.Nat_2R_GFPRB             -0.13           0.84           0.69           0.79
## PP.Nat_3R_GFPRB             -0.24           0.83           0.71           0.88
## PP.Nat_1_CBB                 0.45          -0.72          -0.67          -0.85
## PP.Nat_4R_CBB               -0.24           0.07           0.08           0.10
## PP.Nat_2R_CBB               -0.08           0.11           0.23           0.09
## PP.Nat_3R_CBB               -0.10           0.16           0.30           0.14
## PP.Nat_1_PBPB               -0.04          -0.72          -0.77          -0.68
## PP.Nat_4R_PBPB              -0.65           0.06           0.03           0.27
## PP.Nat_2R_PBPB              -0.74           0.03           0.03           0.31
## PP.Nat_3R_PBPB              -0.54           0.19           0.32           0.40
## PP.Nat_1_PBFB                0.07          -0.80          -0.81          -0.78
## PP.Nat_4R_PBFB               0.53           0.19           0.23          -0.03
## PP.Nat_2R_PBFB               0.58          -0.05          -0.12          -0.28
## PP.Nat_3R_PBFB               0.54          -0.06          -0.17          -0.31
## PP.Nat_1_VB                 -0.15          -0.51          -0.57          -0.39
## PP.Nat_4R_VB                -0.63           0.34           0.24           0.54
## PP.Nat_2R_VB                -0.66           0.42           0.35           0.65
## PP.Nat_3R_VB                -0.64           0.41           0.40           0.65
##                     PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Risk_Score_GFFB           -0.49           -0.81           -0.82
## PP.Risk_Score_GFPRB          -0.59           -0.93           -0.92
## PP.Risk_Score_CBB             0.02           -0.35           -0.33
## PP.Risk_Score_PBFB           -0.12           -0.32           -0.20
## PP.Risk_Score_PBPB           -0.27           -0.51           -0.39
## PP.Risk_Score_VB             -0.36           -0.83           -0.74
## PP.Ben_Score_GFFB             0.23           -0.41           -0.37
## PP.Ben_Score_GFPRB            0.63            0.00            0.01
## PP.Ben_Score_CBB             -0.20           -0.72           -0.70
## PP.Ben_Score_PBFB            -0.14           -0.53           -0.59
## PP.Ben_Score_PBPB            -0.06           -0.37           -0.43
## PP.Ben_Score_VB               0.11           -0.21           -0.31
## PP.BehavInt1_GFFB             0.36           -0.22           -0.16
## PP.BehavInt2_GFFB             0.45           -0.11           -0.06
## PP.BehavInt3_GFFB             0.33           -0.26           -0.20
## PP.BehavInt4_GFFB             0.37           -0.20           -0.15
## PP.BehavInt1_GFPRB           -0.05           -0.31           -0.38
## PP.BehavInt2_GFPRB           -0.14           -0.40           -0.46
## PP.BehavInt3_GFPRB           -0.08           -0.37           -0.44
## PP.BehavInt4_GFPRB           -0.06           -0.35           -0.41
## PP.BehavInt1_CBB             -0.20           -0.66           -0.64
## PP.BehavInt2_CBB             -0.21           -0.70           -0.67
## PP.BehavInt3_CBB             -0.22           -0.69           -0.66
## PP.BehavInt4_CBB             -0.21           -0.68           -0.65
## PP.BehavInt1_PBPB            -0.05           -0.31           -0.38
## PP.BehavInt2_PBPB            -0.14           -0.40           -0.46
## PP.BehavInt3_PBPB            -0.08           -0.37           -0.44
## PP.BehavInt4_PBPB            -0.06           -0.35           -0.41
## PP.BehavInt1_PBFB            -0.23           -0.56           -0.62
## PP.BehavInt2_PBFB            -0.23           -0.60           -0.66
## PP.BehavInt3_PBFB            -0.17           -0.54           -0.61
## PP.BehavInt4_PBFB            -0.16           -0.54           -0.61
## PP.BehavInt1_VB               0.03           -0.26           -0.35
## PP.BehavInt2_VB              -0.08           -0.37           -0.47
## PP.BehavInt3_VB               0.07           -0.22           -0.32
## PP.BehavInt4_VB               0.03           -0.27           -0.36
## PP.Nat_1_GFFB                 0.45           -0.18           -0.13
## PP.Nat_4R_GFFB                0.41            0.82            0.84
## PP.Nat_2R_GFFB                0.28            0.66            0.69
## PP.Nat_3R_GFFB                0.19            0.79            0.79
## PP.Nat_1_GFPRB                1.00            0.57            0.53
## PP.Nat_4R_GFPRB               0.57            1.00            0.95
## PP.Nat_2R_GFPRB               0.53            0.95            1.00
## PP.Nat_3R_GFPRB               0.38            0.89            0.90
## PP.Nat_1_CBB                 -0.28           -0.77           -0.74
## PP.Nat_4R_CBB                -0.29            0.07            0.03
## PP.Nat_2R_CBB                -0.39           -0.07           -0.06
## PP.Nat_3R_CBB                -0.39           -0.05           -0.04
## PP.Nat_1_PBPB                -0.19           -0.52           -0.60
## PP.Nat_4R_PBPB               -0.08            0.31            0.18
## PP.Nat_2R_PBPB               -0.19            0.26            0.15
## PP.Nat_3R_PBPB               -0.45            0.12            0.06
## PP.Nat_1_PBFB                -0.26           -0.65           -0.70
## PP.Nat_4R_PBFB                0.36            0.01            0.11
## PP.Nat_2R_PBFB                0.37           -0.16           -0.06
## PP.Nat_3R_PBFB                0.51           -0.05            0.00
## PP.Nat_1_VB                   0.04           -0.25           -0.34
## PP.Nat_4R_VB                  0.12            0.60            0.49
## PP.Nat_2R_VB                  0.14            0.70            0.61
## PP.Nat_3R_VB                  0.02            0.59            0.54
##                     PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Risk_Score_GFFB            -0.79         0.64         -0.02         -0.10
## PP.Risk_Score_GFPRB           -0.87         0.71         -0.07         -0.03
## PP.Risk_Score_CBB             -0.19         0.01         -0.82         -0.60
## PP.Risk_Score_PBFB            -0.09         0.15         -0.36         -0.01
## PP.Risk_Score_PBPB            -0.29         0.38         -0.21          0.14
## PP.Risk_Score_VB              -0.71         0.73         -0.08          0.18
## PP.Ben_Score_GFFB             -0.46         0.64         -0.31         -0.13
## PP.Ben_Score_GFPRB            -0.09         0.21         -0.41         -0.34
## PP.Ben_Score_CBB              -0.84         0.94          0.15          0.10
## PP.Ben_Score_PBFB             -0.69         0.66          0.08         -0.13
## PP.Ben_Score_PBPB             -0.55         0.49          0.02         -0.27
## PP.Ben_Score_VB               -0.36         0.22         -0.27         -0.55
## PP.BehavInt1_GFFB             -0.26         0.46         -0.35         -0.16
## PP.BehavInt2_GFFB             -0.18         0.37         -0.37         -0.21
## PP.BehavInt3_GFFB             -0.30         0.50         -0.35         -0.15
## PP.BehavInt4_GFFB             -0.23         0.44         -0.35         -0.15
## PP.BehavInt1_GFPRB            -0.50         0.45          0.07         -0.23
## PP.BehavInt2_GFPRB            -0.56         0.51          0.09         -0.19
## PP.BehavInt3_GFPRB            -0.54         0.49          0.07         -0.22
## PP.BehavInt4_GFPRB            -0.52         0.47          0.02         -0.27
## PP.BehavInt1_CBB              -0.79         0.92          0.23          0.13
## PP.BehavInt2_CBB              -0.81         0.95          0.22          0.16
## PP.BehavInt3_CBB              -0.81         0.93          0.22          0.14
## PP.BehavInt4_CBB              -0.80         0.93          0.23          0.14
## PP.BehavInt1_PBPB             -0.50         0.45          0.07         -0.23
## PP.BehavInt2_PBPB             -0.56         0.51          0.09         -0.19
## PP.BehavInt3_PBPB             -0.54         0.49          0.07         -0.22
## PP.BehavInt4_PBPB             -0.52         0.47          0.02         -0.27
## PP.BehavInt1_PBFB             -0.70         0.64          0.08         -0.13
## PP.BehavInt2_PBFB             -0.74         0.69          0.11         -0.07
## PP.BehavInt3_PBFB             -0.70         0.65          0.07         -0.14
## PP.BehavInt4_PBFB             -0.71         0.66          0.09         -0.12
## PP.BehavInt1_VB               -0.42         0.27         -0.15         -0.44
## PP.BehavInt2_VB               -0.51         0.32         -0.13         -0.38
## PP.BehavInt3_VB               -0.38         0.25         -0.17         -0.47
## PP.BehavInt4_VB               -0.42         0.27         -0.17         -0.45
## PP.Nat_1_GFFB                 -0.24         0.45         -0.24         -0.08
## PP.Nat_4R_GFFB                 0.83        -0.72          0.07          0.11
## PP.Nat_2R_GFFB                 0.71        -0.67          0.08          0.23
## PP.Nat_3R_GFFB                 0.88        -0.85          0.10          0.09
## PP.Nat_1_GFPRB                 0.38        -0.28         -0.29         -0.39
## PP.Nat_4R_GFPRB                0.89        -0.77          0.07         -0.07
## PP.Nat_2R_GFPRB                0.90        -0.74          0.03         -0.06
## PP.Nat_3R_GFPRB                1.00        -0.84         -0.03         -0.06
## PP.Nat_1_CBB                  -0.84         1.00          0.18          0.19
## PP.Nat_4R_CBB                 -0.03         0.18          1.00          0.85
## PP.Nat_2R_CBB                 -0.06         0.19          0.85          1.00
## PP.Nat_3R_CBB                  0.04         0.07          0.73          0.91
## PP.Nat_1_PBPB                 -0.68         0.62          0.07         -0.15
## PP.Nat_4R_PBPB                 0.14        -0.29          0.36          0.10
## PP.Nat_2R_PBPB                 0.17        -0.33          0.47          0.33
## PP.Nat_3R_PBPB                 0.25        -0.37          0.24          0.38
## PP.Nat_1_PBFB                 -0.78         0.78          0.16          0.00
## PP.Nat_4R_PBFB                 0.12        -0.12         -0.56         -0.33
## PP.Nat_2R_PBFB                -0.12         0.14         -0.65         -0.58
## PP.Nat_3R_PBFB                -0.12         0.14         -0.49         -0.56
## PP.Nat_1_VB                   -0.41         0.28         -0.17         -0.42
## PP.Nat_4R_VB                   0.50        -0.61          0.10         -0.15
## PP.Nat_2R_VB                   0.63        -0.74          0.07         -0.10
## PP.Nat_3R_VB                   0.63        -0.74          0.01         -0.06
##                     PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Risk_Score_GFFB          -0.16          0.67          -0.06          -0.02
## PP.Risk_Score_GFPRB         -0.08          0.66          -0.12          -0.10
## PP.Risk_Score_CBB           -0.44         -0.06          -0.51          -0.54
## PP.Risk_Score_PBFB           0.12         -0.47          -0.76          -0.67
## PP.Risk_Score_PBPB           0.24         -0.33          -0.79          -0.68
## PP.Risk_Score_VB             0.18          0.12          -0.65          -0.58
## PP.Ben_Score_GFFB           -0.16          0.18          -0.60          -0.73
## PP.Ben_Score_GFPRB          -0.31         -0.06          -0.44          -0.60
## PP.Ben_Score_CBB            -0.06          0.70          -0.23          -0.28
## PP.Ben_Score_PBFB           -0.27          0.94           0.19           0.09
## PP.Ben_Score_PBPB           -0.40          0.94           0.34           0.20
## PP.Ben_Score_VB             -0.62          0.82           0.34           0.12
## PP.BehavInt1_GFFB           -0.16         -0.03          -0.64          -0.78
## PP.BehavInt2_GFFB           -0.23         -0.08          -0.60          -0.77
## PP.BehavInt3_GFFB           -0.16          0.01          -0.63          -0.77
## PP.BehavInt4_GFFB           -0.15         -0.05          -0.63          -0.77
## PP.BehavInt1_GFPRB          -0.37          0.92           0.40           0.27
## PP.BehavInt2_GFPRB          -0.32          0.93           0.37           0.25
## PP.BehavInt3_GFPRB          -0.34          0.94           0.36           0.24
## PP.BehavInt4_GFPRB          -0.39          0.93           0.35           0.22
## PP.BehavInt1_CBB            -0.04          0.72          -0.15          -0.21
## PP.BehavInt2_CBB            -0.01          0.70          -0.19          -0.25
## PP.BehavInt3_CBB            -0.02          0.71          -0.17          -0.22
## PP.BehavInt4_CBB            -0.02          0.72          -0.16          -0.22
## PP.BehavInt1_PBPB           -0.37          0.92           0.40           0.27
## PP.BehavInt2_PBPB           -0.32          0.93           0.37           0.25
## PP.BehavInt3_PBPB           -0.34          0.94           0.36           0.24
## PP.BehavInt4_PBPB           -0.39          0.93           0.35           0.22
## PP.BehavInt1_PBFB           -0.26          0.93           0.21           0.12
## PP.BehavInt2_PBFB           -0.20          0.93           0.19           0.09
## PP.BehavInt3_PBFB           -0.28          0.93           0.17           0.08
## PP.BehavInt4_PBFB           -0.25          0.93           0.19           0.10
## PP.BehavInt1_VB             -0.51          0.86           0.40           0.21
## PP.BehavInt2_VB             -0.46          0.88           0.43           0.26
## PP.BehavInt3_VB             -0.55          0.85           0.40           0.22
## PP.BehavInt4_VB             -0.52          0.86           0.39           0.22
## PP.Nat_1_GFFB               -0.10         -0.04          -0.65          -0.74
## PP.Nat_4R_GFFB               0.16         -0.72           0.06           0.03
## PP.Nat_2R_GFFB               0.30         -0.77           0.03           0.03
## PP.Nat_3R_GFFB               0.14         -0.68           0.27           0.31
## PP.Nat_1_GFPRB              -0.39         -0.19          -0.08          -0.19
## PP.Nat_4R_GFPRB             -0.05         -0.52           0.31           0.26
## PP.Nat_2R_GFPRB             -0.04         -0.60           0.18           0.15
## PP.Nat_3R_GFPRB              0.04         -0.68           0.14           0.17
## PP.Nat_1_CBB                 0.07          0.62          -0.29          -0.33
## PP.Nat_4R_CBB                0.73          0.07           0.36           0.47
## PP.Nat_2R_CBB                0.91         -0.15           0.10           0.33
## PP.Nat_3R_CBB                1.00         -0.27           0.01           0.28
## PP.Nat_1_PBPB               -0.27          1.00           0.33           0.19
## PP.Nat_4R_PBPB               0.01          0.33           1.00           0.85
## PP.Nat_2R_PBPB               0.28          0.19           0.85           1.00
## PP.Nat_3R_PBPB               0.44         -0.25           0.49           0.63
## PP.Nat_1_PBFB               -0.12          0.93           0.13           0.06
## PP.Nat_4R_PBFB              -0.22         -0.54          -0.71          -0.67
## PP.Nat_2R_PBFB              -0.54         -0.09          -0.63          -0.78
## PP.Nat_3R_PBFB              -0.54          0.09          -0.45          -0.62
## PP.Nat_1_VB                 -0.50          0.84           0.39           0.20
## PP.Nat_4R_VB                -0.16          0.08           0.79           0.69
## PP.Nat_2R_VB                -0.09         -0.18           0.63           0.63
## PP.Nat_3R_VB                -0.01         -0.39           0.47           0.51
##                     PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Risk_Score_GFFB           -0.21          0.73          -0.19           0.07
## PP.Risk_Score_GFPRB          -0.14          0.75          -0.16           0.10
## PP.Risk_Score_CBB            -0.18         -0.10           0.57           0.59
## PP.Risk_Score_PBFB           -0.04         -0.38           0.73           0.51
## PP.Risk_Score_PBPB           -0.06         -0.16           0.60           0.41
## PP.Risk_Score_VB             -0.22          0.33           0.36           0.39
## PP.Ben_Score_GFFB            -0.52          0.32           0.41           0.52
## PP.Ben_Score_GFPRB           -0.45         -0.04           0.50           0.52
## PP.Ben_Score_CBB             -0.48          0.85          -0.16           0.15
## PP.Ben_Score_PBFB            -0.39          0.96          -0.48          -0.06
## PP.Ben_Score_PBPB            -0.36          0.87          -0.50          -0.05
## PP.Ben_Score_VB              -0.35          0.67          -0.40           0.06
## PP.BehavInt1_GFFB            -0.51          0.09           0.53           0.57
## PP.BehavInt2_GFFB            -0.54          0.03           0.54           0.59
## PP.BehavInt3_GFFB            -0.50          0.12           0.52           0.56
## PP.BehavInt4_GFFB            -0.48          0.07           0.52           0.55
## PP.BehavInt1_GFPRB           -0.31          0.85          -0.57          -0.14
## PP.BehavInt2_GFPRB           -0.29          0.87          -0.56          -0.12
## PP.BehavInt3_GFPRB           -0.33          0.87          -0.54          -0.10
## PP.BehavInt4_GFPRB           -0.34          0.85          -0.51          -0.08
## PP.BehavInt1_CBB             -0.48          0.87          -0.24           0.07
## PP.BehavInt2_CBB             -0.46          0.85          -0.21           0.10
## PP.BehavInt3_CBB             -0.47          0.86          -0.22           0.09
## PP.BehavInt4_CBB             -0.47          0.85          -0.23           0.08
## PP.BehavInt1_PBPB            -0.31          0.85          -0.57          -0.14
## PP.BehavInt2_PBPB            -0.29          0.87          -0.56          -0.12
## PP.BehavInt3_PBPB            -0.33          0.87          -0.54          -0.10
## PP.BehavInt4_PBPB            -0.34          0.85          -0.51          -0.08
## PP.BehavInt1_PBFB            -0.34          0.95          -0.49          -0.09
## PP.BehavInt2_PBFB            -0.32          0.96          -0.48          -0.08
## PP.BehavInt3_PBFB            -0.38          0.95          -0.47          -0.06
## PP.BehavInt4_PBFB            -0.37          0.96          -0.48          -0.08
## PP.BehavInt1_VB              -0.30          0.73          -0.49          -0.04
## PP.BehavInt2_VB              -0.18          0.76          -0.48          -0.09
## PP.BehavInt3_VB              -0.29          0.72          -0.48          -0.05
## PP.BehavInt4_VB              -0.28          0.72          -0.47          -0.03
## PP.Nat_1_GFFB                -0.54          0.07           0.53           0.58
## PP.Nat_4R_GFFB                0.19         -0.80           0.19          -0.05
## PP.Nat_2R_GFFB                0.32         -0.81           0.23          -0.12
## PP.Nat_3R_GFFB                0.40         -0.78          -0.03          -0.28
## PP.Nat_1_GFPRB               -0.45         -0.26           0.36           0.37
## PP.Nat_4R_GFPRB               0.12         -0.65           0.01          -0.16
## PP.Nat_2R_GFPRB               0.06         -0.70           0.11          -0.06
## PP.Nat_3R_GFPRB               0.25         -0.78           0.12          -0.12
## PP.Nat_1_CBB                 -0.37          0.78          -0.12           0.14
## PP.Nat_4R_CBB                 0.24          0.16          -0.56          -0.65
## PP.Nat_2R_CBB                 0.38          0.00          -0.33          -0.58
## PP.Nat_3R_CBB                 0.44         -0.12          -0.22          -0.54
## PP.Nat_1_PBPB                -0.25          0.93          -0.54          -0.09
## PP.Nat_4R_PBPB                0.49          0.13          -0.71          -0.63
## PP.Nat_2R_PBPB                0.63          0.06          -0.67          -0.78
## PP.Nat_3R_PBPB                1.00         -0.31          -0.33          -0.66
## PP.Nat_1_PBFB                -0.31          1.00          -0.49          -0.10
## PP.Nat_4R_PBFB               -0.33         -0.49           1.00           0.78
## PP.Nat_2R_PBFB               -0.66         -0.10           0.78           1.00
## PP.Nat_3R_PBFB               -0.80          0.06           0.62           0.84
## PP.Nat_1_VB                  -0.26          0.72          -0.49          -0.05
## PP.Nat_4R_VB                  0.40         -0.14          -0.56          -0.54
## PP.Nat_2R_VB                  0.43         -0.33          -0.40          -0.52
## PP.Nat_3R_VB                  0.62         -0.49          -0.27          -0.49
##                     PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Risk_Score_GFFB            0.08        0.46        -0.32        -0.40
## PP.Risk_Score_GFPRB           0.06        0.41        -0.43        -0.53
## PP.Risk_Score_CBB             0.40        0.07        -0.32        -0.30
## PP.Risk_Score_PBFB            0.20       -0.56        -0.68        -0.56
## PP.Risk_Score_PBPB            0.12       -0.52        -0.81        -0.70
## PP.Risk_Score_VB              0.18       -0.19        -0.89        -0.88
## PP.Ben_Score_GFFB             0.48        0.04        -0.63        -0.71
## PP.Ben_Score_GFPRB            0.51        0.02        -0.35        -0.39
## PP.Ben_Score_CBB              0.21        0.38        -0.54        -0.67
## PP.Ben_Score_PBFB             0.15        0.78        -0.03        -0.23
## PP.Ben_Score_PBPB             0.18        0.88         0.17        -0.06
## PP.Ben_Score_VB               0.26        0.93         0.33         0.11
## PP.BehavInt1_GFFB             0.51       -0.10        -0.60        -0.63
## PP.BehavInt2_GFFB             0.54       -0.10        -0.54        -0.54
## PP.BehavInt3_GFFB             0.49       -0.08        -0.62        -0.66
## PP.BehavInt4_GFFB             0.49       -0.12        -0.59        -0.62
## PP.BehavInt1_GFPRB            0.10        0.85         0.23         0.01
## PP.BehavInt2_GFPRB            0.08        0.84         0.17        -0.05
## PP.BehavInt3_GFPRB            0.13        0.86         0.18        -0.06
## PP.BehavInt4_GFPRB            0.16        0.87         0.20        -0.04
## PP.BehavInt1_CBB              0.16        0.42        -0.46        -0.59
## PP.BehavInt2_CBB              0.16        0.38        -0.51        -0.65
## PP.BehavInt3_CBB              0.16        0.39        -0.50        -0.63
## PP.BehavInt4_CBB              0.16        0.39        -0.48        -0.63
## PP.BehavInt1_PBPB             0.10        0.85         0.23         0.01
## PP.BehavInt2_PBPB             0.08        0.84         0.17        -0.05
## PP.BehavInt3_PBPB             0.13        0.86         0.18        -0.06
## PP.BehavInt4_PBPB             0.16        0.87         0.20        -0.04
## PP.BehavInt1_PBFB             0.10        0.77        -0.02        -0.21
## PP.BehavInt2_PBFB             0.09        0.74        -0.06        -0.26
## PP.BehavInt3_PBFB             0.14        0.78        -0.02        -0.22
## PP.BehavInt4_PBFB             0.13        0.78        -0.02        -0.22
## PP.BehavInt1_VB               0.18        0.93         0.33         0.10
## PP.BehavInt2_VB               0.11        0.91         0.29         0.05
## PP.BehavInt3_VB               0.17        0.93         0.35         0.13
## PP.BehavInt4_VB               0.17        0.93         0.32         0.09
## PP.Nat_1_GFFB                 0.54       -0.15        -0.63        -0.66
## PP.Nat_4R_GFFB               -0.06       -0.51         0.34         0.42
## PP.Nat_2R_GFFB               -0.17       -0.57         0.24         0.35
## PP.Nat_3R_GFFB               -0.31       -0.39         0.54         0.65
## PP.Nat_1_GFPRB                0.51        0.04         0.12         0.14
## PP.Nat_4R_GFPRB              -0.05       -0.25         0.60         0.70
## PP.Nat_2R_GFPRB               0.00       -0.34         0.49         0.61
## PP.Nat_3R_GFPRB              -0.12       -0.41         0.50         0.63
## PP.Nat_1_CBB                  0.14        0.28        -0.61        -0.74
## PP.Nat_4R_CBB                -0.49       -0.17         0.10         0.07
## PP.Nat_2R_CBB                -0.56       -0.42        -0.15        -0.10
## PP.Nat_3R_CBB                -0.54       -0.50        -0.16        -0.09
## PP.Nat_1_PBPB                 0.09        0.84         0.08        -0.18
## PP.Nat_4R_PBPB               -0.45        0.39         0.79         0.63
## PP.Nat_2R_PBPB               -0.62        0.20         0.69         0.63
## PP.Nat_3R_PBPB               -0.80       -0.26         0.40         0.43
## PP.Nat_1_PBFB                 0.06        0.72        -0.14        -0.33
## PP.Nat_4R_PBFB                0.62       -0.49        -0.56        -0.40
## PP.Nat_2R_PBFB                0.84       -0.05        -0.54        -0.52
## PP.Nat_3R_PBFB                1.00        0.13        -0.36        -0.40
## PP.Nat_1_VB                   0.13        1.00         0.38         0.16
## PP.Nat_4R_VB                 -0.36        0.38         1.00         0.91
## PP.Nat_2R_VB                 -0.40        0.16         0.91         1.00
## PP.Nat_3R_VB                 -0.54       -0.08         0.73         0.85
##                     PP.Nat_3R_VB
## PP.Risk_Score_GFFB         -0.39
## PP.Risk_Score_GFPRB        -0.50
## PP.Risk_Score_CBB          -0.16
## PP.Risk_Score_PBFB         -0.27
## PP.Risk_Score_PBPB         -0.41
## PP.Risk_Score_VB           -0.67
## PP.Ben_Score_GFFB          -0.71
## PP.Ben_Score_GFPRB         -0.37
## PP.Ben_Score_CBB           -0.74
## PP.Ben_Score_PBFB          -0.42
## PP.Ben_Score_PBPB          -0.30
## PP.Ben_Score_VB            -0.13
## PP.BehavInt1_GFFB          -0.61
## PP.BehavInt2_GFFB          -0.55
## PP.BehavInt3_GFFB          -0.63
## PP.BehavInt4_GFFB          -0.59
## PP.BehavInt1_GFPRB         -0.22
## PP.BehavInt2_GFPRB         -0.26
## PP.BehavInt3_GFPRB         -0.29
## PP.BehavInt4_GFPRB         -0.26
## PP.BehavInt1_CBB           -0.70
## PP.BehavInt2_CBB           -0.73
## PP.BehavInt3_CBB           -0.72
## PP.BehavInt4_CBB           -0.72
## PP.BehavInt1_PBPB          -0.22
## PP.BehavInt2_PBPB          -0.26
## PP.BehavInt3_PBPB          -0.29
## PP.BehavInt4_PBPB          -0.26
## PP.BehavInt1_PBFB          -0.37
## PP.BehavInt2_PBFB          -0.42
## PP.BehavInt3_PBFB          -0.40
## PP.BehavInt4_PBFB          -0.40
## PP.BehavInt1_VB            -0.13
## PP.BehavInt2_VB            -0.15
## PP.BehavInt3_VB            -0.10
## PP.BehavInt4_VB            -0.13
## PP.Nat_1_GFFB              -0.64
## PP.Nat_4R_GFFB              0.41
## PP.Nat_2R_GFFB              0.40
## PP.Nat_3R_GFFB              0.65
## PP.Nat_1_GFPRB              0.02
## PP.Nat_4R_GFPRB             0.59
## PP.Nat_2R_GFPRB             0.54
## PP.Nat_3R_GFPRB             0.63
## PP.Nat_1_CBB               -0.74
## PP.Nat_4R_CBB               0.01
## PP.Nat_2R_CBB              -0.06
## PP.Nat_3R_CBB              -0.01
## PP.Nat_1_PBPB              -0.39
## PP.Nat_4R_PBPB              0.47
## PP.Nat_2R_PBPB              0.51
## PP.Nat_3R_PBPB              0.62
## PP.Nat_1_PBFB              -0.49
## PP.Nat_4R_PBFB             -0.27
## PP.Nat_2R_PBFB             -0.49
## PP.Nat_3R_PBFB             -0.54
## PP.Nat_1_VB                -0.08
## PP.Nat_4R_VB                0.73
## PP.Nat_2R_VB                0.85
## PP.Nat_3R_VB                1.00
## 
## n= 60 
## 
## 
## P
##                     PP.Risk_Score_GFFB PP.Risk_Score_GFPRB PP.Risk_Score_CBB
## PP.Risk_Score_GFFB                     0.0000              0.0850           
## PP.Risk_Score_GFPRB 0.0000                                 0.0182           
## PP.Risk_Score_CBB   0.0850             0.0182                               
## PP.Risk_Score_PBFB  0.9821             0.5112              0.0000           
## PP.Risk_Score_PBPB  0.2574             0.0351              0.0001           
## PP.Risk_Score_VB    0.0000             0.0000              0.0020           
## PP.Ben_Score_GFFB   0.7029             0.0810              0.0056           
## PP.Ben_Score_GFPRB  0.0669             0.1499              0.0138           
## PP.Ben_Score_CBB    0.0000             0.0000              0.6545           
## PP.Ben_Score_PBFB   0.0000             0.0000              0.5142           
## PP.Ben_Score_PBPB   0.0000             0.0000              0.4770           
## PP.Ben_Score_VB     0.0003             0.0021              0.3022           
## PP.BehavInt1_GFFB   0.2286             0.9218              0.0035           
## PP.BehavInt2_GFFB   0.0769             0.5498              0.0059           
## PP.BehavInt3_GFFB   0.3799             0.6576              0.0026           
## PP.BehavInt4_GFFB   0.1559             0.9468              0.0038           
## PP.BehavInt1_GFPRB  0.0000             0.0000              0.2457           
## PP.BehavInt2_GFPRB  0.0000             0.0000              0.3409           
## PP.BehavInt3_GFPRB  0.0000             0.0000              0.3261           
## PP.BehavInt4_GFPRB  0.0000             0.0000              0.4484           
## PP.BehavInt1_CBB    0.0000             0.0000              0.2472           
## PP.BehavInt2_CBB    0.0000             0.0000              0.3981           
## PP.BehavInt3_CBB    0.0000             0.0000              0.3185           
## PP.BehavInt4_CBB    0.0000             0.0000              0.2825           
## PP.BehavInt1_PBPB   0.0000             0.0000              0.2457           
## PP.BehavInt2_PBPB   0.0000             0.0000              0.3409           
## PP.BehavInt3_PBPB   0.0000             0.0000              0.3261           
## PP.BehavInt4_PBPB   0.0000             0.0000              0.4484           
## PP.BehavInt1_PBFB   0.0000             0.0000              0.6023           
## PP.BehavInt2_PBFB   0.0000             0.0000              0.6184           
## PP.BehavInt3_PBFB   0.0000             0.0000              0.6188           
## PP.BehavInt4_PBFB   0.0000             0.0000              0.5135           
## PP.BehavInt1_VB     0.0000             0.0004              0.7257           
## PP.BehavInt2_VB     0.0000             0.0000              0.5083           
## PP.BehavInt3_VB     0.0000             0.0011              0.7201           
## PP.BehavInt4_VB     0.0000             0.0003              0.6442           
## PP.Nat_1_GFFB       0.2088             0.8478              0.0353           
## PP.Nat_4R_GFFB      0.0000             0.0000              0.1352           
## PP.Nat_2R_GFFB      0.0000             0.0000              0.3218           
## PP.Nat_3R_GFFB      0.0000             0.0000              0.0484           
## PP.Nat_1_GFPRB      0.0000             0.0000              0.8521           
## PP.Nat_4R_GFPRB     0.0000             0.0000              0.0057           
## PP.Nat_2R_GFPRB     0.0000             0.0000              0.0108           
## PP.Nat_3R_GFPRB     0.0000             0.0000              0.1453           
## PP.Nat_1_CBB        0.0000             0.0000              0.9157           
## PP.Nat_4R_CBB       0.8636             0.6037              0.0000           
## PP.Nat_2R_CBB       0.4251             0.8339              0.0000           
## PP.Nat_3R_CBB       0.2271             0.5230              0.0004           
## PP.Nat_1_PBPB       0.0000             0.0000              0.6335           
## PP.Nat_4R_PBPB      0.6265             0.3733              0.0000           
## PP.Nat_2R_PBPB      0.8776             0.4392              0.0000           
## PP.Nat_3R_PBPB      0.1019             0.2990              0.1800           
## PP.Nat_1_PBFB       0.0000             0.0000              0.4682           
## PP.Nat_4R_PBFB      0.1378             0.2253              0.0000           
## PP.Nat_2R_PBFB      0.5756             0.4337              0.0000           
## PP.Nat_3R_PBFB      0.5479             0.6713              0.0017           
## PP.Nat_1_VB         0.0002             0.0013              0.5774           
## PP.Nat_4R_VB        0.0125             0.0005              0.0137           
## PP.Nat_2R_VB        0.0016             0.0000              0.0219           
## PP.Nat_3R_VB        0.0022             0.0000              0.2097           
##                     PP.Risk_Score_PBFB PP.Risk_Score_PBPB PP.Risk_Score_VB
## PP.Risk_Score_GFFB  0.9821             0.2574             0.0000          
## PP.Risk_Score_GFPRB 0.5112             0.0351             0.0000          
## PP.Risk_Score_CBB   0.0000             0.0001             0.0020          
## PP.Risk_Score_PBFB                     0.0000             0.0000          
## PP.Risk_Score_PBPB  0.0000                                0.0000          
## PP.Risk_Score_VB    0.0000             0.0000                             
## PP.Ben_Score_GFFB   0.0010             0.0000             0.0000          
## PP.Ben_Score_GFPRB  0.0046             0.0146             0.0557          
## PP.Ben_Score_CBB    0.8295             0.0913             0.0000          
## PP.Ben_Score_PBFB   0.0000             0.0161             0.2005          
## PP.Ben_Score_PBPB   0.0000             0.0001             0.7114          
## PP.Ben_Score_VB     0.0000             0.0000             0.0999          
## PP.BehavInt1_GFFB   0.0001             0.0000             0.0000          
## PP.BehavInt2_GFFB   0.0011             0.0003             0.0007          
## PP.BehavInt3_GFFB   0.0001             0.0000             0.0000          
## PP.BehavInt4_GFFB   0.0001             0.0000             0.0000          
## PP.BehavInt1_GFPRB  0.0000             0.0000             0.4229          
## PP.BehavInt2_GFPRB  0.0000             0.0002             0.8407          
## PP.BehavInt3_GFPRB  0.0000             0.0000             0.7309          
## PP.BehavInt4_GFPRB  0.0000             0.0000             0.6202          
## PP.BehavInt1_CBB    0.3667             0.3304             0.0000          
## PP.BehavInt2_CBB    0.6533             0.1449             0.0000          
## PP.BehavInt3_CBB    0.4927             0.2182             0.0000          
## PP.BehavInt4_CBB    0.4877             0.2278             0.0000          
## PP.BehavInt1_PBPB   0.0000             0.0000             0.4229          
## PP.BehavInt2_PBPB   0.0000             0.0002             0.8407          
## PP.BehavInt3_PBPB   0.0000             0.0000             0.7309          
## PP.BehavInt4_PBPB   0.0000             0.0000             0.6202          
## PP.BehavInt1_PBFB   0.0000             0.0227             0.1635          
## PP.BehavInt2_PBFB   0.0003             0.0593             0.0744          
## PP.BehavInt3_PBFB   0.0001             0.0244             0.1804          
## PP.BehavInt4_PBFB   0.0000             0.0200             0.1759          
## PP.BehavInt1_VB     0.0000             0.0000             0.1356          
## PP.BehavInt2_VB     0.0000             0.0000             0.4135          
## PP.BehavInt3_VB     0.0000             0.0000             0.0771          
## PP.BehavInt4_VB     0.0000             0.0000             0.1527          
## PP.Nat_1_GFFB       0.0003             0.0000             0.0000          
## PP.Nat_4R_GFFB      0.8430             0.2627             0.0000          
## PP.Nat_2R_GFFB      0.2865             0.9675             0.0020          
## PP.Nat_3R_GFFB      0.3020             0.0127             0.0000          
## PP.Nat_1_GFPRB      0.3628             0.0403             0.0052          
## PP.Nat_4R_GFPRB     0.0131             0.0000             0.0000          
## PP.Nat_2R_GFPRB     0.1221             0.0019             0.0000          
## PP.Nat_3R_GFPRB     0.4855             0.0225             0.0000          
## PP.Nat_1_CBB        0.2620             0.0025             0.0000          
## PP.Nat_4R_CBB       0.0053             0.1092             0.5515          
## PP.Nat_2R_CBB       0.9177             0.2782             0.1624          
## PP.Nat_3R_CBB       0.3603             0.0706             0.1652          
## PP.Nat_1_PBPB       0.0001             0.0107             0.3741          
## PP.Nat_4R_PBPB      0.0000             0.0000             0.0000          
## PP.Nat_2R_PBPB      0.0000             0.0000             0.0000          
## PP.Nat_3R_PBPB      0.7587             0.6297             0.0845          
## PP.Nat_1_PBFB       0.0025             0.2233             0.0113          
## PP.Nat_4R_PBFB      0.0000             0.0000             0.0049          
## PP.Nat_2R_PBFB      0.0000             0.0011             0.0021          
## PP.Nat_3R_PBFB      0.1244             0.3723             0.1618          
## PP.Nat_1_VB         0.0000             0.0000             0.1547          
## PP.Nat_4R_VB        0.0000             0.0000             0.0000          
## PP.Nat_2R_VB        0.0000             0.0000             0.0000          
## PP.Nat_3R_VB        0.0347             0.0011             0.0000          
##                     PP.Ben_Score_GFFB PP.Ben_Score_GFPRB PP.Ben_Score_CBB
## PP.Risk_Score_GFFB  0.7029            0.0669             0.0000          
## PP.Risk_Score_GFPRB 0.0810            0.1499             0.0000          
## PP.Risk_Score_CBB   0.0056            0.0138             0.6545          
## PP.Risk_Score_PBFB  0.0010            0.0046             0.8295          
## PP.Risk_Score_PBPB  0.0000            0.0146             0.0913          
## PP.Risk_Score_VB    0.0000            0.0557             0.0000          
## PP.Ben_Score_GFFB                     0.0000             0.0000          
## PP.Ben_Score_GFPRB  0.0000                               0.1485          
## PP.Ben_Score_CBB    0.0000            0.1485                             
## PP.Ben_Score_PBFB   0.0596            0.7790             0.0000          
## PP.Ben_Score_PBPB   0.5108            0.6169             0.0000          
## PP.Ben_Score_VB     0.6509            0.5244             0.0045          
## PP.BehavInt1_GFFB   0.0000            0.0000             0.0009          
## PP.BehavInt2_GFFB   0.0000            0.0000             0.0057          
## PP.BehavInt3_GFFB   0.0000            0.0000             0.0003          
## PP.BehavInt4_GFFB   0.0000            0.0000             0.0020          
## PP.BehavInt1_GFPRB  0.9020            0.3180             0.0000          
## PP.BehavInt2_GFPRB  0.7788            0.2634             0.0000          
## PP.BehavInt3_GFPRB  0.6865            0.3986             0.0000          
## PP.BehavInt4_GFPRB  0.6972            0.4528             0.0000          
## PP.BehavInt1_CBB    0.0000            0.3743             0.0000          
## PP.BehavInt2_CBB    0.0000            0.2289             0.0000          
## PP.BehavInt3_CBB    0.0000            0.3160             0.0000          
## PP.BehavInt4_CBB    0.0000            0.2794             0.0000          
## PP.BehavInt1_PBPB   0.9020            0.3180             0.0000          
## PP.BehavInt2_PBPB   0.7788            0.2634             0.0000          
## PP.BehavInt3_PBPB   0.6865            0.3986             0.0000          
## PP.BehavInt4_PBPB   0.6972            0.4528             0.0000          
## PP.BehavInt1_PBFB   0.1836            0.3730             0.0000          
## PP.BehavInt2_PBFB   0.0733            0.4840             0.0000          
## PP.BehavInt3_PBFB   0.0828            0.6822             0.0000          
## PP.BehavInt4_PBFB   0.0810            0.6609             0.0000          
## PP.BehavInt1_VB     0.9987            0.9208             0.0013          
## PP.BehavInt2_VB     0.9566            0.6204             0.0006          
## PP.BehavInt3_VB     0.9799            0.9790             0.0017          
## PP.BehavInt4_VB     0.9818            0.9238             0.0011          
## PP.Nat_1_GFFB       0.0000            0.0000             0.0011          
## PP.Nat_4R_GFFB      0.1226            0.6213             0.0000          
## PP.Nat_2R_GFFB      0.2595            0.7109             0.0000          
## PP.Nat_3R_GFFB      0.0000            0.0675             0.0000          
## PP.Nat_1_GFPRB      0.0812            0.0000             0.1332          
## PP.Nat_4R_GFPRB     0.0011            0.9838             0.0000          
## PP.Nat_2R_GFPRB     0.0037            0.9652             0.0000          
## PP.Nat_3R_GFPRB     0.0002            0.5055             0.0000          
## PP.Nat_1_CBB        0.0000            0.1103             0.0000          
## PP.Nat_4R_CBB       0.0170            0.0010             0.2598          
## PP.Nat_2R_CBB       0.3101            0.0073             0.4670          
## PP.Nat_3R_CBB       0.2343            0.0172             0.6493          
## PP.Nat_1_PBPB       0.1599            0.6674             0.0000          
## PP.Nat_4R_PBPB      0.0000            0.0005             0.0818          
## PP.Nat_2R_PBPB      0.0000            0.0000             0.0301          
## PP.Nat_3R_PBPB      0.0000            0.0003             0.0000          
## PP.Nat_1_PBFB       0.0139            0.7514             0.0000          
## PP.Nat_4R_PBFB      0.0012            0.0000             0.2333          
## PP.Nat_2R_PBFB      0.0000            0.0000             0.2638          
## PP.Nat_3R_PBFB      0.0001            0.0000             0.1156          
## PP.Nat_1_VB         0.7350            0.8506             0.0024          
## PP.Nat_4R_VB        0.0000            0.0067             0.0000          
## PP.Nat_2R_VB        0.0000            0.0021             0.0000          
## PP.Nat_3R_VB        0.0000            0.0032             0.0000          
##                     PP.Ben_Score_PBFB PP.Ben_Score_PBPB PP.Ben_Score_VB
## PP.Risk_Score_GFFB  0.0000            0.0000            0.0003         
## PP.Risk_Score_GFPRB 0.0000            0.0000            0.0021         
## PP.Risk_Score_CBB   0.5142            0.4770            0.3022         
## PP.Risk_Score_PBFB  0.0000            0.0000            0.0000         
## PP.Risk_Score_PBPB  0.0161            0.0001            0.0000         
## PP.Risk_Score_VB    0.2005            0.7114            0.0999         
## PP.Ben_Score_GFFB   0.0596            0.5108            0.6509         
## PP.Ben_Score_GFPRB  0.7790            0.6169            0.5244         
## PP.Ben_Score_CBB    0.0000            0.0000            0.0045         
## PP.Ben_Score_PBFB                     0.0000            0.0000         
## PP.Ben_Score_PBPB   0.0000                              0.0000         
## PP.Ben_Score_VB     0.0000            0.0000                           
## PP.BehavInt1_GFFB   0.7878            0.4463            0.5565         
## PP.BehavInt2_GFFB   0.9941            0.3899            0.6206         
## PP.BehavInt3_GFFB   0.6174            0.6117            0.6441         
## PP.BehavInt4_GFFB   0.9165            0.3658            0.4877         
## PP.BehavInt1_GFPRB  0.0000            0.0000            0.0000         
## PP.BehavInt2_GFPRB  0.0000            0.0000            0.0000         
## PP.BehavInt3_GFPRB  0.0000            0.0000            0.0000         
## PP.BehavInt4_GFPRB  0.0000            0.0000            0.0000         
## PP.BehavInt1_CBB    0.0000            0.0000            0.0024         
## PP.BehavInt2_CBB    0.0000            0.0000            0.0074         
## PP.BehavInt3_CBB    0.0000            0.0000            0.0041         
## PP.BehavInt4_CBB    0.0000            0.0000            0.0038         
## PP.BehavInt1_PBPB   0.0000            0.0000            0.0000         
## PP.BehavInt2_PBPB   0.0000            0.0000            0.0000         
## PP.BehavInt3_PBPB   0.0000            0.0000            0.0000         
## PP.BehavInt4_PBPB   0.0000            0.0000            0.0000         
## PP.BehavInt1_PBFB   0.0000            0.0000            0.0000         
## PP.BehavInt2_PBFB   0.0000            0.0000            0.0000         
## PP.BehavInt3_PBFB   0.0000            0.0000            0.0000         
## PP.BehavInt4_PBFB   0.0000            0.0000            0.0000         
## PP.BehavInt1_VB     0.0000            0.0000            0.0000         
## PP.BehavInt2_VB     0.0000            0.0000            0.0000         
## PP.BehavInt3_VB     0.0000            0.0000            0.0000         
## PP.BehavInt4_VB     0.0000            0.0000            0.0000         
## PP.Nat_1_GFFB       0.8793            0.3782            0.3730         
## PP.Nat_4R_GFFB      0.0000            0.0000            0.0000         
## PP.Nat_2R_GFFB      0.0000            0.0000            0.0000         
## PP.Nat_3R_GFFB      0.0000            0.0000            0.0024         
## PP.Nat_1_GFPRB      0.2850            0.6691            0.3935         
## PP.Nat_4R_GFPRB     0.0000            0.0039            0.1014         
## PP.Nat_2R_GFPRB     0.0000            0.0005            0.0163         
## PP.Nat_3R_GFPRB     0.0000            0.0000            0.0046         
## PP.Nat_1_CBB        0.0000            0.0000            0.0909         
## PP.Nat_4R_CBB       0.5185            0.8768            0.0358         
## PP.Nat_2R_CBB       0.3302            0.0368            0.0000         
## PP.Nat_3R_CBB       0.0403            0.0017            0.0000         
## PP.Nat_1_PBPB       0.0000            0.0000            0.0000         
## PP.Nat_4R_PBPB      0.1504            0.0070            0.0087         
## PP.Nat_2R_PBPB      0.5027            0.1216            0.3696         
## PP.Nat_3R_PBPB      0.0023            0.0044            0.0054         
## PP.Nat_1_PBFB       0.0000            0.0000            0.0000         
## PP.Nat_4R_PBFB      0.0001            0.0000            0.0017         
## PP.Nat_2R_PBFB      0.6257            0.6953            0.6752         
## PP.Nat_3R_PBFB      0.2406            0.1721            0.0429         
## PP.Nat_1_VB         0.0000            0.0000            0.0000         
## PP.Nat_4R_VB        0.8458            0.1904            0.0103         
## PP.Nat_2R_VB        0.0745            0.6529            0.4038         
## PP.Nat_3R_VB        0.0008            0.0191            0.3392         
##                     PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Risk_Score_GFFB  0.2286            0.0769            0.3799           
## PP.Risk_Score_GFPRB 0.9218            0.5498            0.6576           
## PP.Risk_Score_CBB   0.0035            0.0059            0.0026           
## PP.Risk_Score_PBFB  0.0001            0.0011            0.0001           
## PP.Risk_Score_PBPB  0.0000            0.0003            0.0000           
## PP.Risk_Score_VB    0.0000            0.0007            0.0000           
## PP.Ben_Score_GFFB   0.0000            0.0000            0.0000           
## PP.Ben_Score_GFPRB  0.0000            0.0000            0.0000           
## PP.Ben_Score_CBB    0.0009            0.0057            0.0003           
## PP.Ben_Score_PBFB   0.7878            0.9941            0.6174           
## PP.Ben_Score_PBPB   0.4463            0.3899            0.6117           
## PP.Ben_Score_VB     0.5565            0.6206            0.6441           
## PP.BehavInt1_GFFB                     0.0000            0.0000           
## PP.BehavInt2_GFFB   0.0000                              0.0000           
## PP.BehavInt3_GFFB   0.0000            0.0000                             
## PP.BehavInt4_GFFB   0.0000            0.0000            0.0000           
## PP.BehavInt1_GFPRB  0.2090            0.1871            0.3010           
## PP.BehavInt2_GFPRB  0.2228            0.1568            0.3410           
## PP.BehavInt3_GFPRB  0.3022            0.2398            0.4331           
## PP.BehavInt4_GFPRB  0.3149            0.2603            0.4390           
## PP.BehavInt1_CBB    0.0079            0.0304            0.0031           
## PP.BehavInt2_CBB    0.0017            0.0100            0.0006           
## PP.BehavInt3_CBB    0.0051            0.0215            0.0018           
## PP.BehavInt4_CBB    0.0051            0.0233            0.0019           
## PP.BehavInt1_PBPB   0.2090            0.1871            0.3010           
## PP.BehavInt2_PBPB   0.2228            0.1568            0.3410           
## PP.BehavInt3_PBPB   0.3022            0.2398            0.4331           
## PP.BehavInt4_PBPB   0.3149            0.2603            0.4390           
## PP.BehavInt1_PBFB   0.7510            0.5318            0.9436           
## PP.BehavInt2_PBFB   0.9283            0.7740            0.7280           
## PP.BehavInt3_PBFB   0.9262            0.8388            0.7525           
## PP.BehavInt4_PBFB   0.9185            0.8476            0.7381           
## PP.BehavInt1_VB     0.2341            0.2450            0.3031           
## PP.BehavInt2_VB     0.1880            0.1495            0.2718           
## PP.BehavInt3_VB     0.2598            0.2946            0.3244           
## PP.BehavInt4_VB     0.2163            0.2161            0.2845           
## PP.Nat_1_GFFB       0.0000            0.0000            0.0000           
## PP.Nat_4R_GFFB      0.8948            0.4505            0.8385           
## PP.Nat_2R_GFFB      0.6689            0.3811            0.9097           
## PP.Nat_3R_GFFB      0.0029            0.0248            0.0010           
## PP.Nat_1_GFPRB      0.0042            0.0003            0.0101           
## PP.Nat_4R_GFPRB     0.0953            0.4118            0.0471           
## PP.Nat_2R_GFPRB     0.2157            0.6737            0.1164           
## PP.Nat_3R_GFPRB     0.0416            0.1654            0.0195           
## PP.Nat_1_CBB        0.0002            0.0035            0.0000           
## PP.Nat_4R_CBB       0.0066            0.0034            0.0069           
## PP.Nat_2R_CBB       0.2326            0.1122            0.2550           
## PP.Nat_3R_CBB       0.2136            0.0809            0.2281           
## PP.Nat_1_PBPB       0.8175            0.5478            0.9598           
## PP.Nat_4R_PBPB      0.0000            0.0000            0.0000           
## PP.Nat_2R_PBPB      0.0000            0.0000            0.0000           
## PP.Nat_3R_PBPB      0.0000            0.0000            0.0000           
## PP.Nat_1_PBFB       0.4976            0.8139            0.3449           
## PP.Nat_4R_PBFB      0.0000            0.0000            0.0000           
## PP.Nat_2R_PBFB      0.0000            0.0000            0.0000           
## PP.Nat_3R_PBFB      0.0000            0.0000            0.0000           
## PP.Nat_1_VB         0.4431            0.4383            0.5397           
## PP.Nat_4R_VB        0.0000            0.0000            0.0000           
## PP.Nat_2R_VB        0.0000            0.0000            0.0000           
## PP.Nat_3R_VB        0.0000            0.0000            0.0000           
##                     PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Risk_Score_GFFB  0.1559            0.0000             0.0000            
## PP.Risk_Score_GFPRB 0.9468            0.0000             0.0000            
## PP.Risk_Score_CBB   0.0038            0.2457             0.3409            
## PP.Risk_Score_PBFB  0.0001            0.0000             0.0000            
## PP.Risk_Score_PBPB  0.0000            0.0000             0.0002            
## PP.Risk_Score_VB    0.0000            0.4229             0.8407            
## PP.Ben_Score_GFFB   0.0000            0.9020             0.7788            
## PP.Ben_Score_GFPRB  0.0000            0.3180             0.2634            
## PP.Ben_Score_CBB    0.0020            0.0000             0.0000            
## PP.Ben_Score_PBFB   0.9165            0.0000             0.0000            
## PP.Ben_Score_PBPB   0.3658            0.0000             0.0000            
## PP.Ben_Score_VB     0.4877            0.0000             0.0000            
## PP.BehavInt1_GFFB   0.0000            0.2090             0.2228            
## PP.BehavInt2_GFFB   0.0000            0.1871             0.1568            
## PP.BehavInt3_GFFB   0.0000            0.3010             0.3410            
## PP.BehavInt4_GFFB                     0.1617             0.1642            
## PP.BehavInt1_GFPRB  0.1617                               0.0000            
## PP.BehavInt2_GFPRB  0.1642            0.0000                               
## PP.BehavInt3_GFPRB  0.2370            0.0000             0.0000            
## PP.BehavInt4_GFPRB  0.2391            0.0000             0.0000            
## PP.BehavInt1_CBB    0.0154            0.0000             0.0000            
## PP.BehavInt2_CBB    0.0036            0.0000             0.0000            
## PP.BehavInt3_CBB    0.0098            0.0000             0.0000            
## PP.BehavInt4_CBB    0.0097            0.0000             0.0000            
## PP.BehavInt1_PBPB   0.1617            0.0000             0.0000            
## PP.BehavInt2_PBPB   0.1642            0.0000             0.0000            
## PP.BehavInt3_PBPB   0.2370            0.0000             0.0000            
## PP.BehavInt4_PBPB   0.2391            0.0000             0.0000            
## PP.BehavInt1_PBFB   0.6208            0.0000             0.0000            
## PP.BehavInt2_PBFB   0.9204            0.0000             0.0000            
## PP.BehavInt3_PBFB   0.9174            0.0000             0.0000            
## PP.BehavInt4_PBFB   0.9253            0.0000             0.0000            
## PP.BehavInt1_VB     0.1829            0.0000             0.0000            
## PP.BehavInt2_VB     0.1472            0.0000             0.0000            
## PP.BehavInt3_VB     0.2063            0.0000             0.0000            
## PP.BehavInt4_VB     0.1664            0.0000             0.0000            
## PP.Nat_1_GFFB       0.0000            0.2043             0.2038            
## PP.Nat_4R_GFFB      0.7437            0.0000             0.0000            
## PP.Nat_2R_GFFB      0.5602            0.0000             0.0000            
## PP.Nat_3R_GFFB      0.0059            0.0000             0.0000            
## PP.Nat_1_GFPRB      0.0041            0.7029             0.2913            
## PP.Nat_4R_GFPRB     0.1290            0.0156             0.0016            
## PP.Nat_2R_GFPRB     0.2664            0.0029             0.0002            
## PP.Nat_3R_GFPRB     0.0820            0.0000             0.0000            
## PP.Nat_1_CBB        0.0005            0.0003             0.0000            
## PP.Nat_4R_CBB       0.0062            0.5735             0.4954            
## PP.Nat_2R_CBB       0.2592            0.0832             0.1512            
## PP.Nat_3R_CBB       0.2408            0.0041             0.0137            
## PP.Nat_1_PBPB       0.7319            0.0000             0.0000            
## PP.Nat_4R_PBPB      0.0000            0.0014             0.0036            
## PP.Nat_2R_PBPB      0.0000            0.0346             0.0536            
## PP.Nat_3R_PBPB      0.0001            0.0164             0.0257            
## PP.Nat_1_PBFB       0.6127            0.0000             0.0000            
## PP.Nat_4R_PBFB      0.0000            0.0000             0.0000            
## PP.Nat_2R_PBFB      0.0000            0.2879             0.3486            
## PP.Nat_3R_PBFB      0.0000            0.4519             0.5515            
## PP.Nat_1_VB         0.3530            0.0000             0.0000            
## PP.Nat_4R_VB        0.0000            0.0725             0.1831            
## PP.Nat_2R_VB        0.0000            0.9355             0.7131            
## PP.Nat_3R_VB        0.0000            0.0951             0.0421            
##                     PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Risk_Score_GFFB  0.0000             0.0000             0.0000          
## PP.Risk_Score_GFPRB 0.0000             0.0000             0.0000          
## PP.Risk_Score_CBB   0.3261             0.4484             0.2472          
## PP.Risk_Score_PBFB  0.0000             0.0000             0.3667          
## PP.Risk_Score_PBPB  0.0000             0.0000             0.3304          
## PP.Risk_Score_VB    0.7309             0.6202             0.0000          
## PP.Ben_Score_GFFB   0.6865             0.6972             0.0000          
## PP.Ben_Score_GFPRB  0.3986             0.4528             0.3743          
## PP.Ben_Score_CBB    0.0000             0.0000             0.0000          
## PP.Ben_Score_PBFB   0.0000             0.0000             0.0000          
## PP.Ben_Score_PBPB   0.0000             0.0000             0.0000          
## PP.Ben_Score_VB     0.0000             0.0000             0.0024          
## PP.BehavInt1_GFFB   0.3022             0.3149             0.0079          
## PP.BehavInt2_GFFB   0.2398             0.2603             0.0304          
## PP.BehavInt3_GFFB   0.4331             0.4390             0.0031          
## PP.BehavInt4_GFFB   0.2370             0.2391             0.0154          
## PP.BehavInt1_GFPRB  0.0000             0.0000             0.0000          
## PP.BehavInt2_GFPRB  0.0000             0.0000             0.0000          
## PP.BehavInt3_GFPRB                     0.0000             0.0000          
## PP.BehavInt4_GFPRB  0.0000                                0.0000          
## PP.BehavInt1_CBB    0.0000             0.0000                             
## PP.BehavInt2_CBB    0.0000             0.0000             0.0000          
## PP.BehavInt3_CBB    0.0000             0.0000             0.0000          
## PP.BehavInt4_CBB    0.0000             0.0000             0.0000          
## PP.BehavInt1_PBPB   0.0000             0.0000             0.0000          
## PP.BehavInt2_PBPB   0.0000             0.0000             0.0000          
## PP.BehavInt3_PBPB   0.0000             0.0000             0.0000          
## PP.BehavInt4_PBPB   0.0000             0.0000             0.0000          
## PP.BehavInt1_PBFB   0.0000             0.0000             0.0000          
## PP.BehavInt2_PBFB   0.0000             0.0000             0.0000          
## PP.BehavInt3_PBFB   0.0000             0.0000             0.0000          
## PP.BehavInt4_PBFB   0.0000             0.0000             0.0000          
## PP.BehavInt1_VB     0.0000             0.0000             0.0003          
## PP.BehavInt2_VB     0.0000             0.0000             0.0002          
## PP.BehavInt3_VB     0.0000             0.0000             0.0006          
## PP.BehavInt4_VB     0.0000             0.0000             0.0004          
## PP.Nat_1_GFFB       0.2665             0.2605             0.0079          
## PP.Nat_4R_GFFB      0.0000             0.0000             0.0000          
## PP.Nat_2R_GFFB      0.0000             0.0000             0.0000          
## PP.Nat_3R_GFFB      0.0000             0.0000             0.0000          
## PP.Nat_1_GFPRB      0.5228             0.6308             0.1183          
## PP.Nat_4R_GFPRB     0.0035             0.0063             0.0000          
## PP.Nat_2R_GFPRB     0.0005             0.0010             0.0000          
## PP.Nat_3R_GFPRB     0.0000             0.0000             0.0000          
## PP.Nat_1_CBB        0.0000             0.0001             0.0000          
## PP.Nat_4R_CBB       0.5976             0.8537             0.0770          
## PP.Nat_2R_CBB       0.0938             0.0372             0.3182          
## PP.Nat_3R_CBB       0.0070             0.0020             0.7783          
## PP.Nat_1_PBPB       0.0000             0.0000             0.0000          
## PP.Nat_4R_PBPB      0.0044             0.0054             0.2491          
## PP.Nat_2R_PBPB      0.0636             0.0870             0.1132          
## PP.Nat_3R_PBPB      0.0095             0.0078             0.0001          
## PP.Nat_1_PBFB       0.0000             0.0000             0.0000          
## PP.Nat_4R_PBFB      0.0000             0.0000             0.0604          
## PP.Nat_2R_PBFB      0.4354             0.5432             0.5720          
## PP.Nat_3R_PBFB      0.3199             0.2242             0.2249          
## PP.Nat_1_VB         0.0000             0.0000             0.0009          
## PP.Nat_4R_VB        0.1789             0.1348             0.0002          
## PP.Nat_2R_VB        0.6584             0.7905             0.0000          
## PP.Nat_3R_VB        0.0224             0.0419             0.0000          
##                     PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Risk_Score_GFFB  0.0000           0.0000           0.0000          
## PP.Risk_Score_GFPRB 0.0000           0.0000           0.0000          
## PP.Risk_Score_CBB   0.3981           0.3185           0.2825          
## PP.Risk_Score_PBFB  0.6533           0.4927           0.4877          
## PP.Risk_Score_PBPB  0.1449           0.2182           0.2278          
## PP.Risk_Score_VB    0.0000           0.0000           0.0000          
## PP.Ben_Score_GFFB   0.0000           0.0000           0.0000          
## PP.Ben_Score_GFPRB  0.2289           0.3160           0.2794          
## PP.Ben_Score_CBB    0.0000           0.0000           0.0000          
## PP.Ben_Score_PBFB   0.0000           0.0000           0.0000          
## PP.Ben_Score_PBPB   0.0000           0.0000           0.0000          
## PP.Ben_Score_VB     0.0074           0.0041           0.0038          
## PP.BehavInt1_GFFB   0.0017           0.0051           0.0051          
## PP.BehavInt2_GFFB   0.0100           0.0215           0.0233          
## PP.BehavInt3_GFFB   0.0006           0.0018           0.0019          
## PP.BehavInt4_GFFB   0.0036           0.0098           0.0097          
## PP.BehavInt1_GFPRB  0.0000           0.0000           0.0000          
## PP.BehavInt2_GFPRB  0.0000           0.0000           0.0000          
## PP.BehavInt3_GFPRB  0.0000           0.0000           0.0000          
## PP.BehavInt4_GFPRB  0.0000           0.0000           0.0000          
## PP.BehavInt1_CBB    0.0000           0.0000           0.0000          
## PP.BehavInt2_CBB                     0.0000           0.0000          
## PP.BehavInt3_CBB    0.0000                            0.0000          
## PP.BehavInt4_CBB    0.0000           0.0000                           
## PP.BehavInt1_PBPB   0.0000           0.0000           0.0000          
## PP.BehavInt2_PBPB   0.0000           0.0000           0.0000          
## PP.BehavInt3_PBPB   0.0000           0.0000           0.0000          
## PP.BehavInt4_PBPB   0.0000           0.0000           0.0000          
## PP.BehavInt1_PBFB   0.0000           0.0000           0.0000          
## PP.BehavInt2_PBFB   0.0000           0.0000           0.0000          
## PP.BehavInt3_PBFB   0.0000           0.0000           0.0000          
## PP.BehavInt4_PBFB   0.0000           0.0000           0.0000          
## PP.BehavInt1_VB     0.0013           0.0007           0.0006          
## PP.BehavInt2_VB     0.0005           0.0004           0.0004          
## PP.BehavInt3_VB     0.0026           0.0011           0.0010          
## PP.BehavInt4_VB     0.0015           0.0007           0.0006          
## PP.Nat_1_GFFB       0.0016           0.0051           0.0044          
## PP.Nat_4R_GFFB      0.0000           0.0000           0.0000          
## PP.Nat_2R_GFFB      0.0000           0.0000           0.0000          
## PP.Nat_3R_GFFB      0.0000           0.0000           0.0000          
## PP.Nat_1_GFPRB      0.1092           0.0969           0.1140          
## PP.Nat_4R_GFPRB     0.0000           0.0000           0.0000          
## PP.Nat_2R_GFPRB     0.0000           0.0000           0.0000          
## PP.Nat_3R_GFPRB     0.0000           0.0000           0.0000          
## PP.Nat_1_CBB        0.0000           0.0000           0.0000          
## PP.Nat_4R_CBB       0.0955           0.0973           0.0780          
## PP.Nat_2R_CBB       0.2337           0.2849           0.2842          
## PP.Nat_3R_CBB       0.9660           0.8506           0.8796          
## PP.Nat_1_PBPB       0.0000           0.0000           0.0000          
## PP.Nat_4R_PBPB      0.1566           0.2007           0.2233          
## PP.Nat_2R_PBPB      0.0572           0.0940           0.0972          
## PP.Nat_3R_PBPB      0.0002           0.0002           0.0002          
## PP.Nat_1_PBFB       0.0000           0.0000           0.0000          
## PP.Nat_4R_PBFB      0.1103           0.0891           0.0727          
## PP.Nat_2R_PBFB      0.4418           0.4966           0.5380          
## PP.Nat_3R_PBFB      0.2120           0.2171           0.2291          
## PP.Nat_1_VB         0.0026           0.0019           0.0022          
## PP.Nat_4R_VB        0.0000           0.0000           0.0000          
## PP.Nat_2R_VB        0.0000           0.0000           0.0000          
## PP.Nat_3R_VB        0.0000           0.0000           0.0000          
##                     PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Risk_Score_GFFB  0.0000            0.0000            0.0000           
## PP.Risk_Score_GFPRB 0.0000            0.0000            0.0000           
## PP.Risk_Score_CBB   0.2457            0.3409            0.3261           
## PP.Risk_Score_PBFB  0.0000            0.0000            0.0000           
## PP.Risk_Score_PBPB  0.0000            0.0002            0.0000           
## PP.Risk_Score_VB    0.4229            0.8407            0.7309           
## PP.Ben_Score_GFFB   0.9020            0.7788            0.6865           
## PP.Ben_Score_GFPRB  0.3180            0.2634            0.3986           
## PP.Ben_Score_CBB    0.0000            0.0000            0.0000           
## PP.Ben_Score_PBFB   0.0000            0.0000            0.0000           
## PP.Ben_Score_PBPB   0.0000            0.0000            0.0000           
## PP.Ben_Score_VB     0.0000            0.0000            0.0000           
## PP.BehavInt1_GFFB   0.2090            0.2228            0.3022           
## PP.BehavInt2_GFFB   0.1871            0.1568            0.2398           
## PP.BehavInt3_GFFB   0.3010            0.3410            0.4331           
## PP.BehavInt4_GFFB   0.1617            0.1642            0.2370           
## PP.BehavInt1_GFPRB  0.0000            0.0000            0.0000           
## PP.BehavInt2_GFPRB  0.0000            0.0000            0.0000           
## PP.BehavInt3_GFPRB  0.0000            0.0000            0.0000           
## PP.BehavInt4_GFPRB  0.0000            0.0000            0.0000           
## PP.BehavInt1_CBB    0.0000            0.0000            0.0000           
## PP.BehavInt2_CBB    0.0000            0.0000            0.0000           
## PP.BehavInt3_CBB    0.0000            0.0000            0.0000           
## PP.BehavInt4_CBB    0.0000            0.0000            0.0000           
## PP.BehavInt1_PBPB                     0.0000            0.0000           
## PP.BehavInt2_PBPB   0.0000                              0.0000           
## PP.BehavInt3_PBPB   0.0000            0.0000                             
## PP.BehavInt4_PBPB   0.0000            0.0000            0.0000           
## PP.BehavInt1_PBFB   0.0000            0.0000            0.0000           
## PP.BehavInt2_PBFB   0.0000            0.0000            0.0000           
## PP.BehavInt3_PBFB   0.0000            0.0000            0.0000           
## PP.BehavInt4_PBFB   0.0000            0.0000            0.0000           
## PP.BehavInt1_VB     0.0000            0.0000            0.0000           
## PP.BehavInt2_VB     0.0000            0.0000            0.0000           
## PP.BehavInt3_VB     0.0000            0.0000            0.0000           
## PP.BehavInt4_VB     0.0000            0.0000            0.0000           
## PP.Nat_1_GFFB       0.2043            0.2038            0.2665           
## PP.Nat_4R_GFFB      0.0000            0.0000            0.0000           
## PP.Nat_2R_GFFB      0.0000            0.0000            0.0000           
## PP.Nat_3R_GFFB      0.0000            0.0000            0.0000           
## PP.Nat_1_GFPRB      0.7029            0.2913            0.5228           
## PP.Nat_4R_GFPRB     0.0156            0.0016            0.0035           
## PP.Nat_2R_GFPRB     0.0029            0.0002            0.0005           
## PP.Nat_3R_GFPRB     0.0000            0.0000            0.0000           
## PP.Nat_1_CBB        0.0003            0.0000            0.0000           
## PP.Nat_4R_CBB       0.5735            0.4954            0.5976           
## PP.Nat_2R_CBB       0.0832            0.1512            0.0938           
## PP.Nat_3R_CBB       0.0041            0.0137            0.0070           
## PP.Nat_1_PBPB       0.0000            0.0000            0.0000           
## PP.Nat_4R_PBPB      0.0014            0.0036            0.0044           
## PP.Nat_2R_PBPB      0.0346            0.0536            0.0636           
## PP.Nat_3R_PBPB      0.0164            0.0257            0.0095           
## PP.Nat_1_PBFB       0.0000            0.0000            0.0000           
## PP.Nat_4R_PBFB      0.0000            0.0000            0.0000           
## PP.Nat_2R_PBFB      0.2879            0.3486            0.4354           
## PP.Nat_3R_PBFB      0.4519            0.5515            0.3199           
## PP.Nat_1_VB         0.0000            0.0000            0.0000           
## PP.Nat_4R_VB        0.0725            0.1831            0.1789           
## PP.Nat_2R_VB        0.9355            0.7131            0.6584           
## PP.Nat_3R_VB        0.0951            0.0421            0.0224           
##                     PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Risk_Score_GFFB  0.0000            0.0000            0.0000           
## PP.Risk_Score_GFPRB 0.0000            0.0000            0.0000           
## PP.Risk_Score_CBB   0.4484            0.6023            0.6184           
## PP.Risk_Score_PBFB  0.0000            0.0000            0.0003           
## PP.Risk_Score_PBPB  0.0000            0.0227            0.0593           
## PP.Risk_Score_VB    0.6202            0.1635            0.0744           
## PP.Ben_Score_GFFB   0.6972            0.1836            0.0733           
## PP.Ben_Score_GFPRB  0.4528            0.3730            0.4840           
## PP.Ben_Score_CBB    0.0000            0.0000            0.0000           
## PP.Ben_Score_PBFB   0.0000            0.0000            0.0000           
## PP.Ben_Score_PBPB   0.0000            0.0000            0.0000           
## PP.Ben_Score_VB     0.0000            0.0000            0.0000           
## PP.BehavInt1_GFFB   0.3149            0.7510            0.9283           
## PP.BehavInt2_GFFB   0.2603            0.5318            0.7740           
## PP.BehavInt3_GFFB   0.4390            0.9436            0.7280           
## PP.BehavInt4_GFFB   0.2391            0.6208            0.9204           
## PP.BehavInt1_GFPRB  0.0000            0.0000            0.0000           
## PP.BehavInt2_GFPRB  0.0000            0.0000            0.0000           
## PP.BehavInt3_GFPRB  0.0000            0.0000            0.0000           
## PP.BehavInt4_GFPRB  0.0000            0.0000            0.0000           
## PP.BehavInt1_CBB    0.0000            0.0000            0.0000           
## PP.BehavInt2_CBB    0.0000            0.0000            0.0000           
## PP.BehavInt3_CBB    0.0000            0.0000            0.0000           
## PP.BehavInt4_CBB    0.0000            0.0000            0.0000           
## PP.BehavInt1_PBPB   0.0000            0.0000            0.0000           
## PP.BehavInt2_PBPB   0.0000            0.0000            0.0000           
## PP.BehavInt3_PBPB   0.0000            0.0000            0.0000           
## PP.BehavInt4_PBPB                     0.0000            0.0000           
## PP.BehavInt1_PBFB   0.0000                              0.0000           
## PP.BehavInt2_PBFB   0.0000            0.0000                             
## PP.BehavInt3_PBFB   0.0000            0.0000            0.0000           
## PP.BehavInt4_PBFB   0.0000            0.0000            0.0000           
## PP.BehavInt1_VB     0.0000            0.0000            0.0000           
## PP.BehavInt2_VB     0.0000            0.0000            0.0000           
## PP.BehavInt3_VB     0.0000            0.0000            0.0000           
## PP.BehavInt4_VB     0.0000            0.0000            0.0000           
## PP.Nat_1_GFFB       0.2605            0.6248            0.9935           
## PP.Nat_4R_GFFB      0.0000            0.0000            0.0000           
## PP.Nat_2R_GFFB      0.0000            0.0000            0.0000           
## PP.Nat_3R_GFFB      0.0000            0.0000            0.0000           
## PP.Nat_1_GFPRB      0.6308            0.0820            0.0736           
## PP.Nat_4R_GFPRB     0.0063            0.0000            0.0000           
## PP.Nat_2R_GFPRB     0.0010            0.0000            0.0000           
## PP.Nat_3R_GFPRB     0.0000            0.0000            0.0000           
## PP.Nat_1_CBB        0.0001            0.0000            0.0000           
## PP.Nat_4R_CBB       0.8537            0.5238            0.3935           
## PP.Nat_2R_CBB       0.0372            0.3391            0.5701           
## PP.Nat_3R_CBB       0.0020            0.0435            0.1175           
## PP.Nat_1_PBPB       0.0000            0.0000            0.0000           
## PP.Nat_4R_PBPB      0.0054            0.1156            0.1529           
## PP.Nat_2R_PBPB      0.0870            0.3742            0.4743           
## PP.Nat_3R_PBPB      0.0078            0.0081            0.0122           
## PP.Nat_1_PBFB       0.0000            0.0000            0.0000           
## PP.Nat_4R_PBFB      0.0000            0.0000            0.0001           
## PP.Nat_2R_PBFB      0.5432            0.5157            0.5244           
## PP.Nat_3R_PBFB      0.2242            0.4289            0.4733           
## PP.Nat_1_VB         0.0000            0.0000            0.0000           
## PP.Nat_4R_VB        0.1348            0.8756            0.6219           
## PP.Nat_2R_VB        0.7905            0.1024            0.0431           
## PP.Nat_3R_VB        0.0419            0.0032            0.0008           
##                     PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Risk_Score_GFFB  0.0000            0.0000            0.0000         
## PP.Risk_Score_GFPRB 0.0000            0.0000            0.0004         
## PP.Risk_Score_CBB   0.6188            0.5135            0.7257         
## PP.Risk_Score_PBFB  0.0001            0.0000            0.0000         
## PP.Risk_Score_PBPB  0.0244            0.0200            0.0000         
## PP.Risk_Score_VB    0.1804            0.1759            0.1356         
## PP.Ben_Score_GFFB   0.0828            0.0810            0.9987         
## PP.Ben_Score_GFPRB  0.6822            0.6609            0.9208         
## PP.Ben_Score_CBB    0.0000            0.0000            0.0013         
## PP.Ben_Score_PBFB   0.0000            0.0000            0.0000         
## PP.Ben_Score_PBPB   0.0000            0.0000            0.0000         
## PP.Ben_Score_VB     0.0000            0.0000            0.0000         
## PP.BehavInt1_GFFB   0.9262            0.9185            0.2341         
## PP.BehavInt2_GFFB   0.8388            0.8476            0.2450         
## PP.BehavInt3_GFFB   0.7525            0.7381            0.3031         
## PP.BehavInt4_GFFB   0.9174            0.9253            0.1829         
## PP.BehavInt1_GFPRB  0.0000            0.0000            0.0000         
## PP.BehavInt2_GFPRB  0.0000            0.0000            0.0000         
## PP.BehavInt3_GFPRB  0.0000            0.0000            0.0000         
## PP.BehavInt4_GFPRB  0.0000            0.0000            0.0000         
## PP.BehavInt1_CBB    0.0000            0.0000            0.0003         
## PP.BehavInt2_CBB    0.0000            0.0000            0.0013         
## PP.BehavInt3_CBB    0.0000            0.0000            0.0007         
## PP.BehavInt4_CBB    0.0000            0.0000            0.0006         
## PP.BehavInt1_PBPB   0.0000            0.0000            0.0000         
## PP.BehavInt2_PBPB   0.0000            0.0000            0.0000         
## PP.BehavInt3_PBPB   0.0000            0.0000            0.0000         
## PP.BehavInt4_PBPB   0.0000            0.0000            0.0000         
## PP.BehavInt1_PBFB   0.0000            0.0000            0.0000         
## PP.BehavInt2_PBFB   0.0000            0.0000            0.0000         
## PP.BehavInt3_PBFB                     0.0000            0.0000         
## PP.BehavInt4_PBFB   0.0000                              0.0000         
## PP.BehavInt1_VB     0.0000            0.0000                           
## PP.BehavInt2_VB     0.0000            0.0000            0.0000         
## PP.BehavInt3_VB     0.0000            0.0000            0.0000         
## PP.BehavInt4_VB     0.0000            0.0000            0.0000         
## PP.Nat_1_GFFB       0.9479            0.9800            0.1772         
## PP.Nat_4R_GFFB      0.0000            0.0000            0.0000         
## PP.Nat_2R_GFFB      0.0000            0.0000            0.0000         
## PP.Nat_3R_GFFB      0.0000            0.0000            0.0009         
## PP.Nat_1_GFPRB      0.1965            0.2226            0.8204         
## PP.Nat_4R_GFPRB     0.0000            0.0000            0.0472         
## PP.Nat_2R_GFPRB     0.0000            0.0000            0.0055         
## PP.Nat_3R_GFPRB     0.0000            0.0000            0.0009         
## PP.Nat_1_CBB        0.0000            0.0000            0.0344         
## PP.Nat_4R_CBB       0.6149            0.4770            0.2576         
## PP.Nat_2R_CBB       0.2702            0.3768            0.0005         
## PP.Nat_3R_CBB       0.0332            0.0531            0.0000         
## PP.Nat_1_PBPB       0.0000            0.0000            0.0000         
## PP.Nat_4R_PBPB      0.1862            0.1454            0.0016         
## PP.Nat_2R_PBPB      0.5406            0.4251            0.1046         
## PP.Nat_3R_PBPB      0.0030            0.0040            0.0211         
## PP.Nat_1_PBFB       0.0000            0.0000            0.0000         
## PP.Nat_4R_PBFB      0.0002            0.0001            0.0000         
## PP.Nat_2R_PBFB      0.6281            0.5338            0.7690         
## PP.Nat_3R_PBFB      0.2791            0.3244            0.1786         
## PP.Nat_1_VB         0.0000            0.0000            0.0000         
## PP.Nat_4R_VB        0.8524            0.8594            0.0097         
## PP.Nat_2R_VB        0.0899            0.0928            0.4262         
## PP.Nat_3R_VB        0.0015            0.0014            0.3345         
##                     PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Risk_Score_GFFB  0.0000          0.0000          0.0000         
## PP.Risk_Score_GFPRB 0.0000          0.0011          0.0003         
## PP.Risk_Score_CBB   0.5083          0.7201          0.6442         
## PP.Risk_Score_PBFB  0.0000          0.0000          0.0000         
## PP.Risk_Score_PBPB  0.0000          0.0000          0.0000         
## PP.Risk_Score_VB    0.4135          0.0771          0.1527         
## PP.Ben_Score_GFFB   0.9566          0.9799          0.9818         
## PP.Ben_Score_GFPRB  0.6204          0.9790          0.9238         
## PP.Ben_Score_CBB    0.0006          0.0017          0.0011         
## PP.Ben_Score_PBFB   0.0000          0.0000          0.0000         
## PP.Ben_Score_PBPB   0.0000          0.0000          0.0000         
## PP.Ben_Score_VB     0.0000          0.0000          0.0000         
## PP.BehavInt1_GFFB   0.1880          0.2598          0.2163         
## PP.BehavInt2_GFFB   0.1495          0.2946          0.2161         
## PP.BehavInt3_GFFB   0.2718          0.3244          0.2845         
## PP.BehavInt4_GFFB   0.1472          0.2063          0.1664         
## PP.BehavInt1_GFPRB  0.0000          0.0000          0.0000         
## PP.BehavInt2_GFPRB  0.0000          0.0000          0.0000         
## PP.BehavInt3_GFPRB  0.0000          0.0000          0.0000         
## PP.BehavInt4_GFPRB  0.0000          0.0000          0.0000         
## PP.BehavInt1_CBB    0.0002          0.0006          0.0004         
## PP.BehavInt2_CBB    0.0005          0.0026          0.0015         
## PP.BehavInt3_CBB    0.0004          0.0011          0.0007         
## PP.BehavInt4_CBB    0.0004          0.0010          0.0006         
## PP.BehavInt1_PBPB   0.0000          0.0000          0.0000         
## PP.BehavInt2_PBPB   0.0000          0.0000          0.0000         
## PP.BehavInt3_PBPB   0.0000          0.0000          0.0000         
## PP.BehavInt4_PBPB   0.0000          0.0000          0.0000         
## PP.BehavInt1_PBFB   0.0000          0.0000          0.0000         
## PP.BehavInt2_PBFB   0.0000          0.0000          0.0000         
## PP.BehavInt3_PBFB   0.0000          0.0000          0.0000         
## PP.BehavInt4_PBFB   0.0000          0.0000          0.0000         
## PP.BehavInt1_VB     0.0000          0.0000          0.0000         
## PP.BehavInt2_VB                     0.0000          0.0000         
## PP.BehavInt3_VB     0.0000                          0.0000         
## PP.BehavInt4_VB     0.0000          0.0000                         
## PP.Nat_1_GFFB       0.1188          0.1809          0.1631         
## PP.Nat_4R_GFFB      0.0000          0.0000          0.0000         
## PP.Nat_2R_GFFB      0.0000          0.0000          0.0000         
## PP.Nat_3R_GFFB      0.0002          0.0014          0.0008         
## PP.Nat_1_GFPRB      0.5376          0.5971          0.8229         
## PP.Nat_4R_GFPRB     0.0041          0.0949          0.0375         
## PP.Nat_2R_GFPRB     0.0001          0.0118          0.0044         
## PP.Nat_3R_GFPRB     0.0000          0.0027          0.0009         
## PP.Nat_1_CBB        0.0128          0.0586          0.0388         
## PP.Nat_4R_CBB       0.3045          0.1891          0.2000         
## PP.Nat_2R_CBB       0.0029          0.0001          0.0004         
## PP.Nat_3R_CBB       0.0003          0.0000          0.0000         
## PP.Nat_1_PBPB       0.0000          0.0000          0.0000         
## PP.Nat_4R_PBPB      0.0007          0.0018          0.0020         
## PP.Nat_2R_PBPB      0.0423          0.0939          0.0866         
## PP.Nat_3R_PBPB      0.1808          0.0229          0.0273         
## PP.Nat_1_PBFB       0.0000          0.0000          0.0000         
## PP.Nat_4R_PBFB      0.0000          0.0001          0.0002         
## PP.Nat_2R_PBFB      0.5170          0.7072          0.8037         
## PP.Nat_3R_PBFB      0.4011          0.1855          0.1916         
## PP.Nat_1_VB         0.0000          0.0000          0.0000         
## PP.Nat_4R_VB        0.0242          0.0055          0.0129         
## PP.Nat_2R_VB        0.6961          0.3164          0.4848         
## PP.Nat_3R_VB        0.2688          0.4485          0.3164         
##                     PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Risk_Score_GFFB  0.2088        0.0000         0.0000         0.0000        
## PP.Risk_Score_GFPRB 0.8478        0.0000         0.0000         0.0000        
## PP.Risk_Score_CBB   0.0353        0.1352         0.3218         0.0484        
## PP.Risk_Score_PBFB  0.0003        0.8430         0.2865         0.3020        
## PP.Risk_Score_PBPB  0.0000        0.2627         0.9675         0.0127        
## PP.Risk_Score_VB    0.0000        0.0000         0.0020         0.0000        
## PP.Ben_Score_GFFB   0.0000        0.1226         0.2595         0.0000        
## PP.Ben_Score_GFPRB  0.0000        0.6213         0.7109         0.0675        
## PP.Ben_Score_CBB    0.0011        0.0000         0.0000         0.0000        
## PP.Ben_Score_PBFB   0.8793        0.0000         0.0000         0.0000        
## PP.Ben_Score_PBPB   0.3782        0.0000         0.0000         0.0000        
## PP.Ben_Score_VB     0.3730        0.0000         0.0000         0.0024        
## PP.BehavInt1_GFFB   0.0000        0.8948         0.6689         0.0029        
## PP.BehavInt2_GFFB   0.0000        0.4505         0.3811         0.0248        
## PP.BehavInt3_GFFB   0.0000        0.8385         0.9097         0.0010        
## PP.BehavInt4_GFFB   0.0000        0.7437         0.5602         0.0059        
## PP.BehavInt1_GFPRB  0.2043        0.0000         0.0000         0.0000        
## PP.BehavInt2_GFPRB  0.2038        0.0000         0.0000         0.0000        
## PP.BehavInt3_GFPRB  0.2665        0.0000         0.0000         0.0000        
## PP.BehavInt4_GFPRB  0.2605        0.0000         0.0000         0.0000        
## PP.BehavInt1_CBB    0.0079        0.0000         0.0000         0.0000        
## PP.BehavInt2_CBB    0.0016        0.0000         0.0000         0.0000        
## PP.BehavInt3_CBB    0.0051        0.0000         0.0000         0.0000        
## PP.BehavInt4_CBB    0.0044        0.0000         0.0000         0.0000        
## PP.BehavInt1_PBPB   0.2043        0.0000         0.0000         0.0000        
## PP.BehavInt2_PBPB   0.2038        0.0000         0.0000         0.0000        
## PP.BehavInt3_PBPB   0.2665        0.0000         0.0000         0.0000        
## PP.BehavInt4_PBPB   0.2605        0.0000         0.0000         0.0000        
## PP.BehavInt1_PBFB   0.6248        0.0000         0.0000         0.0000        
## PP.BehavInt2_PBFB   0.9935        0.0000         0.0000         0.0000        
## PP.BehavInt3_PBFB   0.9479        0.0000         0.0000         0.0000        
## PP.BehavInt4_PBFB   0.9800        0.0000         0.0000         0.0000        
## PP.BehavInt1_VB     0.1772        0.0000         0.0000         0.0009        
## PP.BehavInt2_VB     0.1188        0.0000         0.0000         0.0002        
## PP.BehavInt3_VB     0.1809        0.0000         0.0000         0.0014        
## PP.BehavInt4_VB     0.1631        0.0000         0.0000         0.0008        
## PP.Nat_1_GFFB                     0.7073         0.5783         0.0051        
## PP.Nat_4R_GFFB      0.7073                       0.0000         0.0000        
## PP.Nat_2R_GFFB      0.5783        0.0000                        0.0000        
## PP.Nat_3R_GFFB      0.0051        0.0000         0.0000                       
## PP.Nat_1_GFPRB      0.0003        0.0012         0.0295         0.1362        
## PP.Nat_4R_GFPRB     0.1716        0.0000         0.0000         0.0000        
## PP.Nat_2R_GFPRB     0.3107        0.0000         0.0000         0.0000        
## PP.Nat_3R_GFPRB     0.0689        0.0000         0.0000         0.0000        
## PP.Nat_1_CBB        0.0003        0.0000         0.0000         0.0000        
## PP.Nat_4R_CBB       0.0678        0.5893         0.5512         0.4635        
## PP.Nat_2R_CBB       0.5532        0.3854         0.0755         0.5070        
## PP.Nat_3R_CBB       0.4670        0.2241         0.0183         0.2859        
## PP.Nat_1_PBPB       0.7369        0.0000         0.0000         0.0000        
## PP.Nat_4R_PBPB      0.0000        0.6316         0.8374         0.0346        
## PP.Nat_2R_PBPB      0.0000        0.8182         0.8131         0.0153        
## PP.Nat_3R_PBPB      0.0000        0.1523         0.0125         0.0015        
## PP.Nat_1_PBFB       0.5796        0.0000         0.0000         0.0000        
## PP.Nat_4R_PBFB      0.0000        0.1543         0.0739         0.8364        
## PP.Nat_2R_PBFB      0.0000        0.6849         0.3625         0.0307        
## PP.Nat_3R_PBFB      0.0000        0.6284         0.1886         0.0157        
## PP.Nat_1_VB         0.2686        0.0000         0.0000         0.0022        
## PP.Nat_4R_VB        0.0000        0.0088         0.0701         0.0000        
## PP.Nat_2R_VB        0.0000        0.0008         0.0065         0.0000        
## PP.Nat_3R_VB        0.0000        0.0013         0.0016         0.0000        
##                     PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Risk_Score_GFFB  0.0000         0.0000          0.0000         
## PP.Risk_Score_GFPRB 0.0000         0.0000          0.0000         
## PP.Risk_Score_CBB   0.8521         0.0057          0.0108         
## PP.Risk_Score_PBFB  0.3628         0.0131          0.1221         
## PP.Risk_Score_PBPB  0.0403         0.0000          0.0019         
## PP.Risk_Score_VB    0.0052         0.0000          0.0000         
## PP.Ben_Score_GFFB   0.0812         0.0011          0.0037         
## PP.Ben_Score_GFPRB  0.0000         0.9838          0.9652         
## PP.Ben_Score_CBB    0.1332         0.0000          0.0000         
## PP.Ben_Score_PBFB   0.2850         0.0000          0.0000         
## PP.Ben_Score_PBPB   0.6691         0.0039          0.0005         
## PP.Ben_Score_VB     0.3935         0.1014          0.0163         
## PP.BehavInt1_GFFB   0.0042         0.0953          0.2157         
## PP.BehavInt2_GFFB   0.0003         0.4118          0.6737         
## PP.BehavInt3_GFFB   0.0101         0.0471          0.1164         
## PP.BehavInt4_GFFB   0.0041         0.1290          0.2664         
## PP.BehavInt1_GFPRB  0.7029         0.0156          0.0029         
## PP.BehavInt2_GFPRB  0.2913         0.0016          0.0002         
## PP.BehavInt3_GFPRB  0.5228         0.0035          0.0005         
## PP.BehavInt4_GFPRB  0.6308         0.0063          0.0010         
## PP.BehavInt1_CBB    0.1183         0.0000          0.0000         
## PP.BehavInt2_CBB    0.1092         0.0000          0.0000         
## PP.BehavInt3_CBB    0.0969         0.0000          0.0000         
## PP.BehavInt4_CBB    0.1140         0.0000          0.0000         
## PP.BehavInt1_PBPB   0.7029         0.0156          0.0029         
## PP.BehavInt2_PBPB   0.2913         0.0016          0.0002         
## PP.BehavInt3_PBPB   0.5228         0.0035          0.0005         
## PP.BehavInt4_PBPB   0.6308         0.0063          0.0010         
## PP.BehavInt1_PBFB   0.0820         0.0000          0.0000         
## PP.BehavInt2_PBFB   0.0736         0.0000          0.0000         
## PP.BehavInt3_PBFB   0.1965         0.0000          0.0000         
## PP.BehavInt4_PBFB   0.2226         0.0000          0.0000         
## PP.BehavInt1_VB     0.8204         0.0472          0.0055         
## PP.BehavInt2_VB     0.5376         0.0041          0.0001         
## PP.BehavInt3_VB     0.5971         0.0949          0.0118         
## PP.BehavInt4_VB     0.8229         0.0375          0.0044         
## PP.Nat_1_GFFB       0.0003         0.1716          0.3107         
## PP.Nat_4R_GFFB      0.0012         0.0000          0.0000         
## PP.Nat_2R_GFFB      0.0295         0.0000          0.0000         
## PP.Nat_3R_GFFB      0.1362         0.0000          0.0000         
## PP.Nat_1_GFPRB                     0.0000          0.0000         
## PP.Nat_4R_GFPRB     0.0000                         0.0000         
## PP.Nat_2R_GFPRB     0.0000         0.0000                         
## PP.Nat_3R_GFPRB     0.0030         0.0000          0.0000         
## PP.Nat_1_CBB        0.0311         0.0000          0.0000         
## PP.Nat_4R_CBB       0.0261         0.6134          0.7953         
## PP.Nat_2R_CBB       0.0019         0.5774          0.6340         
## PP.Nat_3R_CBB       0.0020         0.7303          0.7766         
## PP.Nat_1_PBPB       0.1476         0.0000          0.0000         
## PP.Nat_4R_PBPB      0.5598         0.0157          0.1728         
## PP.Nat_2R_PBPB      0.1414         0.0419          0.2410         
## PP.Nat_3R_PBPB      0.0003         0.3522          0.6607         
## PP.Nat_1_PBFB       0.0433         0.0000          0.0000         
## PP.Nat_4R_PBFB      0.0044         0.9247          0.3866         
## PP.Nat_2R_PBFB      0.0034         0.2110          0.6604         
## PP.Nat_3R_PBFB      0.0000         0.7018          0.9882         
## PP.Nat_1_VB         0.7864         0.0531          0.0076         
## PP.Nat_4R_VB        0.3453         0.0000          0.0000         
## PP.Nat_2R_VB        0.2831         0.0000          0.0000         
## PP.Nat_3R_VB        0.8787         0.0000          0.0000         
##                     PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Risk_Score_GFFB  0.0000          0.0000       0.8636        0.4251       
## PP.Risk_Score_GFPRB 0.0000          0.0000       0.6037        0.8339       
## PP.Risk_Score_CBB   0.1453          0.9157       0.0000        0.0000       
## PP.Risk_Score_PBFB  0.4855          0.2620       0.0053        0.9177       
## PP.Risk_Score_PBPB  0.0225          0.0025       0.1092        0.2782       
## PP.Risk_Score_VB    0.0000          0.0000       0.5515        0.1624       
## PP.Ben_Score_GFFB   0.0002          0.0000       0.0170        0.3101       
## PP.Ben_Score_GFPRB  0.5055          0.1103       0.0010        0.0073       
## PP.Ben_Score_CBB    0.0000          0.0000       0.2598        0.4670       
## PP.Ben_Score_PBFB   0.0000          0.0000       0.5185        0.3302       
## PP.Ben_Score_PBPB   0.0000          0.0000       0.8768        0.0368       
## PP.Ben_Score_VB     0.0046          0.0909       0.0358        0.0000       
## PP.BehavInt1_GFFB   0.0416          0.0002       0.0066        0.2326       
## PP.BehavInt2_GFFB   0.1654          0.0035       0.0034        0.1122       
## PP.BehavInt3_GFFB   0.0195          0.0000       0.0069        0.2550       
## PP.BehavInt4_GFFB   0.0820          0.0005       0.0062        0.2592       
## PP.BehavInt1_GFPRB  0.0000          0.0003       0.5735        0.0832       
## PP.BehavInt2_GFPRB  0.0000          0.0000       0.4954        0.1512       
## PP.BehavInt3_GFPRB  0.0000          0.0000       0.5976        0.0938       
## PP.BehavInt4_GFPRB  0.0000          0.0001       0.8537        0.0372       
## PP.BehavInt1_CBB    0.0000          0.0000       0.0770        0.3182       
## PP.BehavInt2_CBB    0.0000          0.0000       0.0955        0.2337       
## PP.BehavInt3_CBB    0.0000          0.0000       0.0973        0.2849       
## PP.BehavInt4_CBB    0.0000          0.0000       0.0780        0.2842       
## PP.BehavInt1_PBPB   0.0000          0.0003       0.5735        0.0832       
## PP.BehavInt2_PBPB   0.0000          0.0000       0.4954        0.1512       
## PP.BehavInt3_PBPB   0.0000          0.0000       0.5976        0.0938       
## PP.BehavInt4_PBPB   0.0000          0.0001       0.8537        0.0372       
## PP.BehavInt1_PBFB   0.0000          0.0000       0.5238        0.3391       
## PP.BehavInt2_PBFB   0.0000          0.0000       0.3935        0.5701       
## PP.BehavInt3_PBFB   0.0000          0.0000       0.6149        0.2702       
## PP.BehavInt4_PBFB   0.0000          0.0000       0.4770        0.3768       
## PP.BehavInt1_VB     0.0009          0.0344       0.2576        0.0005       
## PP.BehavInt2_VB     0.0000          0.0128       0.3045        0.0029       
## PP.BehavInt3_VB     0.0027          0.0586       0.1891        0.0001       
## PP.BehavInt4_VB     0.0009          0.0388       0.2000        0.0004       
## PP.Nat_1_GFFB       0.0689          0.0003       0.0678        0.5532       
## PP.Nat_4R_GFFB      0.0000          0.0000       0.5893        0.3854       
## PP.Nat_2R_GFFB      0.0000          0.0000       0.5512        0.0755       
## PP.Nat_3R_GFFB      0.0000          0.0000       0.4635        0.5070       
## PP.Nat_1_GFPRB      0.0030          0.0311       0.0261        0.0019       
## PP.Nat_4R_GFPRB     0.0000          0.0000       0.6134        0.5774       
## PP.Nat_2R_GFPRB     0.0000          0.0000       0.7953        0.6340       
## PP.Nat_3R_GFPRB                     0.0000       0.8011        0.6511       
## PP.Nat_1_CBB        0.0000                       0.1662        0.1368       
## PP.Nat_4R_CBB       0.8011          0.1662                     0.0000       
## PP.Nat_2R_CBB       0.6511          0.1368       0.0000                     
## PP.Nat_3R_CBB       0.7621          0.5798       0.0000        0.0000       
## PP.Nat_1_PBPB       0.0000          0.0000       0.6215        0.2573       
## PP.Nat_4R_PBPB      0.2916          0.0263       0.0045        0.4459       
## PP.Nat_2R_PBPB      0.1952          0.0101       0.0002        0.0108       
## PP.Nat_3R_PBPB      0.0530          0.0035       0.0624        0.0026       
## PP.Nat_1_PBFB       0.0000          0.0000       0.2234        0.9870       
## PP.Nat_4R_PBFB      0.3631          0.3785       0.0000        0.0109       
## PP.Nat_2R_PBFB      0.3716          0.2842       0.0000        0.0000       
## PP.Nat_3R_PBFB      0.3471          0.2878       0.0000        0.0000       
## PP.Nat_1_VB         0.0012          0.0329       0.1925        0.0008       
## PP.Nat_4R_VB        0.0000          0.0000       0.4421        0.2440       
## PP.Nat_2R_VB        0.0000          0.0000       0.5712        0.4326       
## PP.Nat_3R_VB        0.0000          0.0000       0.9524        0.6426       
##                     PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Risk_Score_GFFB  0.2271        0.0000        0.6265         0.8776        
## PP.Risk_Score_GFPRB 0.5230        0.0000        0.3733         0.4392        
## PP.Risk_Score_CBB   0.0004        0.6335        0.0000         0.0000        
## PP.Risk_Score_PBFB  0.3603        0.0001        0.0000         0.0000        
## PP.Risk_Score_PBPB  0.0706        0.0107        0.0000         0.0000        
## PP.Risk_Score_VB    0.1652        0.3741        0.0000         0.0000        
## PP.Ben_Score_GFFB   0.2343        0.1599        0.0000         0.0000        
## PP.Ben_Score_GFPRB  0.0172        0.6674        0.0005         0.0000        
## PP.Ben_Score_CBB    0.6493        0.0000        0.0818         0.0301        
## PP.Ben_Score_PBFB   0.0403        0.0000        0.1504         0.5027        
## PP.Ben_Score_PBPB   0.0017        0.0000        0.0070         0.1216        
## PP.Ben_Score_VB     0.0000        0.0000        0.0087         0.3696        
## PP.BehavInt1_GFFB   0.2136        0.8175        0.0000         0.0000        
## PP.BehavInt2_GFFB   0.0809        0.5478        0.0000         0.0000        
## PP.BehavInt3_GFFB   0.2281        0.9598        0.0000         0.0000        
## PP.BehavInt4_GFFB   0.2408        0.7319        0.0000         0.0000        
## PP.BehavInt1_GFPRB  0.0041        0.0000        0.0014         0.0346        
## PP.BehavInt2_GFPRB  0.0137        0.0000        0.0036         0.0536        
## PP.BehavInt3_GFPRB  0.0070        0.0000        0.0044         0.0636        
## PP.BehavInt4_GFPRB  0.0020        0.0000        0.0054         0.0870        
## PP.BehavInt1_CBB    0.7783        0.0000        0.2491         0.1132        
## PP.BehavInt2_CBB    0.9660        0.0000        0.1566         0.0572        
## PP.BehavInt3_CBB    0.8506        0.0000        0.2007         0.0940        
## PP.BehavInt4_CBB    0.8796        0.0000        0.2233         0.0972        
## PP.BehavInt1_PBPB   0.0041        0.0000        0.0014         0.0346        
## PP.BehavInt2_PBPB   0.0137        0.0000        0.0036         0.0536        
## PP.BehavInt3_PBPB   0.0070        0.0000        0.0044         0.0636        
## PP.BehavInt4_PBPB   0.0020        0.0000        0.0054         0.0870        
## PP.BehavInt1_PBFB   0.0435        0.0000        0.1156         0.3742        
## PP.BehavInt2_PBFB   0.1175        0.0000        0.1529         0.4743        
## PP.BehavInt3_PBFB   0.0332        0.0000        0.1862         0.5406        
## PP.BehavInt4_PBFB   0.0531        0.0000        0.1454         0.4251        
## PP.BehavInt1_VB     0.0000        0.0000        0.0016         0.1046        
## PP.BehavInt2_VB     0.0003        0.0000        0.0007         0.0423        
## PP.BehavInt3_VB     0.0000        0.0000        0.0018         0.0939        
## PP.BehavInt4_VB     0.0000        0.0000        0.0020         0.0866        
## PP.Nat_1_GFFB       0.4670        0.7369        0.0000         0.0000        
## PP.Nat_4R_GFFB      0.2241        0.0000        0.6316         0.8182        
## PP.Nat_2R_GFFB      0.0183        0.0000        0.8374         0.8131        
## PP.Nat_3R_GFFB      0.2859        0.0000        0.0346         0.0153        
## PP.Nat_1_GFPRB      0.0020        0.1476        0.5598         0.1414        
## PP.Nat_4R_GFPRB     0.7303        0.0000        0.0157         0.0419        
## PP.Nat_2R_GFPRB     0.7766        0.0000        0.1728         0.2410        
## PP.Nat_3R_GFPRB     0.7621        0.0000        0.2916         0.1952        
## PP.Nat_1_CBB        0.5798        0.0000        0.0263         0.0101        
## PP.Nat_4R_CBB       0.0000        0.6215        0.0045         0.0002        
## PP.Nat_2R_CBB       0.0000        0.2573        0.4459         0.0108        
## PP.Nat_3R_CBB                     0.0379        0.9202         0.0314        
## PP.Nat_1_PBPB       0.0379                      0.0108         0.1381        
## PP.Nat_4R_PBPB      0.9202        0.0108                       0.0000        
## PP.Nat_2R_PBPB      0.0314        0.1381        0.0000                       
## PP.Nat_3R_PBPB      0.0004        0.0512        0.0000         0.0000        
## PP.Nat_1_PBFB       0.3568        0.0000        0.3291         0.6422        
## PP.Nat_4R_PBFB      0.0957        0.0000        0.0000         0.0000        
## PP.Nat_2R_PBFB      0.0000        0.4927        0.0000         0.0000        
## PP.Nat_3R_PBFB      0.0000        0.5114        0.0003         0.0000        
## PP.Nat_1_VB         0.0000        0.0000        0.0021         0.1188        
## PP.Nat_4R_VB        0.2332        0.5523        0.0000         0.0000        
## PP.Nat_2R_VB        0.4941        0.1637        0.0000         0.0000        
## PP.Nat_3R_VB        0.9169        0.0021        0.0002         0.0000        
##                     PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Risk_Score_GFFB  0.1019         0.0000        0.1378         0.5756        
## PP.Risk_Score_GFPRB 0.2990         0.0000        0.2253         0.4337        
## PP.Risk_Score_CBB   0.1800         0.4682        0.0000         0.0000        
## PP.Risk_Score_PBFB  0.7587         0.0025        0.0000         0.0000        
## PP.Risk_Score_PBPB  0.6297         0.2233        0.0000         0.0011        
## PP.Risk_Score_VB    0.0845         0.0113        0.0049         0.0021        
## PP.Ben_Score_GFFB   0.0000         0.0139        0.0012         0.0000        
## PP.Ben_Score_GFPRB  0.0003         0.7514        0.0000         0.0000        
## PP.Ben_Score_CBB    0.0000         0.0000        0.2333         0.2638        
## PP.Ben_Score_PBFB   0.0023         0.0000        0.0001         0.6257        
## PP.Ben_Score_PBPB   0.0044         0.0000        0.0000         0.6953        
## PP.Ben_Score_VB     0.0054         0.0000        0.0017         0.6752        
## PP.BehavInt1_GFFB   0.0000         0.4976        0.0000         0.0000        
## PP.BehavInt2_GFFB   0.0000         0.8139        0.0000         0.0000        
## PP.BehavInt3_GFFB   0.0000         0.3449        0.0000         0.0000        
## PP.BehavInt4_GFFB   0.0001         0.6127        0.0000         0.0000        
## PP.BehavInt1_GFPRB  0.0164         0.0000        0.0000         0.2879        
## PP.BehavInt2_GFPRB  0.0257         0.0000        0.0000         0.3486        
## PP.BehavInt3_GFPRB  0.0095         0.0000        0.0000         0.4354        
## PP.BehavInt4_GFPRB  0.0078         0.0000        0.0000         0.5432        
## PP.BehavInt1_CBB    0.0001         0.0000        0.0604         0.5720        
## PP.BehavInt2_CBB    0.0002         0.0000        0.1103         0.4418        
## PP.BehavInt3_CBB    0.0002         0.0000        0.0891         0.4966        
## PP.BehavInt4_CBB    0.0002         0.0000        0.0727         0.5380        
## PP.BehavInt1_PBPB   0.0164         0.0000        0.0000         0.2879        
## PP.BehavInt2_PBPB   0.0257         0.0000        0.0000         0.3486        
## PP.BehavInt3_PBPB   0.0095         0.0000        0.0000         0.4354        
## PP.BehavInt4_PBPB   0.0078         0.0000        0.0000         0.5432        
## PP.BehavInt1_PBFB   0.0081         0.0000        0.0000         0.5157        
## PP.BehavInt2_PBFB   0.0122         0.0000        0.0001         0.5244        
## PP.BehavInt3_PBFB   0.0030         0.0000        0.0002         0.6281        
## PP.BehavInt4_PBFB   0.0040         0.0000        0.0001         0.5338        
## PP.BehavInt1_VB     0.0211         0.0000        0.0000         0.7690        
## PP.BehavInt2_VB     0.1808         0.0000        0.0000         0.5170        
## PP.BehavInt3_VB     0.0229         0.0000        0.0001         0.7072        
## PP.BehavInt4_VB     0.0273         0.0000        0.0002         0.8037        
## PP.Nat_1_GFFB       0.0000         0.5796        0.0000         0.0000        
## PP.Nat_4R_GFFB      0.1523         0.0000        0.1543         0.6849        
## PP.Nat_2R_GFFB      0.0125         0.0000        0.0739         0.3625        
## PP.Nat_3R_GFFB      0.0015         0.0000        0.8364         0.0307        
## PP.Nat_1_GFPRB      0.0003         0.0433        0.0044         0.0034        
## PP.Nat_4R_GFPRB     0.3522         0.0000        0.9247         0.2110        
## PP.Nat_2R_GFPRB     0.6607         0.0000        0.3866         0.6604        
## PP.Nat_3R_GFPRB     0.0530         0.0000        0.3631         0.3716        
## PP.Nat_1_CBB        0.0035         0.0000        0.3785         0.2842        
## PP.Nat_4R_CBB       0.0624         0.2234        0.0000         0.0000        
## PP.Nat_2R_CBB       0.0026         0.9870        0.0109         0.0000        
## PP.Nat_3R_CBB       0.0004         0.3568        0.0957         0.0000        
## PP.Nat_1_PBPB       0.0512         0.0000        0.0000         0.4927        
## PP.Nat_4R_PBPB      0.0000         0.3291        0.0000         0.0000        
## PP.Nat_2R_PBPB      0.0000         0.6422        0.0000         0.0000        
## PP.Nat_3R_PBPB                     0.0167        0.0093         0.0000        
## PP.Nat_1_PBFB       0.0167                       0.0000         0.4395        
## PP.Nat_4R_PBFB      0.0093         0.0000                       0.0000        
## PP.Nat_2R_PBFB      0.0000         0.4395        0.0000                       
## PP.Nat_3R_PBFB      0.0000         0.6461        0.0000         0.0000        
## PP.Nat_1_VB         0.0477         0.0000        0.0000         0.6876        
## PP.Nat_4R_VB        0.0014         0.2961        0.0000         0.0000        
## PP.Nat_2R_VB        0.0006         0.0102        0.0016         0.0000        
## PP.Nat_3R_VB        0.0000         0.0000        0.0366         0.0000        
##                     PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Risk_Score_GFFB  0.5479         0.0002      0.0125       0.0016      
## PP.Risk_Score_GFPRB 0.6713         0.0013      0.0005       0.0000      
## PP.Risk_Score_CBB   0.0017         0.5774      0.0137       0.0219      
## PP.Risk_Score_PBFB  0.1244         0.0000      0.0000       0.0000      
## PP.Risk_Score_PBPB  0.3723         0.0000      0.0000       0.0000      
## PP.Risk_Score_VB    0.1618         0.1547      0.0000       0.0000      
## PP.Ben_Score_GFFB   0.0001         0.7350      0.0000       0.0000      
## PP.Ben_Score_GFPRB  0.0000         0.8506      0.0067       0.0021      
## PP.Ben_Score_CBB    0.1156         0.0024      0.0000       0.0000      
## PP.Ben_Score_PBFB   0.2406         0.0000      0.8458       0.0745      
## PP.Ben_Score_PBPB   0.1721         0.0000      0.1904       0.6529      
## PP.Ben_Score_VB     0.0429         0.0000      0.0103       0.4038      
## PP.BehavInt1_GFFB   0.0000         0.4431      0.0000       0.0000      
## PP.BehavInt2_GFFB   0.0000         0.4383      0.0000       0.0000      
## PP.BehavInt3_GFFB   0.0000         0.5397      0.0000       0.0000      
## PP.BehavInt4_GFFB   0.0000         0.3530      0.0000       0.0000      
## PP.BehavInt1_GFPRB  0.4519         0.0000      0.0725       0.9355      
## PP.BehavInt2_GFPRB  0.5515         0.0000      0.1831       0.7131      
## PP.BehavInt3_GFPRB  0.3199         0.0000      0.1789       0.6584      
## PP.BehavInt4_GFPRB  0.2242         0.0000      0.1348       0.7905      
## PP.BehavInt1_CBB    0.2249         0.0009      0.0002       0.0000      
## PP.BehavInt2_CBB    0.2120         0.0026      0.0000       0.0000      
## PP.BehavInt3_CBB    0.2171         0.0019      0.0000       0.0000      
## PP.BehavInt4_CBB    0.2291         0.0022      0.0000       0.0000      
## PP.BehavInt1_PBPB   0.4519         0.0000      0.0725       0.9355      
## PP.BehavInt2_PBPB   0.5515         0.0000      0.1831       0.7131      
## PP.BehavInt3_PBPB   0.3199         0.0000      0.1789       0.6584      
## PP.BehavInt4_PBPB   0.2242         0.0000      0.1348       0.7905      
## PP.BehavInt1_PBFB   0.4289         0.0000      0.8756       0.1024      
## PP.BehavInt2_PBFB   0.4733         0.0000      0.6219       0.0431      
## PP.BehavInt3_PBFB   0.2791         0.0000      0.8524       0.0899      
## PP.BehavInt4_PBFB   0.3244         0.0000      0.8594       0.0928      
## PP.BehavInt1_VB     0.1786         0.0000      0.0097       0.4262      
## PP.BehavInt2_VB     0.4011         0.0000      0.0242       0.6961      
## PP.BehavInt3_VB     0.1855         0.0000      0.0055       0.3164      
## PP.BehavInt4_VB     0.1916         0.0000      0.0129       0.4848      
## PP.Nat_1_GFFB       0.0000         0.2686      0.0000       0.0000      
## PP.Nat_4R_GFFB      0.6284         0.0000      0.0088       0.0008      
## PP.Nat_2R_GFFB      0.1886         0.0000      0.0701       0.0065      
## PP.Nat_3R_GFFB      0.0157         0.0022      0.0000       0.0000      
## PP.Nat_1_GFPRB      0.0000         0.7864      0.3453       0.2831      
## PP.Nat_4R_GFPRB     0.7018         0.0531      0.0000       0.0000      
## PP.Nat_2R_GFPRB     0.9882         0.0076      0.0000       0.0000      
## PP.Nat_3R_GFPRB     0.3471         0.0012      0.0000       0.0000      
## PP.Nat_1_CBB        0.2878         0.0329      0.0000       0.0000      
## PP.Nat_4R_CBB       0.0000         0.1925      0.4421       0.5712      
## PP.Nat_2R_CBB       0.0000         0.0008      0.2440       0.4326      
## PP.Nat_3R_CBB       0.0000         0.0000      0.2332       0.4941      
## PP.Nat_1_PBPB       0.5114         0.0000      0.5523       0.1637      
## PP.Nat_4R_PBPB      0.0003         0.0021      0.0000       0.0000      
## PP.Nat_2R_PBPB      0.0000         0.1188      0.0000       0.0000      
## PP.Nat_3R_PBPB      0.0000         0.0477      0.0014       0.0006      
## PP.Nat_1_PBFB       0.6461         0.0000      0.2961       0.0102      
## PP.Nat_4R_PBFB      0.0000         0.0000      0.0000       0.0016      
## PP.Nat_2R_PBFB      0.0000         0.6876      0.0000       0.0000      
## PP.Nat_3R_PBFB                     0.3365      0.0044       0.0015      
## PP.Nat_1_VB         0.3365                     0.0031       0.2348      
## PP.Nat_4R_VB        0.0044         0.0031                   0.0000      
## PP.Nat_2R_VB        0.0015         0.2348      0.0000                   
## PP.Nat_3R_VB        0.0000         0.5576      0.0000       0.0000      
##                     PP.Nat_3R_VB
## PP.Risk_Score_GFFB  0.0022      
## PP.Risk_Score_GFPRB 0.0000      
## PP.Risk_Score_CBB   0.2097      
## PP.Risk_Score_PBFB  0.0347      
## PP.Risk_Score_PBPB  0.0011      
## PP.Risk_Score_VB    0.0000      
## PP.Ben_Score_GFFB   0.0000      
## PP.Ben_Score_GFPRB  0.0032      
## PP.Ben_Score_CBB    0.0000      
## PP.Ben_Score_PBFB   0.0008      
## PP.Ben_Score_PBPB   0.0191      
## PP.Ben_Score_VB     0.3392      
## PP.BehavInt1_GFFB   0.0000      
## PP.BehavInt2_GFFB   0.0000      
## PP.BehavInt3_GFFB   0.0000      
## PP.BehavInt4_GFFB   0.0000      
## PP.BehavInt1_GFPRB  0.0951      
## PP.BehavInt2_GFPRB  0.0421      
## PP.BehavInt3_GFPRB  0.0224      
## PP.BehavInt4_GFPRB  0.0419      
## PP.BehavInt1_CBB    0.0000      
## PP.BehavInt2_CBB    0.0000      
## PP.BehavInt3_CBB    0.0000      
## PP.BehavInt4_CBB    0.0000      
## PP.BehavInt1_PBPB   0.0951      
## PP.BehavInt2_PBPB   0.0421      
## PP.BehavInt3_PBPB   0.0224      
## PP.BehavInt4_PBPB   0.0419      
## PP.BehavInt1_PBFB   0.0032      
## PP.BehavInt2_PBFB   0.0008      
## PP.BehavInt3_PBFB   0.0015      
## PP.BehavInt4_PBFB   0.0014      
## PP.BehavInt1_VB     0.3345      
## PP.BehavInt2_VB     0.2688      
## PP.BehavInt3_VB     0.4485      
## PP.BehavInt4_VB     0.3164      
## PP.Nat_1_GFFB       0.0000      
## PP.Nat_4R_GFFB      0.0013      
## PP.Nat_2R_GFFB      0.0016      
## PP.Nat_3R_GFFB      0.0000      
## PP.Nat_1_GFPRB      0.8787      
## PP.Nat_4R_GFPRB     0.0000      
## PP.Nat_2R_GFPRB     0.0000      
## PP.Nat_3R_GFPRB     0.0000      
## PP.Nat_1_CBB        0.0000      
## PP.Nat_4R_CBB       0.9524      
## PP.Nat_2R_CBB       0.6426      
## PP.Nat_3R_CBB       0.9169      
## PP.Nat_1_PBPB       0.0021      
## PP.Nat_4R_PBPB      0.0002      
## PP.Nat_2R_PBPB      0.0000      
## PP.Nat_3R_PBPB      0.0000      
## PP.Nat_1_PBFB       0.0000      
## PP.Nat_4R_PBFB      0.0366      
## PP.Nat_2R_PBFB      0.0000      
## PP.Nat_3R_PBFB      0.0000      
## PP.Nat_1_VB         0.5576      
## PP.Nat_4R_VB        0.0000      
## PP.Nat_2R_VB        0.0000      
## PP.Nat_3R_VB
library(corrplot)
corrplot(mydata.cor7, method="color")

corrplot(mydata.cor7, addCoef.col = 1,  number.cex = 0.3, method = 'number')

#Familiarity/Naturalness
PP$corFN <- data.frame(PP$Nat_1_GFFB , PP$Nat_2R_GFFB , PP$Nat_3R_GFFB , PP$Nat_4R_GFFB, PP$Nat_1_GFPRB , PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB , PP$Nat_4R_GFPRB, PP$Nat_1_CBB , PP$Nat_2R_CBB , PP$Nat_3R_CBB , PP$Nat_4R_CBB, PP$Nat_1_PBPB , PP$Nat_2R_PBPB , PP$Nat_3R_PBPB , PP$Nat_4R_PBPB, PP$Nat_1_PBFB , PP$Nat_2R_PBFB , PP$Nat_3R_PBFB , PP$Nat_4R_PBFB, PP$Nat_1_VB , PP$Nat_2R_VB , PP$Nat_3R_VB, PP$Nat_4R_VB, PP$FR.GFFB, PP$FR.GFPRB, PP$FR.CBB, PP$FR.PBPB, PP$FR.PBFB, PP$FR.VB)

mydata.corFN = cor(PP$corFN, use = "pairwise.complete.obs")
head(round(mydata.corFN,2))
##                 PP.Nat_1_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB PP.Nat_4R_GFFB
## PP.Nat_1_GFFB            1.00           0.18          -0.15           0.18
## PP.Nat_2R_GFFB           0.18           1.00           0.44           0.61
## PP.Nat_3R_GFFB          -0.15           0.44           1.00           0.50
## PP.Nat_4R_GFFB           0.18           0.61           0.50           1.00
## PP.Nat_1_GFPRB           0.42           0.07           0.01           0.15
## PP.Nat_2R_GFPRB         -0.03           0.29           0.34           0.49
##                 PP.Nat_1_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_4R_GFPRB
## PP.Nat_1_GFFB             0.42           -0.03           -0.04            0.04
## PP.Nat_2R_GFFB            0.07            0.29            0.17            0.21
## PP.Nat_3R_GFFB            0.01            0.34            0.49            0.33
## PP.Nat_4R_GFFB            0.15            0.49            0.38            0.47
## PP.Nat_1_GFPRB            1.00            0.25            0.14            0.38
## PP.Nat_2R_GFPRB           0.25            1.00            0.51            0.68
##                 PP.Nat_1_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_4R_CBB
## PP.Nat_1_GFFB           0.35          0.04          0.00         -0.01
## PP.Nat_2R_GFFB         -0.32          0.22          0.21          0.13
## PP.Nat_3R_GFFB         -0.41          0.07          0.01          0.08
## PP.Nat_4R_GFFB         -0.36          0.14          0.05          0.20
## PP.Nat_1_GFPRB         -0.10         -0.13         -0.13         -0.05
## PP.Nat_2R_GFPRB        -0.34         -0.07         -0.07          0.00
##                 PP.Nat_1_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_4R_PBPB
## PP.Nat_1_GFFB            0.14          -0.26          -0.17          -0.21
## PP.Nat_2R_GFFB          -0.27           0.04           0.06           0.15
## PP.Nat_3R_GFFB          -0.36           0.14           0.10           0.09
## PP.Nat_4R_GFFB          -0.23           0.00          -0.04           0.08
## PP.Nat_1_GFPRB          -0.04           0.05          -0.33           0.03
## PP.Nat_2R_GFPRB         -0.27           0.02          -0.21           0.04
##                 PP.Nat_1_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_4R_PBFB
## PP.Nat_1_GFFB            0.17           0.28           0.29           0.24
## PP.Nat_2R_GFFB          -0.33          -0.11          -0.07           0.05
## PP.Nat_3R_GFFB          -0.37          -0.11          -0.15          -0.11
## PP.Nat_4R_GFFB          -0.35           0.03           0.05          -0.07
## PP.Nat_1_GFPRB          -0.06           0.20           0.28           0.23
## PP.Nat_2R_GFPRB         -0.38           0.07           0.09           0.05
##                 PP.Nat_1_VB PP.Nat_2R_VB PP.Nat_3R_VB PP.Nat_4R_VB PP.FR.GFFB
## PP.Nat_1_GFFB          0.09        -0.22        -0.24        -0.21       0.42
## PP.Nat_2R_GFFB        -0.09         0.12         0.12         0.15       0.01
## PP.Nat_3R_GFFB        -0.04         0.22         0.20         0.27      -0.08
## PP.Nat_4R_GFFB        -0.13         0.13         0.05         0.25       0.09
## PP.Nat_1_GFPRB         0.09         0.07         0.06         0.02       0.42
## PP.Nat_2R_GFPRB       -0.16         0.35         0.28         0.24       0.08
##                 PP.FR.GFPRB PP.FR.CBB PP.FR.PBPB PP.FR.PBFB PP.FR.VB
## PP.Nat_1_GFFB          0.25      0.28       0.06       0.17     0.20
## PP.Nat_2R_GFFB        -0.02     -0.33      -0.35      -0.35    -0.02
## PP.Nat_3R_GFFB         0.09     -0.39      -0.19      -0.40    -0.01
## PP.Nat_4R_GFFB         0.08     -0.33      -0.20      -0.36    -0.14
## PP.Nat_1_GFPRB         0.53      0.05       0.09      -0.08     0.29
## PP.Nat_2R_GFPRB        0.24     -0.39      -0.02      -0.30    -0.13
library("Hmisc")
mydata.rcorrFN = rcorr(as.matrix(mydata.corFN))
mydata.rcorrFN
##                 PP.Nat_1_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB PP.Nat_4R_GFFB
## PP.Nat_1_GFFB            1.00          -0.16          -0.46          -0.13
## PP.Nat_2R_GFFB          -0.16           1.00           0.80           0.88
## PP.Nat_3R_GFFB          -0.46           0.80           1.00           0.84
## PP.Nat_4R_GFFB          -0.13           0.88           0.84           1.00
## PP.Nat_1_GFPRB           0.51           0.08           0.05           0.23
## PP.Nat_2R_GFPRB         -0.24           0.63           0.75           0.82
## PP.Nat_3R_GFPRB         -0.32           0.62           0.84           0.78
## PP.Nat_4R_GFPRB         -0.24           0.60           0.75           0.79
## PP.Nat_1_CBB             0.48          -0.71          -0.84          -0.76
## PP.Nat_2R_CBB           -0.23           0.26           0.09           0.10
## PP.Nat_3R_CBB           -0.25           0.28           0.11           0.10
## PP.Nat_4R_CBB           -0.27           0.21           0.10           0.14
## PP.Nat_1_PBPB            0.18          -0.74          -0.76          -0.75
## PP.Nat_2R_PBPB          -0.72           0.17           0.28           0.06
## PP.Nat_3R_PBPB          -0.65           0.26           0.31           0.08
## PP.Nat_4R_PBPB          -0.65           0.17           0.25           0.10
## PP.Nat_1_PBFB            0.24          -0.76          -0.80          -0.82
## PP.Nat_2R_PBFB           0.63          -0.24          -0.30          -0.10
## PP.Nat_3R_PBFB           0.65          -0.24          -0.33          -0.09
## PP.Nat_4R_PBFB           0.52           0.02          -0.12           0.04
## PP.Nat_1_VB              0.09          -0.54          -0.43          -0.54
## PP.Nat_2R_VB            -0.67           0.41           0.62           0.44
## PP.Nat_3R_VB            -0.68           0.38           0.58           0.34
## PP.Nat_4R_VB            -0.69           0.33           0.55           0.37
## PP.FR.GFFB               0.74          -0.31          -0.38          -0.16
## PP.FR.GFPRB              0.44          -0.21          -0.09          -0.04
## PP.FR.CBB                0.50          -0.78          -0.87          -0.80
## PP.FR.PBPB               0.26          -0.79          -0.69          -0.69
## PP.FR.PBFB               0.38          -0.81          -0.82          -0.81
## PP.FR.VB                 0.38          -0.52          -0.46          -0.51
##                 PP.Nat_1_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_4R_GFPRB
## PP.Nat_1_GFFB             0.51           -0.24           -0.32           -0.24
## PP.Nat_2R_GFFB            0.08            0.63            0.62            0.60
## PP.Nat_3R_GFFB            0.05            0.75            0.84            0.75
## PP.Nat_4R_GFFB            0.23            0.82            0.78            0.79
## PP.Nat_1_GFPRB            1.00            0.40            0.26            0.47
## PP.Nat_2R_GFPRB           0.40            1.00            0.88            0.94
## PP.Nat_3R_GFPRB           0.26            0.88            1.00            0.87
## PP.Nat_4R_GFPRB           0.47            0.94            0.87            1.00
## PP.Nat_1_CBB             -0.19           -0.80           -0.84           -0.79
## PP.Nat_2R_CBB            -0.51           -0.20           -0.13           -0.17
## PP.Nat_3R_CBB            -0.49           -0.15           -0.05           -0.14
## PP.Nat_4R_CBB            -0.43           -0.11           -0.09           -0.05
## PP.Nat_1_PBPB            -0.22           -0.75           -0.77           -0.69
## PP.Nat_2R_PBPB           -0.37            0.01            0.07            0.11
## PP.Nat_3R_PBPB           -0.61           -0.07            0.11           -0.01
## PP.Nat_4R_PBPB           -0.30            0.04            0.04            0.17
## PP.Nat_1_PBFB            -0.26           -0.83           -0.82           -0.79
## PP.Nat_2R_PBFB            0.52            0.01           -0.09           -0.08
## PP.Nat_3R_PBFB            0.59            0.02           -0.12           -0.04
## PP.Nat_4R_PBFB            0.52            0.15            0.07            0.06
## PP.Nat_1_VB               0.04           -0.45           -0.48           -0.39
## PP.Nat_2R_VB             -0.01            0.59            0.61            0.64
## PP.Nat_3R_VB             -0.12            0.49            0.54            0.51
## PP.Nat_4R_VB             -0.12            0.43            0.46            0.51
## PP.FR.GFFB                0.64           -0.08           -0.20           -0.05
## PP.FR.GFPRB               0.78            0.22            0.10            0.26
## PP.FR.CBB                -0.05           -0.80           -0.85           -0.78
## PP.FR.PBPB                0.02           -0.53           -0.61           -0.52
## PP.FR.PBFB               -0.06           -0.71           -0.76           -0.71
## PP.FR.VB                  0.34           -0.38           -0.40           -0.30
##                 PP.Nat_1_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_4R_CBB
## PP.Nat_1_GFFB           0.48         -0.23         -0.25         -0.27
## PP.Nat_2R_GFFB         -0.71          0.26          0.28          0.21
## PP.Nat_3R_GFFB         -0.84          0.09          0.11          0.10
## PP.Nat_4R_GFFB         -0.76          0.10          0.10          0.14
## PP.Nat_1_GFPRB         -0.19         -0.51         -0.49         -0.43
## PP.Nat_2R_GFPRB        -0.80         -0.20         -0.15         -0.11
## PP.Nat_3R_GFPRB        -0.84         -0.13         -0.05         -0.09
## PP.Nat_4R_GFPRB        -0.79         -0.17         -0.14         -0.05
## PP.Nat_1_CBB            1.00          0.17          0.08          0.17
## PP.Nat_2R_CBB           0.17          1.00          0.92          0.90
## PP.Nat_3R_CBB           0.08          0.92          1.00          0.83
## PP.Nat_4R_CBB           0.17          0.90          0.83          1.00
## PP.Nat_1_PBPB           0.75         -0.04         -0.12          0.00
## PP.Nat_2R_PBPB         -0.28          0.49          0.47          0.43
## PP.Nat_3R_PBPB         -0.27          0.47          0.48          0.37
## PP.Nat_4R_PBPB         -0.26          0.25          0.19          0.34
## PP.Nat_1_PBFB           0.85          0.07          0.03          0.10
## PP.Nat_2R_PBFB          0.14         -0.67         -0.65         -0.65
## PP.Nat_3R_PBFB          0.15         -0.59         -0.57         -0.53
## PP.Nat_4R_PBFB         -0.11         -0.50         -0.44         -0.58
## PP.Nat_1_VB             0.40         -0.36         -0.41         -0.29
## PP.Nat_2R_VB           -0.73         -0.05         -0.03          0.03
## PP.Nat_3R_VB           -0.65         -0.03          0.00          0.00
## PP.Nat_4R_VB           -0.59         -0.04         -0.03          0.09
## PP.FR.GFFB              0.34         -0.58         -0.64         -0.51
## PP.FR.GFPRB             0.06         -0.63         -0.61         -0.54
## PP.FR.CBB               0.93         -0.06         -0.13         -0.06
## PP.FR.PBPB              0.70         -0.19         -0.28         -0.12
## PP.FR.PBFB              0.80         -0.24         -0.30         -0.23
## PP.FR.VB                0.43         -0.48         -0.53         -0.41
##                 PP.Nat_1_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_4R_PBPB
## PP.Nat_1_GFFB            0.18          -0.72          -0.65          -0.65
## PP.Nat_2R_GFFB          -0.74           0.17           0.26           0.17
## PP.Nat_3R_GFFB          -0.76           0.28           0.31           0.25
## PP.Nat_4R_GFFB          -0.75           0.06           0.08           0.10
## PP.Nat_1_GFPRB          -0.22          -0.37          -0.61          -0.30
## PP.Nat_2R_GFPRB         -0.75           0.01          -0.07           0.04
## PP.Nat_3R_GFPRB         -0.77           0.07           0.11           0.04
## PP.Nat_4R_GFPRB         -0.69           0.11          -0.01           0.17
## PP.Nat_1_CBB             0.75          -0.28          -0.27          -0.26
## PP.Nat_2R_CBB           -0.04           0.49           0.47           0.25
## PP.Nat_3R_CBB           -0.12           0.47           0.48           0.19
## PP.Nat_4R_CBB            0.00           0.43           0.37           0.34
## PP.Nat_1_PBPB            1.00           0.02          -0.13           0.14
## PP.Nat_2R_PBPB           0.02           1.00           0.78           0.79
## PP.Nat_3R_PBPB          -0.13           0.78           1.00           0.67
## PP.Nat_4R_PBPB           0.14           0.79           0.67           1.00
## PP.Nat_1_PBFB            0.92          -0.05          -0.15          -0.03
## PP.Nat_2R_PBFB           0.02          -0.81          -0.76          -0.63
## PP.Nat_3R_PBFB           0.05          -0.75          -0.86          -0.60
## PP.Nat_4R_PBFB          -0.35          -0.62          -0.55          -0.66
## PP.Nat_1_VB              0.75          -0.06          -0.23           0.13
## PP.Nat_2R_VB            -0.39           0.53           0.45           0.52
## PP.Nat_3R_VB            -0.45           0.48           0.60           0.47
## PP.Nat_4R_VB            -0.14           0.60           0.49           0.72
## PP.FR.GFFB               0.27          -0.68          -0.75          -0.46
## PP.FR.GFPRB              0.06          -0.44          -0.71          -0.34
## PP.FR.CBB                0.79          -0.35          -0.39          -0.30
## PP.FR.PBPB               0.82          -0.21          -0.45          -0.13
## PP.FR.PBFB               0.83          -0.32          -0.41          -0.25
## PP.FR.VB                 0.60          -0.36          -0.55          -0.15
##                 PP.Nat_1_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_4R_PBFB
## PP.Nat_1_GFFB            0.24           0.63           0.65           0.52
## PP.Nat_2R_GFFB          -0.76          -0.24          -0.24           0.02
## PP.Nat_3R_GFFB          -0.80          -0.30          -0.33          -0.12
## PP.Nat_4R_GFFB          -0.82          -0.10          -0.09           0.04
## PP.Nat_1_GFPRB          -0.26           0.52           0.59           0.52
## PP.Nat_2R_GFPRB         -0.83           0.01           0.02           0.15
## PP.Nat_3R_GFPRB         -0.82          -0.09          -0.12           0.07
## PP.Nat_4R_GFPRB         -0.79          -0.08          -0.04           0.06
## PP.Nat_1_CBB             0.85           0.14           0.15          -0.11
## PP.Nat_2R_CBB            0.07          -0.67          -0.59          -0.50
## PP.Nat_3R_CBB            0.03          -0.65          -0.57          -0.44
## PP.Nat_4R_CBB            0.10          -0.65          -0.53          -0.58
## PP.Nat_1_PBPB            0.92           0.02           0.05          -0.35
## PP.Nat_2R_PBPB          -0.05          -0.81          -0.75          -0.62
## PP.Nat_3R_PBPB          -0.15          -0.76          -0.86          -0.55
## PP.Nat_4R_PBPB          -0.03          -0.63          -0.60          -0.66
## PP.Nat_1_PBFB            1.00          -0.03           0.02          -0.33
## PP.Nat_2R_PBFB          -0.03           1.00           0.89           0.80
## PP.Nat_3R_PBFB           0.02           0.89           1.00           0.76
## PP.Nat_4R_PBFB          -0.33           0.80           0.76           1.00
## PP.Nat_1_VB              0.68           0.09           0.10          -0.27
## PP.Nat_2R_VB            -0.45          -0.51          -0.48          -0.36
## PP.Nat_3R_VB            -0.46          -0.53          -0.61          -0.35
## PP.Nat_4R_VB            -0.28          -0.58          -0.53          -0.57
## PP.FR.GFFB               0.21           0.72           0.73           0.49
## PP.FR.GFPRB              0.02           0.51           0.59           0.35
## PP.FR.CBB                0.85           0.27           0.29           0.01
## PP.FR.PBPB               0.76           0.22           0.27          -0.13
## PP.FR.PBFB               0.84           0.27           0.29          -0.02
## PP.FR.VB                 0.54           0.40           0.44           0.07
##                 PP.Nat_1_VB PP.Nat_2R_VB PP.Nat_3R_VB PP.Nat_4R_VB PP.FR.GFFB
## PP.Nat_1_GFFB          0.09        -0.67        -0.68        -0.69       0.74
## PP.Nat_2R_GFFB        -0.54         0.41         0.38         0.33      -0.31
## PP.Nat_3R_GFFB        -0.43         0.62         0.58         0.55      -0.38
## PP.Nat_4R_GFFB        -0.54         0.44         0.34         0.37      -0.16
## PP.Nat_1_GFPRB         0.04        -0.01        -0.12        -0.12       0.64
## PP.Nat_2R_GFPRB       -0.45         0.59         0.49         0.43      -0.08
## PP.Nat_3R_GFPRB       -0.48         0.61         0.54         0.46      -0.20
## PP.Nat_4R_GFPRB       -0.39         0.64         0.51         0.51      -0.05
## PP.Nat_1_CBB           0.40        -0.73        -0.65        -0.59       0.34
## PP.Nat_2R_CBB         -0.36        -0.05        -0.03        -0.04      -0.58
## PP.Nat_3R_CBB         -0.41        -0.03         0.00        -0.03      -0.64
## PP.Nat_4R_CBB         -0.29         0.03         0.00         0.09      -0.51
## PP.Nat_1_PBPB          0.75        -0.39        -0.45        -0.14       0.27
## PP.Nat_2R_PBPB        -0.06         0.53         0.48         0.60      -0.68
## PP.Nat_3R_PBPB        -0.23         0.45         0.60         0.49      -0.75
## PP.Nat_4R_PBPB         0.13         0.52         0.47         0.72      -0.46
## PP.Nat_1_PBFB          0.68        -0.45        -0.46        -0.28       0.21
## PP.Nat_2R_PBFB         0.09        -0.51        -0.53        -0.58       0.72
## PP.Nat_3R_PBFB         0.10        -0.48        -0.61        -0.53       0.73
## PP.Nat_4R_PBFB        -0.27        -0.36        -0.35        -0.57       0.49
## PP.Nat_1_VB            1.00         0.00        -0.12         0.17       0.34
## PP.Nat_2R_VB           0.00         1.00         0.83         0.88      -0.45
## PP.Nat_3R_VB          -0.12         0.83         1.00         0.76      -0.59
## PP.Nat_4R_VB           0.17         0.88         0.76         1.00      -0.47
## PP.FR.GFFB             0.34        -0.45        -0.59        -0.47       1.00
## PP.FR.GFPRB            0.35        -0.09        -0.22        -0.11       0.70
## PP.FR.CBB              0.52        -0.72        -0.63        -0.56       0.46
## PP.FR.PBPB             0.66        -0.47        -0.52        -0.27       0.44
## PP.FR.PBFB             0.64        -0.56        -0.52        -0.42       0.45
## PP.FR.VB               0.75        -0.27        -0.37        -0.16       0.58
##                 PP.FR.GFPRB PP.FR.CBB PP.FR.PBPB PP.FR.PBFB PP.FR.VB
## PP.Nat_1_GFFB          0.44      0.50       0.26       0.38     0.38
## PP.Nat_2R_GFFB        -0.21     -0.78      -0.79      -0.81    -0.52
## PP.Nat_3R_GFFB        -0.09     -0.87      -0.69      -0.82    -0.46
## PP.Nat_4R_GFFB        -0.04     -0.80      -0.69      -0.81    -0.51
## PP.Nat_1_GFPRB         0.78     -0.05       0.02      -0.06     0.34
## PP.Nat_2R_GFPRB        0.22     -0.80      -0.53      -0.71    -0.38
## PP.Nat_3R_GFPRB        0.10     -0.85      -0.61      -0.76    -0.40
## PP.Nat_4R_GFPRB        0.26     -0.78      -0.52      -0.71    -0.30
## PP.Nat_1_CBB           0.06      0.93       0.70       0.80     0.43
## PP.Nat_2R_CBB         -0.63     -0.06      -0.19      -0.24    -0.48
## PP.Nat_3R_CBB         -0.61     -0.13      -0.28      -0.30    -0.53
## PP.Nat_4R_CBB         -0.54     -0.06      -0.12      -0.23    -0.41
## PP.Nat_1_PBPB          0.06      0.79       0.82       0.83     0.60
## PP.Nat_2R_PBPB        -0.44     -0.35      -0.21      -0.32    -0.36
## PP.Nat_3R_PBPB        -0.71     -0.39      -0.45      -0.41    -0.55
## PP.Nat_4R_PBPB        -0.34     -0.30      -0.13      -0.25    -0.15
## PP.Nat_1_PBFB          0.02      0.85       0.76       0.84     0.54
## PP.Nat_2R_PBFB         0.51      0.27       0.22       0.27     0.40
## PP.Nat_3R_PBFB         0.59      0.29       0.27       0.29     0.44
## PP.Nat_4R_PBFB         0.35      0.01      -0.13      -0.02     0.07
## PP.Nat_1_VB            0.35      0.52       0.66       0.64     0.75
## PP.Nat_2R_VB          -0.09     -0.72      -0.47      -0.56    -0.27
## PP.Nat_3R_VB          -0.22     -0.63      -0.52      -0.52    -0.37
## PP.Nat_4R_VB          -0.11     -0.56      -0.27      -0.42    -0.16
## PP.FR.GFFB             0.70      0.46       0.44       0.45     0.58
## PP.FR.GFPRB            1.00      0.21       0.39       0.30     0.64
## PP.FR.CBB              0.21      1.00       0.80       0.89     0.57
## PP.FR.PBPB             0.39      0.80       1.00       0.90     0.73
## PP.FR.PBFB             0.30      0.89       0.90       1.00     0.74
## PP.FR.VB               0.64      0.57       0.73       0.74     1.00
## 
## n= 30 
## 
## 
## P
##                 PP.Nat_1_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB PP.Nat_4R_GFFB
## PP.Nat_1_GFFB                 0.4131         0.0110         0.4936        
## PP.Nat_2R_GFFB  0.4131                       0.0000         0.0000        
## PP.Nat_3R_GFFB  0.0110        0.0000                        0.0000        
## PP.Nat_4R_GFFB  0.4936        0.0000         0.0000                       
## PP.Nat_1_GFPRB  0.0037        0.6814         0.7791         0.2308        
## PP.Nat_2R_GFPRB 0.2061        0.0002         0.0000         0.0000        
## PP.Nat_3R_GFPRB 0.0891        0.0002         0.0000         0.0000        
## PP.Nat_4R_GFPRB 0.1981        0.0004         0.0000         0.0000        
## PP.Nat_1_CBB    0.0066        0.0000         0.0000         0.0000        
## PP.Nat_2R_CBB   0.2242        0.1703         0.6348         0.6156        
## PP.Nat_3R_CBB   0.1826        0.1299         0.5534         0.5862        
## PP.Nat_4R_CBB   0.1501        0.2684         0.5845         0.4487        
## PP.Nat_1_PBPB   0.3376        0.0000         0.0000         0.0000        
## PP.Nat_2R_PBPB  0.0000        0.3720         0.1297         0.7568        
## PP.Nat_3R_PBPB  0.0001        0.1637         0.0979         0.6597        
## PP.Nat_4R_PBPB  0.0000        0.3701         0.1875         0.6092        
## PP.Nat_1_PBFB   0.1963        0.0000         0.0000         0.0000        
## PP.Nat_2R_PBFB  0.0002        0.1964         0.1066         0.5815        
## PP.Nat_3R_PBFB  0.0000        0.2077         0.0743         0.6478        
## PP.Nat_4R_PBFB  0.0030        0.9273         0.5187         0.8535        
## PP.Nat_1_VB     0.6258        0.0023         0.0171         0.0020        
## PP.Nat_2R_VB    0.0000        0.0245         0.0002         0.0158        
## PP.Nat_3R_VB    0.0000        0.0379         0.0008         0.0636        
## PP.Nat_4R_VB    0.0000        0.0762         0.0015         0.0422        
## PP.FR.GFFB      0.0000        0.0985         0.0364         0.3944        
## PP.FR.GFPRB     0.0148        0.2621         0.6310         0.8509        
## PP.FR.CBB       0.0049        0.0000         0.0000         0.0000        
## PP.FR.PBPB      0.1713        0.0000         0.0000         0.0000        
## PP.FR.PBFB      0.0380        0.0000         0.0000         0.0000        
## PP.FR.VB        0.0406        0.0033         0.0111         0.0044        
##                 PP.Nat_1_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_4R_GFPRB
## PP.Nat_1_GFFB   0.0037         0.2061          0.0891          0.1981         
## PP.Nat_2R_GFFB  0.6814         0.0002          0.0002          0.0004         
## PP.Nat_3R_GFFB  0.7791         0.0000          0.0000          0.0000         
## PP.Nat_4R_GFFB  0.2308         0.0000          0.0000          0.0000         
## PP.Nat_1_GFPRB                 0.0274          0.1590          0.0090         
## PP.Nat_2R_GFPRB 0.0274                         0.0000          0.0000         
## PP.Nat_3R_GFPRB 0.1590         0.0000                          0.0000         
## PP.Nat_4R_GFPRB 0.0090         0.0000          0.0000                         
## PP.Nat_1_CBB    0.3105         0.0000          0.0000          0.0000         
## PP.Nat_2R_CBB   0.0041         0.3014          0.4907          0.3621         
## PP.Nat_3R_CBB   0.0056         0.4213          0.8037          0.4663         
## PP.Nat_4R_CBB   0.0182         0.5765          0.6514          0.8097         
## PP.Nat_1_PBPB   0.2446         0.0000          0.0000          0.0000         
## PP.Nat_2R_PBPB  0.0449         0.9376          0.7175          0.5483         
## PP.Nat_3R_PBPB  0.0003         0.7122          0.5753          0.9688         
## PP.Nat_4R_PBPB  0.1087         0.8509          0.8354          0.3568         
## PP.Nat_1_PBFB   0.1603         0.0000          0.0000          0.0000         
## PP.Nat_2R_PBFB  0.0032         0.9478          0.6240          0.6832         
## PP.Nat_3R_PBFB  0.0006         0.9051          0.5321          0.8529         
## PP.Nat_4R_PBFB  0.0032         0.4238          0.6967          0.7454         
## PP.Nat_1_VB     0.8487         0.0118          0.0068          0.0327         
## PP.Nat_2R_VB    0.9488         0.0006          0.0004          0.0001         
## PP.Nat_3R_VB    0.5124         0.0065          0.0023          0.0042         
## PP.Nat_4R_VB    0.5111         0.0173          0.0113          0.0039         
## PP.FR.GFFB      0.0001         0.6799          0.2939          0.8038         
## PP.FR.GFPRB     0.0000         0.2519          0.5921          0.1694         
## PP.FR.CBB       0.7877         0.0000          0.0000          0.0000         
## PP.FR.PBPB      0.9216         0.0024          0.0003          0.0034         
## PP.FR.PBFB      0.7664         0.0000          0.0000          0.0000         
## PP.FR.VB        0.0659         0.0385          0.0303          0.1084         
##                 PP.Nat_1_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_4R_CBB
## PP.Nat_1_GFFB   0.0066       0.2242        0.1826        0.1501       
## PP.Nat_2R_GFFB  0.0000       0.1703        0.1299        0.2684       
## PP.Nat_3R_GFFB  0.0000       0.6348        0.5534        0.5845       
## PP.Nat_4R_GFFB  0.0000       0.6156        0.5862        0.4487       
## PP.Nat_1_GFPRB  0.3105       0.0041        0.0056        0.0182       
## PP.Nat_2R_GFPRB 0.0000       0.3014        0.4213        0.5765       
## PP.Nat_3R_GFPRB 0.0000       0.4907        0.8037        0.6514       
## PP.Nat_4R_GFPRB 0.0000       0.3621        0.4663        0.8097       
## PP.Nat_1_CBB                 0.3835        0.6689        0.3835       
## PP.Nat_2R_CBB   0.3835                     0.0000        0.0000       
## PP.Nat_3R_CBB   0.6689       0.0000                      0.0000       
## PP.Nat_4R_CBB   0.3835       0.0000        0.0000                     
## PP.Nat_1_PBPB   0.0000       0.8172        0.5348        0.9969       
## PP.Nat_2R_PBPB  0.1295       0.0065        0.0086        0.0166       
## PP.Nat_3R_PBPB  0.1463       0.0087        0.0073        0.0470       
## PP.Nat_4R_PBPB  0.1685       0.1917        0.3088        0.0678       
## PP.Nat_1_PBFB   0.0000       0.7019        0.8645        0.6167       
## PP.Nat_2R_PBFB  0.4730       0.0000        0.0000        0.0000       
## PP.Nat_3R_PBFB  0.4265       0.0006        0.0010        0.0029       
## PP.Nat_4R_PBFB  0.5511       0.0050        0.0143        0.0008       
## PP.Nat_1_VB     0.0285       0.0487        0.0247        0.1143       
## PP.Nat_2R_VB    0.0000       0.7992        0.8947        0.8869       
## PP.Nat_3R_VB    0.0001       0.8935        0.9949        0.9868       
## PP.Nat_4R_VB    0.0006       0.8508        0.8871        0.6247       
## PP.FR.GFFB      0.0645       0.0008        0.0001        0.0041       
## PP.FR.GFPRB     0.7672       0.0002        0.0003        0.0023       
## PP.FR.CBB       0.0000       0.7534        0.4838        0.7334       
## PP.FR.PBPB      0.0000       0.3034        0.1365        0.5349       
## PP.FR.PBFB      0.0000       0.2092        0.1024        0.2276       
## PP.FR.VB        0.0190       0.0076        0.0025        0.0254       
##                 PP.Nat_1_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_4R_PBPB
## PP.Nat_1_GFFB   0.3376        0.0000         0.0001         0.0000        
## PP.Nat_2R_GFFB  0.0000        0.3720         0.1637         0.3701        
## PP.Nat_3R_GFFB  0.0000        0.1297         0.0979         0.1875        
## PP.Nat_4R_GFFB  0.0000        0.7568         0.6597         0.6092        
## PP.Nat_1_GFPRB  0.2446        0.0449         0.0003         0.1087        
## PP.Nat_2R_GFPRB 0.0000        0.9376         0.7122         0.8509        
## PP.Nat_3R_GFPRB 0.0000        0.7175         0.5753         0.8354        
## PP.Nat_4R_GFPRB 0.0000        0.5483         0.9688         0.3568        
## PP.Nat_1_CBB    0.0000        0.1295         0.1463         0.1685        
## PP.Nat_2R_CBB   0.8172        0.0065         0.0087         0.1917        
## PP.Nat_3R_CBB   0.5348        0.0086         0.0073         0.3088        
## PP.Nat_4R_CBB   0.9969        0.0166         0.0470         0.0678        
## PP.Nat_1_PBPB                 0.8961         0.4822         0.4477        
## PP.Nat_2R_PBPB  0.8961                       0.0000         0.0000        
## PP.Nat_3R_PBPB  0.4822        0.0000                        0.0000        
## PP.Nat_4R_PBPB  0.4477        0.0000         0.0000                       
## PP.Nat_1_PBFB   0.0000        0.7902         0.4343         0.8715        
## PP.Nat_2R_PBFB  0.9282        0.0000         0.0000         0.0002        
## PP.Nat_3R_PBFB  0.7898        0.0000         0.0000         0.0005        
## PP.Nat_4R_PBFB  0.0606        0.0003         0.0016         0.0000        
## PP.Nat_1_VB     0.0000        0.7408         0.2193         0.4959        
## PP.Nat_2R_VB    0.0331        0.0025         0.0136         0.0033        
## PP.Nat_3R_VB    0.0120        0.0073         0.0005         0.0092        
## PP.Nat_4R_VB    0.4566        0.0005         0.0059         0.0000        
## PP.FR.GFFB      0.1508        0.0000         0.0000         0.0106        
## PP.FR.GFPRB     0.7510        0.0145         0.0000         0.0703        
## PP.FR.CBB       0.0000        0.0586         0.0343         0.1120        
## PP.FR.PBPB      0.0000        0.2545         0.0130         0.5032        
## PP.FR.PBFB      0.0000        0.0874         0.0252         0.1847        
## PP.FR.VB        0.0005        0.0512         0.0016         0.4409        
##                 PP.Nat_1_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_4R_PBFB
## PP.Nat_1_GFFB   0.1963        0.0002         0.0000         0.0030        
## PP.Nat_2R_GFFB  0.0000        0.1964         0.2077         0.9273        
## PP.Nat_3R_GFFB  0.0000        0.1066         0.0743         0.5187        
## PP.Nat_4R_GFFB  0.0000        0.5815         0.6478         0.8535        
## PP.Nat_1_GFPRB  0.1603        0.0032         0.0006         0.0032        
## PP.Nat_2R_GFPRB 0.0000        0.9478         0.9051         0.4238        
## PP.Nat_3R_GFPRB 0.0000        0.6240         0.5321         0.6967        
## PP.Nat_4R_GFPRB 0.0000        0.6832         0.8529         0.7454        
## PP.Nat_1_CBB    0.0000        0.4730         0.4265         0.5511        
## PP.Nat_2R_CBB   0.7019        0.0000         0.0006         0.0050        
## PP.Nat_3R_CBB   0.8645        0.0000         0.0010         0.0143        
## PP.Nat_4R_CBB   0.6167        0.0000         0.0029         0.0008        
## PP.Nat_1_PBPB   0.0000        0.9282         0.7898         0.0606        
## PP.Nat_2R_PBPB  0.7902        0.0000         0.0000         0.0003        
## PP.Nat_3R_PBPB  0.4343        0.0000         0.0000         0.0016        
## PP.Nat_4R_PBPB  0.8715        0.0002         0.0005         0.0000        
## PP.Nat_1_PBFB                 0.8543         0.9165         0.0752        
## PP.Nat_2R_PBFB  0.8543                       0.0000         0.0000        
## PP.Nat_3R_PBFB  0.9165        0.0000                        0.0000        
## PP.Nat_4R_PBFB  0.0752        0.0000         0.0000                       
## PP.Nat_1_VB     0.0000        0.6184         0.5906         0.1497        
## PP.Nat_2R_VB    0.0132        0.0042         0.0070         0.0516        
## PP.Nat_3R_VB    0.0099        0.0029         0.0003         0.0564        
## PP.Nat_4R_VB    0.1349        0.0008         0.0024         0.0011        
## PP.FR.GFFB      0.2705        0.0000         0.0000         0.0058        
## PP.FR.GFPRB     0.9025        0.0038         0.0006         0.0574        
## PP.FR.CBB       0.0000        0.1512         0.1144         0.9669        
## PP.FR.PBPB      0.0000        0.2467         0.1506         0.4894        
## PP.FR.PBFB      0.0000        0.1519         0.1140         0.9038        
## PP.FR.VB        0.0023        0.0287         0.0158         0.7094        
##                 PP.Nat_1_VB PP.Nat_2R_VB PP.Nat_3R_VB PP.Nat_4R_VB PP.FR.GFFB
## PP.Nat_1_GFFB   0.6258      0.0000       0.0000       0.0000       0.0000    
## PP.Nat_2R_GFFB  0.0023      0.0245       0.0379       0.0762       0.0985    
## PP.Nat_3R_GFFB  0.0171      0.0002       0.0008       0.0015       0.0364    
## PP.Nat_4R_GFFB  0.0020      0.0158       0.0636       0.0422       0.3944    
## PP.Nat_1_GFPRB  0.8487      0.9488       0.5124       0.5111       0.0001    
## PP.Nat_2R_GFPRB 0.0118      0.0006       0.0065       0.0173       0.6799    
## PP.Nat_3R_GFPRB 0.0068      0.0004       0.0023       0.0113       0.2939    
## PP.Nat_4R_GFPRB 0.0327      0.0001       0.0042       0.0039       0.8038    
## PP.Nat_1_CBB    0.0285      0.0000       0.0001       0.0006       0.0645    
## PP.Nat_2R_CBB   0.0487      0.7992       0.8935       0.8508       0.0008    
## PP.Nat_3R_CBB   0.0247      0.8947       0.9949       0.8871       0.0001    
## PP.Nat_4R_CBB   0.1143      0.8869       0.9868       0.6247       0.0041    
## PP.Nat_1_PBPB   0.0000      0.0331       0.0120       0.4566       0.1508    
## PP.Nat_2R_PBPB  0.7408      0.0025       0.0073       0.0005       0.0000    
## PP.Nat_3R_PBPB  0.2193      0.0136       0.0005       0.0059       0.0000    
## PP.Nat_4R_PBPB  0.4959      0.0033       0.0092       0.0000       0.0106    
## PP.Nat_1_PBFB   0.0000      0.0132       0.0099       0.1349       0.2705    
## PP.Nat_2R_PBFB  0.6184      0.0042       0.0029       0.0008       0.0000    
## PP.Nat_3R_PBFB  0.5906      0.0070       0.0003       0.0024       0.0000    
## PP.Nat_4R_PBFB  0.1497      0.0516       0.0564       0.0011       0.0058    
## PP.Nat_1_VB                 0.9812       0.5148       0.3695       0.0700    
## PP.Nat_2R_VB    0.9812                   0.0000       0.0000       0.0125    
## PP.Nat_3R_VB    0.5148      0.0000                    0.0000       0.0006    
## PP.Nat_4R_VB    0.3695      0.0000       0.0000                    0.0091    
## PP.FR.GFFB      0.0700      0.0125       0.0006       0.0091                 
## PP.FR.GFPRB     0.0558      0.6318       0.2444       0.5565       0.0000    
## PP.FR.CBB       0.0030      0.0000       0.0002       0.0012       0.0101    
## PP.FR.PBPB      0.0000      0.0091       0.0029       0.1435       0.0156    
## PP.FR.PBFB      0.0002      0.0013       0.0033       0.0211       0.0124    
## PP.FR.VB        0.0000      0.1416       0.0470       0.3893       0.0008    
##                 PP.FR.GFPRB PP.FR.CBB PP.FR.PBPB PP.FR.PBFB PP.FR.VB
## PP.Nat_1_GFFB   0.0148      0.0049    0.1713     0.0380     0.0406  
## PP.Nat_2R_GFFB  0.2621      0.0000    0.0000     0.0000     0.0033  
## PP.Nat_3R_GFFB  0.6310      0.0000    0.0000     0.0000     0.0111  
## PP.Nat_4R_GFFB  0.8509      0.0000    0.0000     0.0000     0.0044  
## PP.Nat_1_GFPRB  0.0000      0.7877    0.9216     0.7664     0.0659  
## PP.Nat_2R_GFPRB 0.2519      0.0000    0.0024     0.0000     0.0385  
## PP.Nat_3R_GFPRB 0.5921      0.0000    0.0003     0.0000     0.0303  
## PP.Nat_4R_GFPRB 0.1694      0.0000    0.0034     0.0000     0.1084  
## PP.Nat_1_CBB    0.7672      0.0000    0.0000     0.0000     0.0190  
## PP.Nat_2R_CBB   0.0002      0.7534    0.3034     0.2092     0.0076  
## PP.Nat_3R_CBB   0.0003      0.4838    0.1365     0.1024     0.0025  
## PP.Nat_4R_CBB   0.0023      0.7334    0.5349     0.2276     0.0254  
## PP.Nat_1_PBPB   0.7510      0.0000    0.0000     0.0000     0.0005  
## PP.Nat_2R_PBPB  0.0145      0.0586    0.2545     0.0874     0.0512  
## PP.Nat_3R_PBPB  0.0000      0.0343    0.0130     0.0252     0.0016  
## PP.Nat_4R_PBPB  0.0703      0.1120    0.5032     0.1847     0.4409  
## PP.Nat_1_PBFB   0.9025      0.0000    0.0000     0.0000     0.0023  
## PP.Nat_2R_PBFB  0.0038      0.1512    0.2467     0.1519     0.0287  
## PP.Nat_3R_PBFB  0.0006      0.1144    0.1506     0.1140     0.0158  
## PP.Nat_4R_PBFB  0.0574      0.9669    0.4894     0.9038     0.7094  
## PP.Nat_1_VB     0.0558      0.0030    0.0000     0.0002     0.0000  
## PP.Nat_2R_VB    0.6318      0.0000    0.0091     0.0013     0.1416  
## PP.Nat_3R_VB    0.2444      0.0002    0.0029     0.0033     0.0470  
## PP.Nat_4R_VB    0.5565      0.0012    0.1435     0.0211     0.3893  
## PP.FR.GFFB      0.0000      0.0101    0.0156     0.0124     0.0008  
## PP.FR.GFPRB                 0.2685    0.0349     0.1020     0.0002  
## PP.FR.CBB       0.2685                0.0000     0.0000     0.0011  
## PP.FR.PBPB      0.0349      0.0000               0.0000     0.0000  
## PP.FR.PBFB      0.1020      0.0000    0.0000                0.0000  
## PP.FR.VB        0.0002      0.0011    0.0000     0.0000
library(corrplot)
corrplot(mydata.corFN, method="color")

corrplot(mydata.corFN, addCoef.col = 1,  number.cex = 0.3, method = 'number')

Variable Checks & Balances

##Naturalness Scales and Scores
PP$Naturalness_Score_GFFB_AN 
## NULL
PP$Naturalness_Score_GFFB_HI 
## NULL
PP$Naturalness_Score_GFPRB_AN
## NULL
PP$Naturalness_Score_GFPRB_HI 
## NULL
PP$Naturalness_Score_CBB_AN 
## NULL
PP$Naturalness_Score_CBB_HI 
## NULL
PP$Naturalness_Score_PBPB_AN
## NULL
PP$Naturalness_Score_PBPB_HI
## NULL
PP$Naturalness_Score_PBFB_AN
## NULL
PP$Naturalness_Score_PBFB_HI
## NULL
PP$Naturalness_Score_VB_AN 
## NULL
PP$Naturalness_Score_VB_HI 
## NULL
PP$Naturalness_Score_GFFB_Tot 
##    [1]       NaN       NaN       NaN  45.50000  23.00000       NaN 100.00000
##    [8]  62.50000 100.00000  50.00000  88.00000  99.50000 100.00000  88.00000
##   [15] 100.00000  99.50000  51.50000  24.25000  42.25000  80.75000  67.50000
##   [22]  76.00000  41.50000  25.00000  62.00000  33.00000  32.25000       NaN
##   [29]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##   [36]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##   [43]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##   [50]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##   [57]       NaN  51.25000       NaN       NaN       NaN  84.75000       NaN
##   [64]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##   [71]       NaN  74.50000  79.75000  75.00000       NaN  25.00000  61.75000
##   [78]       NaN       NaN  78.75000       NaN       NaN       NaN       NaN
##   [85]  99.25000       NaN       NaN       NaN       NaN  30.25000  93.25000
##   [92]       NaN       NaN       NaN       NaN  23.50000       NaN       NaN
##   [99]  41.00000  91.50000       NaN       NaN       NaN       NaN  99.25000
##  [106]  71.25000       NaN       NaN  77.75000  25.75000   9.75000       NaN
##  [113]  89.00000       NaN       NaN       NaN       NaN       NaN       NaN
##  [120]       NaN       NaN       NaN  68.50000       NaN  62.75000       NaN
##  [127]       NaN  52.00000       NaN  70.25000  38.75000       NaN       NaN
##  [134]       NaN  95.75000       NaN       NaN  90.00000  44.25000       NaN
##  [141]       NaN       NaN  50.00000       NaN  64.50000  46.50000  26.25000
##  [148]       NaN  85.00000       NaN  75.75000       NaN  35.00000       NaN
##  [155]       NaN       NaN       NaN  72.50000  57.00000       NaN       NaN
##  [162]       NaN       NaN       NaN  49.00000       NaN       NaN       NaN
##  [169]  60.75000       NaN       NaN  40.00000       NaN       NaN  39.00000
##  [176]       NaN  75.00000  98.25000   0.00000       NaN       NaN       NaN
##  [183]       NaN       NaN       NaN  64.75000       NaN       NaN  63.75000
##  [190]  40.50000       NaN       NaN       NaN  84.75000  34.50000  33.25000
##  [197]  28.50000       NaN  69.50000       NaN       NaN  34.75000  57.25000
##  [204]  60.00000       NaN       NaN  57.25000  40.75000       NaN       NaN
##  [211]       NaN       NaN       NaN       NaN       NaN       NaN  84.50000
##  [218]       NaN       NaN       NaN  59.25000       NaN       NaN       NaN
##  [225]       NaN       NaN       NaN       NaN  49.50000       NaN       NaN
##  [232]  58.00000       NaN       NaN       NaN       NaN  63.25000       NaN
##  [239]  44.50000       NaN  39.00000  53.25000       NaN       NaN       NaN
##  [246]       NaN       NaN       NaN       NaN       NaN  75.00000       NaN
##  [253]       NaN       NaN  54.00000  49.00000  64.00000  57.00000       NaN
##  [260]       NaN       NaN  57.50000       NaN   0.00000       NaN  41.25000
##  [267]  50.00000       NaN  64.50000       NaN  44.25000  81.75000       NaN
##  [274]       NaN       NaN       NaN  26.50000  53.00000       NaN       NaN
##  [281]       NaN       NaN       NaN  32.25000  47.00000  23.75000       NaN
##  [288]       NaN       NaN       NaN  36.75000       NaN       NaN  73.75000
##  [295]       NaN       NaN       NaN  57.00000  69.50000  65.00000       NaN
##  [302]  46.50000       NaN       NaN  42.25000       NaN       NaN       NaN
##  [309]       NaN  44.75000  48.50000  54.50000       NaN       NaN  46.25000
##  [316]  18.75000       NaN       NaN       NaN       NaN  49.75000  49.00000
##  [323]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [330]  45.50000  25.00000       NaN       NaN       NaN  38.00000       NaN
##  [337]       NaN       NaN       NaN  45.25000  47.75000  41.75000  47.50000
##  [344]       NaN  49.00000       NaN       NaN       NaN       NaN       NaN
##  [351]       NaN  57.00000       NaN       NaN       NaN       NaN       NaN
##  [358]  47.25000       NaN       NaN  34.75000  47.75000       NaN       NaN
##  [365]  41.50000       NaN       NaN       NaN       NaN       NaN  41.75000
##  [372]  45.00000       NaN  40.00000       NaN       NaN       NaN       NaN
##  [379]       NaN       NaN  68.00000       NaN       NaN       NaN  51.00000
##  [386]  33.00000       NaN       NaN  38.75000       NaN       NaN       NaN
##  [393]  55.00000  46.75000  33.75000       NaN  48.75000  40.75000  65.00000
##  [400]  41.50000  38.25000       NaN  44.75000  57.50000       NaN  48.00000
##  [407]  56.25000       NaN       NaN  30.25000       NaN  63.50000       NaN
##  [414]       NaN  49.50000       NaN       NaN       NaN       NaN  38.00000
##  [421]       NaN       NaN       NaN  51.50000       NaN       NaN       NaN
##  [428]       NaN  46.50000  37.00000  39.00000       NaN       NaN       NaN
##  [435]  52.25000  38.50000       NaN  66.25000  41.50000       NaN       NaN
##  [442]       NaN  27.25000       NaN  32.00000       NaN       NaN       NaN
##  [449]  26.50000  43.75000       NaN  40.75000       NaN       NaN  33.50000
##  [456]  29.25000       NaN       NaN       NaN  37.75000       NaN  49.25000
##  [463]       NaN       NaN       NaN       NaN       NaN  50.50000  57.25000
##  [470]  33.00000       NaN       NaN  36.50000  32.00000  41.75000       NaN
##  [477]       NaN  32.00000  32.25000       NaN       NaN       NaN       NaN
##  [484]       NaN       NaN       NaN  34.25000       NaN  37.50000  31.75000
##  [491]  28.75000       NaN       NaN  32.25000       NaN       NaN       NaN
##  [498]  22.50000       NaN  37.75000       NaN       NaN       NaN       NaN
##  [505]       NaN  27.00000  62.50000  26.25000  75.00000  25.25000  25.00000
##  [512]       NaN       NaN       NaN       NaN       NaN   7.00000  62.50000
##  [519] 100.00000  66.50000  79.25000 100.00000 100.00000  62.25000  76.00000
##  [526]  50.25000  72.50000  25.00000  75.00000  75.00000  99.25000 100.00000
##  [533]  80.00000  80.50000 100.00000  75.00000  36.25000  99.25000  59.50000
##  [540]  66.25000  60.50000  92.75000  98.50000  71.25000  82.25000  99.25000
##  [547]  78.00000  19.50000  94.50000 100.00000  24.50000  87.25000  25.25000
##  [554]  58.50000  63.25000  77.00000  73.25000  64.50000  48.25000  74.50000
##  [561]  20.25000  67.75000  93.00000  40.00000  69.25000  85.00000  69.50000
##  [568]  38.25000  66.25000  87.25000  19.75000  38.50000  33.00000  78.50000
##  [575] 100.00000  79.00000  37.25000  62.25000  25.00000  52.75000  75.00000
##  [582]  27.25000  82.50000  31.00000  31.25000  45.75000  48.00000  21.50000
##  [589]  33.25000  30.50000  52.00000  32.50000  57.75000  71.50000   0.00000
##  [596]  72.50000  98.50000  29.50000  52.50000  59.50000  60.00000  14.00000
##  [603]  49.25000  63.25000  55.25000  76.00000  63.25000  33.75000  26.00000
##  [610]  36.50000  57.25000  80.25000  48.75000   0.00000  25.75000  66.75000
##  [617]  57.00000  75.75000  53.00000  49.00000  49.75000  52.25000  80.75000
##  [624]  37.25000  62.75000  32.00000  58.75000  45.25000  59.25000  54.50000
##  [631]  58.00000  31.75000  40.00000  63.00000  64.50000  30.00000  49.25000
##  [638]  52.25000  55.75000  37.75000  51.25000  52.75000  79.00000  55.25000
##  [645]  48.00000  52.25000  53.75000  51.00000  49.75000  45.50000  42.75000
##  [652]  53.25000  40.75000  25.00000  49.50000  54.75000  25.00000  50.25000
##  [659]  49.50000  49.50000  49.25000  47.50000  58.00000  49.50000  51.25000
##  [666]  49.00000  48.50000  46.00000  49.25000  49.00000  49.00000  49.00000
##  [673]  49.00000  48.50000  62.25000  28.00000  48.75000  48.75000  48.75000
##  [680]  46.25000  47.25000  55.00000  52.50000  47.25000  47.75000  79.50000
##  [687]  36.00000  44.75000  22.50000  46.75000  49.00000  52.00000  37.25000
##  [694]  39.75000  42.00000  58.00000  43.50000  50.00000  42.25000  58.00000
##  [701]  47.25000  49.50000  50.25000  49.75000  52.75000  94.25000  49.25000
##  [708]  39.00000  55.25000  69.25000  48.75000  43.25000  45.66667  49.50000
##  [715]  16.75000  59.00000  51.00000  56.25000  43.75000  35.50000  53.75000
##  [722]  27.25000  37.75000 100.00000  46.50000  19.75000  48.50000  35.00000
##  [729]  36.75000  43.50000  43.50000  39.25000  66.00000  34.75000  67.75000
##  [736]  42.50000  35.50000  51.00000  41.50000  35.50000  34.75000  23.75000
##  [743]  34.00000  52.25000  41.75000  30.75000  20.00000  43.25000  41.25000
##  [750]  30.75000  50.25000  68.25000  40.50000  75.75000  37.50000  27.75000
##  [757]  37.25000  47.50000  25.00000  36.25000   1.00000  31.50000  40.25000
##  [764]  25.75000  40.25000  37.75000  30.75000  31.25000  42.00000  44.25000
##  [771]  38.50000  18.00000  32.25000  25.00000  76.00000  31.00000  33.25000
##  [778]  39.75000  37.50000  29.50000  43.50000  47.75000  37.50000  33.00000
##  [785]  51.00000  29.50000  50.25000  47.50000  32.75000  10.00000  28.00000
##  [792]  31.25000  31.50000  31.50000  31.00000  66.75000   0.00000  25.00000
##  [799]  32.25000  50.00000   6.25000  28.25000  54.00000  49.75000  29.50000
##  [806]  13.50000   7.00000  25.25000   8.00000  26.00000  25.00000  25.00000
##  [813]  25.00000  25.00000  35.50000   8.50000  25.25000  23.25000  38.00000
##  [820]   0.25000  32.75000   0.00000       NaN       NaN       NaN       NaN
##  [827]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [834]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [841]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [848]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [855]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [862]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [869]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [876]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [883]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [890]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [897]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [904]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [911]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [918]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [925]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [932]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [939]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [946]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [953]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [960]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [967]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [974]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [981]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [988]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [995]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [1002]       NaN       NaN       NaN       NaN
PP$Naturalness_Score_GFPRB_Tot
##    [1]       NaN       NaN  63.75000  46.00000  62.00000  91.25000  99.50000
##    [8] 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000
##   [15]  26.00000  99.25000  50.00000  25.00000 100.00000 100.00000 100.00000
##   [22]  71.50000  82.75000  49.50000 100.00000  66.25000  52.75000 100.00000
##   [29]  99.75000  98.25000 100.00000  62.00000  98.50000  75.00000 100.00000
##   [36]  93.75000  82.00000  75.00000 100.00000 100.00000  75.00000  99.75000
##   [43] 100.00000  75.00000  82.25000  97.50000  81.25000  79.25000  83.75000
##   [50] 100.00000  75.00000 100.00000 100.00000 100.00000  75.00000  75.00000
##   [57] 100.00000  75.00000 100.00000  74.75000  60.00000  74.75000  98.75000
##   [64]  99.25000 100.00000  74.75000  84.50000  99.00000  25.00000  79.00000
##   [71]  92.00000  50.00000  98.25000  99.25000 100.00000  75.00000  96.50000
##   [78]  97.25000  97.00000  79.50000  98.75000  98.00000  94.75000  57.25000
##   [85]  74.00000  49.50000 100.00000  95.50000  70.75000  96.25000  96.25000
##   [92]  96.50000  76.25000   7.00000  75.00000  94.00000  86.75000  62.75000
##   [99]  67.25000  46.75000  92.75000  70.00000  99.50000  98.25000  95.25000
##  [106]  96.50000  75.75000  94.00000  96.75000  69.50000  94.00000  93.50000
##  [113]  91.75000  72.00000 100.00000  92.25000  62.00000  94.00000  68.50000
##  [120]  20.25000  96.50000  67.00000  91.50000  88.00000  88.00000  83.75000
##  [127]  79.50000  80.75000  68.75000  73.75000  84.25000 100.00000  85.50000
##  [134]  95.25000 100.00000  42.75000  77.50000 100.00000  94.75000  44.75000
##  [141] 100.00000  48.50000  79.25000  74.75000  31.00000  81.25000  88.75000
##  [148]  91.25000  85.50000  91.75000  79.50000  78.00000  31.00000  71.75000
##  [155]  84.00000  92.50000  82.50000  66.50000  61.50000  58.25000  66.25000
##  [162]  73.00000 100.00000  64.50000  49.50000  79.75000  30.75000  54.25000
##  [169]  58.75000  59.00000  33.25000  80.50000  89.00000  68.25000  38.75000
##  [176]  65.75000  75.00000  99.75000 100.00000  25.00000  25.00000  62.50000
##  [183] 100.00000  87.25000  81.50000  58.50000 100.00000  79.25000  72.50000
##  [190]  59.25000  29.75000  53.50000  50.50000  69.75000  64.25000  75.00000
##  [197]  73.25000  45.25000 100.00000  75.75000  86.00000  85.25000  76.50000
##  [204]  80.75000  87.75000  58.00000  46.25000  73.00000  75.00000  97.25000
##  [211]  51.75000  65.25000  86.00000  42.25000  51.25000  65.75000  82.50000
##  [218]  81.50000  89.00000  67.75000  58.00000  63.00000  59.00000  74.75000
##  [225]   0.00000 100.00000  69.75000  43.25000  72.50000  56.50000  48.25000
##  [232]  60.25000  55.00000  71.25000  36.25000  85.00000  65.25000  26.75000
##  [239]  57.00000  48.75000  81.00000  51.25000  78.25000  55.25000  43.75000
##  [246]  73.50000  72.00000  77.50000  65.25000  45.25000  84.75000  85.50000
##  [253]  39.00000  97.00000  56.50000  55.75000  61.25000  62.75000  67.75000
##  [260]  67.50000  96.25000  56.50000  70.00000  33.75000  86.50000  37.75000
##  [267]  99.25000  71.50000  58.75000  47.25000  44.50000  67.50000  33.66667
##  [274]  36.50000  57.25000  50.50000  45.50000  40.25000  94.75000  66.00000
##  [281] 100.00000  95.50000  38.25000  60.25000  45.75000  19.25000  67.25000
##  [288]  49.00000  75.00000  48.50000  39.00000  50.75000  51.00000  70.50000
##  [295]  42.25000  80.25000  81.00000  49.00000  96.75000  42.50000  46.00000
##  [302]  54.25000  59.50000  94.00000  75.50000  50.50000  96.25000  60.00000
##  [309]  53.25000  62.00000  45.25000  55.75000  35.25000  49.50000  54.25000
##  [316]  70.00000  43.75000 100.00000  50.50000  73.25000  50.00000  49.50000
##  [323]  43.00000  61.75000  58.25000  86.50000  50.00000  75.25000  50.00000
##  [330]  62.50000  62.50000  67.50000  51.50000  56.50000  92.75000  49.50000
##  [337]  43.25000  49.50000  49.50000  50.00000  46.25000  53.50000  49.00000
##  [344]  99.75000  49.00000  49.00000  59.50000  48.50000  61.75000  30.00000
##  [351]  52.00000  70.00000  46.00000  48.75000  45.50000  53.75000  50.25000
##  [358]  46.75000  48.50000  48.50000  55.50000  53.25000  38.00000  54.00000
##  [365]  47.75000  51.50000  31.75000  49.00000  98.00000  58.00000  41.25000
##  [372]  48.50000  76.50000  51.00000  78.25000  45.75000  42.50000  49.00000
##  [379]  42.25000  29.75000  71.75000  41.50000  43.25000  94.50000  52.75000
##  [386]  67.50000  46.25000  57.50000  49.00000  43.50000  52.75000  50.75000
##  [393]  59.25000  48.50000  23.75000  49.00000  47.25000  55.50000  49.75000
##  [400]  45.00000  41.00000  81.25000  56.50000  21.00000  56.25000  52.50000
##  [407]  42.75000  38.75000  48.50000  16.50000  55.00000  50.00000 100.00000
##  [414]  61.25000  49.50000  41.75000  34.75000  40.25000  41.75000  43.25000
##  [421]  39.25000  57.00000  36.75000  48.00000  65.50000  39.75000  43.75000
##  [428]  41.50000  47.00000  42.00000  42.25000  31.75000  37.75000  10.75000
##  [435]  45.25000  42.25000  73.25000  55.00000  39.50000  79.50000  39.75000
##  [442]  40.75000  30.25000  35.50000  37.50000  53.75000  58.25000   1.75000
##  [449]  41.50000  37.00000  27.50000  42.50000  24.25000  33.25000  60.00000
##  [456]  28.75000  50.75000  38.00000  25.00000  34.50000  35.00000  36.50000
##  [463]  53.00000  33.00000  23.00000  37.75000  50.75000  63.25000  61.50000
##  [470]  32.75000  33.00000  36.50000  34.50000  28.00000  57.00000  33.00000
##  [477]  31.50000  33.75000  36.50000  34.00000  32.00000  35.75000  33.25000
##  [484]  31.50000  27.75000  33.50000  28.25000  36.00000  24.50000  31.50000
##  [491]  31.25000  28.25000  70.75000  31.00000  23.50000  11.75000  35.75000
##  [498]  51.25000  36.25000  46.75000  58.25000  23.75000  46.50000  28.50000
##  [505]  50.25000  32.25000  23.50000  25.00000  25.00000  25.50000  25.00000
##  [512]  74.25000  25.00000  50.25000  23.25000  25.00000       NaN       NaN
##  [519]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [526]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [533]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [540]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [547]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [554]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [561]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [568]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [575]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [582]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [589]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [596]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [603]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [610]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [617]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [624]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [631]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [638]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [645]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [652]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [659]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [666]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [673]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [680]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [687]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [694]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [701]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [708]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [715]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [722]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [729]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [736]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [743]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [750]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [757]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [764]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [771]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [778]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [785]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [792]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [799]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [806]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [813]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [820]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [827]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [834]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [841]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [848]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [855]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [862]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [869]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [876]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [883]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [890]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [897]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [904]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [911]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [918]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [925]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [932]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [939]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [946]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [953]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [960]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [967]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [974]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [981]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [988]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [995]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [1002]       NaN       NaN       NaN       NaN
PP$Naturalness_Score_CBB_Tot 
##    [1]       NaN       NaN  64.50000  46.50000       NaN  66.66667       NaN
##    [8]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##   [15]  25.00000  74.00000       NaN  28.00000       NaN       NaN       NaN
##   [22]       NaN   0.00000   0.00000       NaN       NaN       NaN       NaN
##   [29]       NaN       NaN   0.00000   0.00000  19.25000       NaN   0.00000
##   [36]  96.25000       NaN       NaN  75.00000       NaN  99.50000       NaN
##   [43]       NaN       NaN   8.50000       NaN  50.00000  11.75000   0.00000
##   [50]       NaN  42.00000       NaN       NaN   6.25000       NaN   0.00000
##   [57]       NaN       NaN       NaN       NaN  70.50000       NaN  60.75000
##   [64]       NaN       NaN       NaN       NaN       NaN  98.50000       NaN
##   [71]       NaN       NaN       NaN       NaN   0.00000       NaN       NaN
##   [78]   1.25000       NaN       NaN  16.00000       NaN  33.75000       NaN
##   [85]       NaN  52.50000  62.75000       NaN  59.75000       NaN       NaN
##   [92]       NaN  12.25000       NaN  11.25000       NaN       NaN  50.00000
##   [99]   9.25000  48.00000       NaN       NaN  29.25000       NaN       NaN
##  [106]       NaN   4.00000       NaN       NaN       NaN       NaN  13.50000
##  [113]       NaN  48.00000       NaN   7.50000       NaN       NaN   0.00000
##  [120]       NaN  37.25000       NaN       NaN   0.00000       NaN       NaN
##  [127]  11.25000       NaN       NaN       NaN   3.75000  10.50000       NaN
##  [134]   9.50000   0.00000       NaN       NaN       NaN   3.25000  31.75000
##  [141]       NaN       NaN       NaN  26.25000       NaN       NaN       NaN
##  [148]  30.75000       NaN       NaN  51.50000       NaN  27.75000  25.50000
##  [155]   0.00000       NaN  48.00000  55.50000  60.00000  56.25000  50.25000
##  [162]       NaN   0.00000       NaN  43.50000       NaN   7.50000  66.75000
##  [169]       NaN       NaN       NaN  10.75000  43.50000       NaN       NaN
##  [176]  68.25000       NaN       NaN       NaN   0.00000   0.00000       NaN
##  [183]       NaN       NaN       NaN  21.25000   7.50000       NaN  31.75000
##  [190]       NaN       NaN  31.50000  54.00000       NaN  25.00000       NaN
##  [197]  19.00000       NaN       NaN       NaN       NaN       NaN       NaN
##  [204]       NaN   0.00000       NaN       NaN       NaN  70.50000  52.50000
##  [211]  39.00000       NaN       NaN       NaN       NaN       NaN  77.75000
##  [218]       NaN       NaN       NaN       NaN       NaN       NaN  53.50000
##  [225] 100.00000       NaN       NaN  44.50000       NaN  57.25000  39.25000
##  [232]  52.50000  20.50000       NaN       NaN       NaN       NaN  30.75000
##  [239]       NaN  38.33333   1.50000  58.25000  21.25000       NaN       NaN
##  [246]       NaN       NaN  15.25000  38.00000  52.75000       NaN   0.25000
##  [253]  45.25000       NaN       NaN  49.25000       NaN  34.00000  17.75000
##  [260]  26.75000  16.50000       NaN       NaN       NaN   0.00000       NaN
##  [267]       NaN  30.50000       NaN  45.00000       NaN       NaN       NaN
##  [274]       NaN  28.50000       NaN       NaN  27.75000       NaN       NaN
##  [281]       NaN   1.75000       NaN       NaN       NaN       NaN  36.00000
##  [288]       NaN  65.00000  42.50000       NaN  37.75000  48.00000       NaN
##  [295]  67.50000       NaN       NaN       NaN       NaN       NaN       NaN
##  [302]       NaN  12.25000   0.00000   5.00000       NaN       NaN  56.00000
##  [309]  47.33333       NaN       NaN       NaN       NaN  48.25000       NaN
##  [316]       NaN  48.50000       NaN  30.25000       NaN       NaN       NaN
##  [323]  53.00000       NaN       NaN       NaN  50.00000  25.00000       NaN
##  [330]       NaN       NaN       NaN  50.25000   9.50000  12.75000       NaN
##  [337]  57.50000  49.50000       NaN       NaN  48.50000  52.00000       NaN
##  [344]  88.75000  44.00000       NaN       NaN       NaN   5.75000   7.50000
##  [351]       NaN       NaN  53.75000  48.25000  27.00000  37.50000       NaN
##  [358]       NaN  48.00000  54.00000       NaN  44.25000  36.50000       NaN
##  [365]       NaN  41.75000       NaN       NaN       NaN  30.75000       NaN
##  [372]       NaN  48.75000       NaN       NaN       NaN  41.75000  50.50000
##  [379]  29.25000  28.25000       NaN  31.75000  39.50000       NaN       NaN
##  [386]       NaN  44.75000       NaN       NaN       NaN       NaN       NaN
##  [393]  28.75000       NaN       NaN       NaN       NaN       NaN  75.00000
##  [400]  42.75000  50.25000       NaN  53.00000  26.75000       NaN       NaN
##  [407]       NaN       NaN       NaN  48.25000  50.00000       NaN       NaN
##  [414]  27.00000  36.50000       NaN       NaN  43.75000       NaN       NaN
##  [421]       NaN       NaN  59.00000       NaN       NaN       NaN       NaN
##  [428]  43.00000       NaN       NaN       NaN  59.00000       NaN       NaN
##  [435]       NaN       NaN   0.50000       NaN       NaN       NaN  39.75000
##  [442]  32.25000       NaN  43.25000       NaN       NaN  53.75000  46.50000
##  [449]       NaN  40.25000       NaN       NaN       NaN       NaN       NaN
##  [456]       NaN  80.25000       NaN       NaN       NaN  55.75000       NaN
##  [463]  35.25000       NaN       NaN  25.00000       NaN       NaN       NaN
##  [470]       NaN  52.25000       NaN       NaN  30.25000       NaN  37.50000
##  [477]       NaN       NaN  31.75000       NaN       NaN       NaN       NaN
##  [484]  32.75000   2.00000  35.75000       NaN       NaN   0.00000  24.25000
##  [491]  24.75000  25.00000   6.00000       NaN  26.75000       NaN       NaN
##  [498]       NaN  62.75000  26.25000       NaN  33.50000       NaN  26.75000
##  [505]       NaN       NaN       NaN  25.00000  25.00000  25.00000       NaN
##  [512]  75.50000  25.00000       NaN   1.75000  25.00000       NaN   0.00000
##  [519]       NaN   0.00000       NaN       NaN       NaN  59.00000       NaN
##  [526]       NaN       NaN       NaN       NaN       NaN   0.00000   0.25000
##  [533]  64.50000  23.50000   0.00000   0.00000       NaN   0.00000       NaN
##  [540]       NaN  24.00000       NaN   2.50000  32.25000  48.75000       NaN
##  [547]       NaN       NaN       NaN   0.00000  28.50000  27.75000  36.50000
##  [554]  34.50000  43.00000       NaN   6.25000       NaN  40.25000       NaN
##  [561]   0.00000  50.00000       NaN  16.25000       NaN       NaN  72.50000
##  [568]  25.00000  23.25000   0.25000  74.50000  47.00000   6.50000       NaN
##  [575]       NaN  43.75000       NaN       NaN  25.00000       NaN       NaN
##  [582]       NaN  61.50000       NaN       NaN       NaN  24.50000       NaN
##  [589]  15.50000   0.00000   0.00000  34.50000  59.00000   6.75000   0.00000
##  [596]       NaN       NaN   0.00000  32.25000       NaN   0.00000   7.75000
##  [603]  50.25000       NaN  55.00000   5.25000       NaN       NaN       NaN
##  [610]  48.50000       NaN       NaN  22.25000   0.00000  19.25000  28.25000
##  [617]  58.50000       NaN  50.50000  44.50000  42.50000  67.75000       NaN
##  [624]       NaN  29.75000  42.25000       NaN       NaN  50.50000       NaN
##  [631]       NaN  22.25000  52.00000   8.25000       NaN       NaN  53.00000
##  [638]  67.75000       NaN  43.75000       NaN  46.75000   0.00000  65.25000
##  [645]  57.00000  52.25000  53.00000       NaN       NaN       NaN       NaN
##  [652]       NaN  36.00000  99.75000  43.75000  57.00000       NaN       NaN
##  [659]       NaN       NaN       NaN  25.50000       NaN  68.75000  47.75000
##  [666]       NaN       NaN       NaN   0.00000  51.00000  49.00000       NaN
##  [673]       NaN  48.25000  13.00000       NaN       NaN  40.00000       NaN
##  [680]       NaN       NaN       NaN       NaN  40.25000  39.50000   1.50000
##  [687]       NaN  18.00000       NaN       NaN  42.75000       NaN       NaN
##  [694]       NaN  49.25000       NaN       NaN       NaN  47.50000       NaN
##  [701]  46.75000   6.50000       NaN       NaN  63.50000   0.00000  51.25000
##  [708]  59.00000  16.75000       NaN       NaN  52.75000       NaN       NaN
##  [715]   0.00000       NaN  50.00000  33.25000       NaN  56.50000  37.25000
##  [722]       NaN       NaN       NaN  90.50000       NaN  48.50000  32.00000
##  [729]  32.50000  46.25000  29.50000       NaN       NaN       NaN  22.50000
##  [736]  43.75000  48.00000       NaN       NaN       NaN  54.75000       NaN
##  [743]       NaN  45.25000  38.50000       NaN  22.50000  41.50000       NaN
##  [750]  35.50000       NaN       NaN  35.50000  67.00000       NaN       NaN
##  [757]       NaN       NaN   2.25000  14.75000  49.25000  43.00000  43.00000
##  [764]  25.00000  32.75000       NaN  34.75000  31.75000       NaN       NaN
##  [771]  34.50000       NaN   6.25000   0.00000       NaN       NaN       NaN
##  [778]  39.00000  40.50000       NaN  33.25000       NaN  36.00000       NaN
##  [785]  62.00000  35.50000       NaN  40.75000       NaN   0.00000  31.00000
##  [792]  34.50000  32.00000       NaN  30.00000       NaN   2.25000  75.00000
##  [799]   5.75000  17.50000       NaN       NaN       NaN       NaN       NaN
##  [806]       NaN  44.50000  25.50000  25.00000  25.75000  25.00000  25.75000
##  [813]  25.00000  25.00000  25.00000       NaN       NaN  33.50000  45.00000
##  [820]  25.00000       NaN  25.00000       NaN  67.00000       NaN       NaN
##  [827]  30.50000  44.00000  41.00000  35.00000  49.25000  36.25000       NaN
##  [834]  49.25000       NaN  47.00000       NaN   0.50000   4.75000  17.00000
##  [841]   4.25000  51.00000  44.50000  75.00000  66.00000   6.50000       NaN
##  [848]  49.00000  35.50000       NaN       NaN  46.75000  25.00000       NaN
##  [855]   7.75000  42.75000  30.25000  11.50000  62.50000 100.00000  66.75000
##  [862]  24.50000  30.00000  53.50000  54.50000  42.25000   0.00000  48.75000
##  [869]  34.75000  48.25000  29.50000       NaN   1.00000   2.50000  44.25000
##  [876]  12.75000  46.25000   1.75000  50.50000   7.75000  63.75000  40.50000
##  [883]  30.00000       NaN       NaN  99.75000  47.75000  35.00000  39.75000
##  [890]  13.50000  39.50000  45.25000       NaN       NaN  55.00000   0.00000
##  [897]       NaN  27.25000       NaN  32.50000       NaN  48.25000   0.00000
##  [904]       NaN       NaN  22.50000   0.00000  47.25000       NaN  44.75000
##  [911]  40.50000  56.00000  62.50000   0.00000  55.00000  50.50000       NaN
##  [918]  31.50000  47.25000  15.00000  17.00000  29.50000  22.75000  12.50000
##  [925]  45.75000  12.25000  12.75000       NaN  38.00000  32.00000   9.00000
##  [932]  54.00000   0.00000       NaN       NaN   0.00000  41.25000       NaN
##  [939]  37.50000  30.25000       NaN  54.50000  25.50000  43.25000  45.75000
##  [946]       NaN       NaN       NaN  56.75000  44.50000  47.75000  15.00000
##  [953]  29.50000   5.25000  27.50000       NaN  48.50000  14.00000  58.50000
##  [960]  49.00000  29.75000  52.25000  30.50000       NaN       NaN  50.75000
##  [967]  39.00000       NaN  46.75000  44.50000  17.50000  61.00000  45.75000
##  [974]  14.50000  25.00000  27.00000  24.25000  53.00000       NaN       NaN
##  [981]  33.75000       NaN  19.75000  49.00000   0.50000  50.00000  26.50000
##  [988]  45.25000  44.75000  56.00000  49.00000  53.50000  22.50000  42.00000
##  [995]       NaN  19.75000   2.50000  13.50000  55.25000  61.00000       NaN
## [1002]  65.75000  32.50000  39.75000       NaN
PP$Naturalness_Score_PBPB_Tot
##    [1]       NaN  48.75000  30.75000       NaN  92.00000       NaN       NaN
##    [8]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##   [15]       NaN       NaN       NaN       NaN       NaN  15.50000       NaN
##   [22]       NaN       NaN       NaN       NaN  97.00000       NaN       NaN
##   [29]       NaN       NaN   0.00000       NaN       NaN   0.00000   0.00000
##   [36]       NaN   3.50000  25.00000       NaN  30.75000       NaN  12.25000
##   [43]  19.25000       NaN       NaN  12.75000  25.00000       NaN       NaN
##   [50]  11.25000       NaN  12.75000   0.75000       NaN  79.75000  50.00000
##   [57]       NaN       NaN       NaN       NaN  45.25000       NaN       NaN
##   [64]       NaN  74.50000       NaN       NaN  48.75000  50.00000  75.00000
##   [71]  47.75000  50.00000       NaN  25.00000  11.00000       NaN       NaN
##   [78]       NaN       NaN       NaN       NaN       NaN       NaN  36.25000
##   [85]   1.00000       NaN       NaN  42.25000       NaN   0.00000  21.75000
##   [92]       NaN   4.25000       NaN  96.75000  25.00000  38.50000       NaN
##   [99]       NaN       NaN   8.00000  51.50000       NaN   2.50000       NaN
##  [106]       NaN  41.50000       NaN  66.25000       NaN  72.75000   8.00000
##  [113]  73.00000  49.75000       NaN       NaN       NaN       NaN   0.00000
##  [120]  30.00000       NaN  49.00000       NaN       NaN       NaN  19.75000
##  [127]  11.25000       NaN  49.00000       NaN       NaN       NaN  33.25000
##  [134]       NaN       NaN       NaN  48.50000       NaN       NaN       NaN
##  [141]  87.00000       NaN  75.00000  40.75000       NaN       NaN       NaN
##  [148]  53.50000       NaN       NaN       NaN  54.75000       NaN       NaN
##  [155]       NaN  30.75000       NaN       NaN       NaN       NaN       NaN
##  [162]       NaN  62.25000  69.00000       NaN  25.00000   7.00000       NaN
##  [169]  48.00000       NaN  37.25000       NaN       NaN       NaN       NaN
##  [176]       NaN  75.00000  10.25000       NaN       NaN   0.00000   0.00000
##  [183]       NaN       NaN  72.75000       NaN       NaN  23.00000       NaN
##  [190]  63.50000  66.75000  39.00000       NaN       NaN       NaN  69.50000
##  [197]       NaN  25.00000  48.75000  50.00000  41.25000  18.75000       NaN
##  [204]       NaN       NaN  62.25000  44.50000       NaN  57.25000  24.75000
##  [211]       NaN       NaN  28.00000  36.25000  58.50000       NaN       NaN
##  [218]       NaN  23.25000  25.50000  59.00000       NaN  62.00000  88.25000
##  [225]   2.25000       NaN  57.75000       NaN       NaN       NaN       NaN
##  [232]       NaN  21.50000       NaN       NaN       NaN       NaN       NaN
##  [239]       NaN  47.00000       NaN       NaN       NaN       NaN       NaN
##  [246]  72.25000  52.75000  20.00000       NaN       NaN       NaN       NaN
##  [253]  34.00000  10.00000  67.50000       NaN       NaN       NaN       NaN
##  [260]       NaN       NaN  38.50000  63.50000  31.00000  48.25000       NaN
##  [267]  25.00000       NaN       NaN  49.50000       NaN  32.25000  27.00000
##  [274]  62.75000       NaN  46.50000       NaN       NaN  57.75000  34.75000
##  [281]  32.50000  65.75000       NaN       NaN       NaN       NaN  60.75000
##  [288]       NaN  29.00000       NaN  54.50000       NaN  45.50000  59.50000
##  [295]  38.25000  23.75000  76.25000  51.00000       NaN  40.50000  38.25000
##  [302]  46.25000       NaN       NaN       NaN  52.00000  29.25000  57.25000
##  [309]  51.25000       NaN       NaN       NaN  27.50000       NaN       NaN
##  [316]       NaN       NaN       NaN       NaN  49.00000  50.00000       NaN
##  [323]       NaN       NaN  83.66667  40.50000  50.00000  50.00000  50.00000
##  [330]  49.75000  75.00000       NaN       NaN  49.50000       NaN       NaN
##  [337]       NaN  49.75000       NaN       NaN       NaN       NaN  52.50000
##  [344]       NaN       NaN       NaN  36.50000  49.00000       NaN  25.00000
##  [351]  50.00000       NaN  53.50000       NaN       NaN       NaN  39.75000
##  [358]  49.00000       NaN       NaN  33.50000       NaN  27.25000       NaN
##  [365]  46.00000  39.75000       NaN  48.50000  44.50000  24.75000       NaN
##  [372]       NaN       NaN  39.00000  54.75000  42.00000  44.00000       NaN
##  [379]  43.25000       NaN       NaN  41.50000  53.25000       NaN       NaN
##  [386]  29.75000  50.75000  45.75000  22.50000       NaN  39.25000  46.75000
##  [393]       NaN       NaN  48.25000  45.75000       NaN  42.00000       NaN
##  [400]       NaN       NaN  34.25000       NaN       NaN       NaN  74.75000
##  [407]  53.75000  56.25000  47.50000       NaN  38.00000  57.50000  25.00000
##  [414]       NaN       NaN       NaN       NaN       NaN  34.75000       NaN
##  [421]       NaN       NaN  72.50000       NaN       NaN  55.75000       NaN
##  [428]       NaN       NaN       NaN  42.50000       NaN  62.75000       NaN
##  [435]       NaN       NaN       NaN  69.50000       NaN  37.50000       NaN
##  [442]       NaN       NaN       NaN  46.25000  43.75000  35.25000       NaN
##  [449]  40.75000       NaN       NaN  41.00000       NaN  32.25000  62.50000
##  [456]       NaN       NaN  37.25000       NaN       NaN  23.25000       NaN
##  [463]       NaN  35.25000       NaN       NaN  16.50000       NaN  52.25000
##  [470]       NaN  48.00000  33.50000  39.25000       NaN       NaN       NaN
##  [477]       NaN       NaN       NaN  31.75000       NaN  29.50000  28.25000
##  [484]       NaN  64.25000       NaN       NaN  38.75000       NaN       NaN
##  [491]       NaN       NaN       NaN       NaN       NaN       NaN  50.50000
##  [498]  28.50000       NaN       NaN       NaN  26.75000       NaN       NaN
##  [505]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
##  [512]       NaN       NaN       NaN       NaN       NaN       NaN   1.25000
##  [519]       NaN  49.50000  51.00000   0.00000       NaN       NaN  46.75000
##  [526]  75.00000   0.00000  50.00000  25.00000  55.75000       NaN   0.00000
##  [533]  62.50000       NaN 100.00000       NaN  56.25000       NaN  25.00000
##  [540]  80.50000       NaN       NaN  25.25000       NaN       NaN       NaN
##  [547]       NaN       NaN   1.00000       NaN  25.75000  55.75000  37.25000
##  [554]       NaN       NaN  66.00000       NaN  64.75000  31.50000  43.50000
##  [561]       NaN       NaN  38.25000  74.25000  65.25000   3.00000  54.50000
##  [568]  44.00000       NaN       NaN  60.75000  63.50000  58.25000  54.75000
##  [575]       NaN  39.50000  47.00000       NaN       NaN  40.75000       NaN
##  [582]  53.50000  44.25000  32.00000  31.50000  71.75000       NaN  48.75000
##  [589]  77.75000       NaN       NaN       NaN       NaN       NaN   0.00000
##  [596]  48.25000       NaN   1.25000       NaN   0.50000       NaN       NaN
##  [603]       NaN       NaN       NaN       NaN   6.50000       NaN  27.00000
##  [610]       NaN  28.00000  58.50000  39.00000 100.00000       NaN  44.50000
##  [617]       NaN  11.00000  36.75000  47.75000  42.25000  68.25000  45.25000
##  [624]  67.25000       NaN  48.25000  57.50000       NaN       NaN       NaN
##  [631]  37.00000       NaN       NaN   5.25000  30.75000       NaN       NaN
##  [638]       NaN  48.25000       NaN  59.75000       NaN       NaN       NaN
##  [645]       NaN  37.50000       NaN       NaN  84.75000  36.75000  46.50000
##  [652]  51.50000       NaN  49.50000       NaN  54.25000   0.00000  72.00000
##  [659]       NaN  49.25000  49.50000       NaN       NaN  63.75000  50.00000
##  [666]  66.00000   6.25000  51.50000       NaN       NaN       NaN  48.50000
##  [673]  49.50000       NaN       NaN       NaN       NaN       NaN       NaN
##  [680]  48.50000  44.25000  50.50000       NaN       NaN       NaN       NaN
##  [687]  39.25000       NaN       NaN       NaN       NaN   3.25000  43.00000
##  [694]  35.25000  35.25000       NaN  51.25000       NaN  32.75000  42.50000
##  [701]  47.25000       NaN  45.75000  54.50000  55.00000  49.00000       NaN
##  [708]  60.25000       NaN  35.50000       NaN       NaN  45.00000  55.00000
##  [715]  81.50000  61.25000  50.00000  51.00000  60.50000       NaN       NaN
##  [722]  39.00000  17.50000  38.00000       NaN  43.25000  34.00000       NaN
##  [729]  46.75000       NaN  41.00000  41.25000  45.75000  47.25000       NaN
##  [736]  34.50000       NaN  24.50000  31.25000   0.00000       NaN   1.75000
##  [743]       NaN       NaN       NaN  57.75000       NaN  41.50000  37.25000
##  [750]  38.50000  21.50000       NaN  42.50000   0.00000  39.25000  46.75000
##  [757]  45.00000       NaN       NaN  51.25000  41.75000       NaN  40.50000
##  [764]  24.75000       NaN  59.75000       NaN       NaN  53.50000  73.75000
##  [771]       NaN  61.25000  41.50000       NaN  56.50000  33.75000  35.00000
##  [778]  37.75000       NaN  40.50000       NaN  46.75000       NaN       NaN
##  [785]       NaN       NaN  37.00000       NaN       NaN       NaN  24.25000
##  [792]  30.25000       NaN  29.50000       NaN       NaN  56.25000  75.00000
##  [799]       NaN       NaN  37.50000  24.75000       NaN       NaN       NaN
##  [806]       NaN       NaN       NaN       NaN  26.50000       NaN       NaN
##  [813]  25.00000  25.00000  29.00000  60.00000  32.00000       NaN       NaN
##  [820]       NaN  73.50000       NaN  25.50000       NaN  17.50000 100.00000
##  [827]       NaN  40.25000  41.25000       NaN  36.50000  69.75000  30.75000
##  [834]  53.75000  43.50000       NaN  44.50000  71.00000       NaN  62.00000
##  [841]       NaN       NaN  50.75000  68.50000  47.00000  45.00000  65.75000
##  [848]       NaN  28.75000  39.50000  25.25000       NaN       NaN  44.00000
##  [855]       NaN  52.25000  37.75000   6.25000  58.75000  25.00000  55.00000
##  [862]  38.25000  49.75000  66.50000  50.25000  57.00000  92.25000  11.25000
##  [869]  25.25000       NaN  31.00000  28.00000  64.50000       NaN  65.50000
##  [876]       NaN  52.50000  98.50000  36.75000   0.00000  14.50000  31.00000
##  [883]   9.75000  53.25000  48.75000       NaN  33.50000  23.00000       NaN
##  [890]       NaN  49.50000  40.75000  46.75000   0.00000       NaN  24.75000
##  [897]  13.25000  29.25000  25.00000       NaN  75.50000  37.25000   0.00000
##  [904]  59.25000  28.50000  26.75000  50.50000  47.75000  37.50000  54.25000
##  [911]  46.00000  52.00000  32.75000  17.00000  52.25000  52.75000  45.75000
##  [918]       NaN  27.00000  39.50000       NaN  43.00000  84.50000       NaN
##  [925]  52.00000  14.00000  21.00000  35.50000  49.25000       NaN  20.25000
##  [932]       NaN       NaN  10.25000  39.50000   0.00000       NaN  54.66667
##  [939]  35.00000  47.25000  57.75000  43.00000  25.50000  44.00000  43.50000
##  [946]  61.25000  34.75000  69.00000  57.25000       NaN  48.25000       NaN
##  [953]  58.50000  49.25000       NaN  58.25000  50.00000       NaN       NaN
##  [960]       NaN  29.00000       NaN       NaN  75.75000  25.75000  54.75000
##  [967]  10.75000  47.00000  74.00000  41.50000  53.75000  68.00000  68.75000
##  [974]  38.00000       NaN       NaN  62.75000  72.75000  33.00000  58.25000
##  [981]  25.75000  31.75000  16.00000  49.00000   0.50000  50.00000  53.75000
##  [988]  43.75000       NaN  65.50000  49.00000       NaN  47.25000  39.25000
##  [995]  20.50000  75.75000       NaN       NaN  53.75000       NaN   8.25000
## [1002]  40.75000       NaN  33.50000  54.25000
PP$Naturalness_Score_PBFB_Tot
##    [1]    NaN  41.50    NaN    NaN    NaN  96.50  13.25  75.00  75.00 100.00
##   [11]  75.00    NaN    NaN    NaN    NaN    NaN  43.00    NaN  75.00    NaN
##   [21]  75.00  45.00    NaN    NaN    NaN    NaN  43.50  74.25  67.00  55.50
##   [31]    NaN  63.00  60.50  50.00    NaN    NaN    NaN  37.50 100.00  67.00
##   [41]  71.00  23.75  75.00   0.00  51.50    NaN    NaN  69.75    NaN  57.00
##   [51]  52.25    NaN  51.00  75.00  53.00    NaN  75.00    NaN  75.25  75.00
##   [61]    NaN  75.00    NaN  23.25   0.25  75.00  60.25  75.25    NaN    NaN
##   [71]    NaN    NaN  75.00    NaN    NaN    NaN    NaN    NaN  63.00    NaN
##   [81]  60.00  51.75  65.75  80.00    NaN    NaN  78.50  41.00  29.50    NaN
##   [91]    NaN  75.00    NaN  25.00    NaN    NaN  76.75    NaN    NaN    NaN
##  [101]  70.50  97.00  64.00  80.75    NaN    NaN    NaN  72.75    NaN    NaN
##  [111]    NaN    NaN    NaN    NaN  68.00    NaN  75.00  75.00    NaN    NaN
##  [121]    NaN    NaN    NaN    NaN    NaN  51.00    NaN  28.25    NaN  52.75
##  [131]    NaN  67.00    NaN  70.50    NaN  51.00    NaN    NaN    NaN    NaN
##  [141]  50.00   4.25    NaN    NaN  52.75  60.25    NaN    NaN  63.75  62.50
##  [151]    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN
##  [161]    NaN  58.00    NaN    NaN    NaN  92.75    NaN    NaN    NaN  48.25
##  [171]    NaN    NaN    NaN  55.75    NaN  49.25    NaN    NaN    NaN    NaN
##  [181]    NaN    NaN  75.00  55.25  69.00    NaN    NaN    NaN    NaN    NaN
##  [191]    NaN    NaN    NaN  64.25    NaN    NaN    NaN    NaN    NaN    NaN
##  [201]    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN
##  [211]  51.00  48.50    NaN  60.75    NaN  65.00    NaN  48.25    NaN  58.25
##  [221]    NaN  69.75  46.75    NaN    NaN  69.00  61.00  52.75    NaN    NaN
##  [231]  71.50    NaN    NaN  54.75  82.75  70.50  54.25  72.50  54.25    NaN
##  [241]    NaN    NaN    NaN  68.25   2.75    NaN  56.00    NaN  60.00    NaN
##  [251]    NaN  74.00    NaN    NaN    NaN    NaN    NaN    NaN  75.50    NaN
##  [261]    NaN    NaN  45.25    NaN    NaN    NaN    NaN    NaN  38.50    NaN
##  [271]  19.00    NaN    NaN    NaN  60.75  50.25    NaN    NaN  71.50  59.00
##  [281]    NaN    NaN    NaN  64.25    NaN  39.25    NaN  53.25    NaN    NaN
##  [291]    NaN    NaN    NaN    NaN    NaN    NaN  65.25    NaN  11.25    NaN
##  [301]    NaN    NaN    NaN  62.25    NaN    NaN  84.00    NaN    NaN    NaN
##  [311]    NaN    NaN  43.50    NaN  66.75    NaN    NaN  60.00    NaN    NaN
##  [321]    NaN    NaN  66.00  86.75    NaN  66.25    NaN    NaN  50.00    NaN
##  [331]    NaN  88.50  52.00    NaN    NaN  51.00    NaN    NaN  52.50    NaN
##  [341]    NaN    NaN    NaN    NaN    NaN  52.00    NaN    NaN  59.00    NaN
##  [351]    NaN  66.25    NaN    NaN    NaN    NaN  67.00    NaN    NaN  52.75
##  [361]    NaN    NaN    NaN  46.00    NaN    NaN  55.00    NaN  77.00    NaN
##  [371]    NaN    NaN  54.00    NaN  58.25    NaN    NaN  61.25    NaN  93.75
##  [381]  67.00    NaN    NaN  45.50    NaN    NaN    NaN  51.25    NaN  65.75
##  [391]    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN
##  [401]    NaN    NaN    NaN    NaN  67.00    NaN    NaN    NaN    NaN    NaN
##  [411]    NaN    NaN  87.50    NaN    NaN  51.75  68.00  66.00  37.00    NaN
##  [421]  64.25  67.25    NaN    NaN  27.50  63.75  63.25  61.00  60.50  52.75
##  [431]    NaN    NaN    NaN  75.00  68.25    NaN    NaN    NaN  73.50 100.00
##  [441]    NaN    NaN  82.25  63.00    NaN    NaN    NaN    NaN    NaN    NaN
##  [451]  71.25    NaN  72.25  83.25    NaN    NaN  63.25    NaN 100.00  75.00
##  [461]    NaN  59.50  49.75  81.25  64.25  81.50    NaN  71.75    NaN    NaN
##  [471]    NaN    NaN    NaN    NaN  60.00    NaN  96.00    NaN    NaN  85.75
##  [481]  99.00  79.00    NaN    NaN    NaN  82.00    NaN  76.25    NaN    NaN
##  [491]    NaN    NaN  84.00  94.75  73.25  80.75  76.00    NaN  77.50    NaN
##  [501]  70.25    NaN  68.50  96.50  57.25  40.00  97.50    NaN    NaN    NaN
##  [511]    NaN    NaN 100.00  92.75  76.00    NaN    NaN    NaN  25.00    NaN
##  [521]  62.75  75.00  93.75   0.00    NaN   0.00    NaN    NaN  75.00    NaN
##  [531]    NaN    NaN    NaN  59.50    NaN   0.00  91.00  75.00    NaN  55.50
##  [541]    NaN  51.50    NaN    NaN    NaN  75.00  75.00  64.50  74.50    NaN
##  [551]    NaN    NaN    NaN  53.75    NaN    NaN    NaN  19.25    NaN  46.75
##  [561]    NaN  74.75  64.75    NaN  61.75    NaN    NaN    NaN    NaN  55.50
##  [571]    NaN    NaN    NaN  63.75  82.50    NaN    NaN  26.50    NaN  55.00
##  [581]  48.50  96.50    NaN    NaN    NaN  44.50  47.75    NaN    NaN    NaN
##  [591]    NaN  31.25    NaN  75.25    NaN    NaN  75.00    NaN    NaN  74.25
##  [601]    NaN  67.00    NaN  59.00    NaN  75.25    NaN  81.50    NaN    NaN
##  [611]  51.75    NaN    NaN    NaN  78.00    NaN    NaN    NaN    NaN    NaN
##  [621]    NaN    NaN    NaN  75.00    NaN    NaN    NaN  64.75    NaN  52.00
##  [631]    NaN    NaN    NaN    NaN  60.00  78.50    NaN    NaN  47.00  52.25
##  [641]    NaN  59.75  75.00    NaN  52.00    NaN    NaN  31.75  61.25  60.25
##  [651]    NaN  59.75    NaN    NaN    NaN    NaN    NaN  32.75  51.25  52.00
##  [661]  51.50    NaN  66.75    NaN    NaN  68.50  73.75    NaN    NaN    NaN
##  [671]    NaN  52.50  52.00    NaN    NaN  57.00  66.25  65.50  54.75  54.00
##  [681]  49.75  61.75  53.50    NaN    NaN    NaN    NaN  66.25  59.50  50.00
##  [691]    NaN  44.75  69.75    NaN    NaN    NaN  60.25  47.50    NaN    NaN
##  [701]    NaN    NaN  64.75  53.25    NaN    NaN    NaN    NaN  55.00  58.25
##  [711]  41.25    NaN  51.25    NaN    NaN    NaN    NaN    NaN  63.75  61.25
##  [721]    NaN  73.25    NaN    NaN  37.25  77.75    NaN  61.50    NaN  51.50
##  [731]    NaN  64.00    NaN    NaN  70.75    NaN    NaN    NaN  52.00    NaN
##  [741]  64.75   7.50  95.75    NaN  77.00  56.25    NaN    NaN  51.00    NaN
##  [751]    NaN  68.00    NaN    NaN  71.50  86.00  66.50  71.50    NaN    NaN
##  [761]    NaN    NaN    NaN    NaN  59.00  47.50  64.50    NaN  37.75  58.75
##  [771]  86.75  79.75    NaN    NaN    NaN  90.00    NaN    NaN    NaN    NaN
##  [781]  48.75  49.50  83.50  77.75    NaN  65.00    NaN    NaN  85.50  86.25
##  [791]    NaN    NaN    NaN  74.00  91.50  74.50    NaN    NaN    NaN    NaN
##  [801]  69.75  94.25  48.00  65.00  98.50  73.50    NaN  99.75  70.50    NaN
##  [811] 100.00    NaN    NaN    NaN    NaN    NaN    NaN    NaN  53.25  53.25
##  [821]  74.25   0.00  68.75  43.00  70.00  22.50  94.25  64.75  66.00  35.00
##  [831]  52.50    NaN  62.75  52.25  36.25  64.50  81.75    NaN  59.00    NaN
##  [841]  56.75  72.25  65.75    NaN    NaN  60.00  38.75  59.00    NaN  69.75
##  [851]  71.50  51.75  50.00  56.50  64.75    NaN    NaN  74.00  46.25  62.50
##  [861]  57.25  74.00  63.75  50.00  68.75  57.00    NaN    NaN    NaN  60.50
##  [871]  96.25  67.25  68.00  73.50  61.25  91.50  38.25    NaN    NaN    NaN
##  [881]  31.00  70.50  80.50  52.50  53.00  94.50    NaN  65.50  70.00  81.00
##  [891]  53.50  64.50  79.50  75.00  39.50  75.00  76.00  92.75  50.00  50.00
##  [901]  47.00  55.00  75.00  62.00  74.25  57.50  63.75  61.25  82.50    NaN
##  [911]    NaN    NaN  75.75  74.50  58.75  55.50  68.75 100.00  52.50  71.00
##  [921]  28.25    NaN  27.75  63.25    NaN  69.75    NaN  55.25  56.00  85.25
##  [931]    NaN  73.00  75.00  96.50  73.25    NaN  77.75  44.00    NaN  68.75
##  [941]  38.00  55.00    NaN    NaN  61.00  53.50  47.00  50.75  66.75  58.00
##  [951]  45.75  60.00  56.50    NaN  55.25  82.00    NaN  43.00  29.00  52.00
##  [961]  87.25  67.25  56.75  71.75  75.00    NaN  35.25  60.75    NaN  53.50
##  [971]  54.75  27.00    NaN  66.75  92.50  55.00    NaN    NaN  62.50  89.75
##  [981]    NaN  69.00    NaN    NaN    NaN    NaN    NaN    NaN  93.25  50.75
##  [991]  51.75  41.50  61.50  45.25  64.00  52.50  72.00  30.75    NaN  35.75
## [1001]  75.00  43.75  76.50  78.25  60.25
PP$Naturalness_Score_VB_Tot 
##    [1]    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN    NaN
##   [11]    NaN  72.75  60.00  50.25    NaN    NaN    NaN    NaN    NaN    NaN
##   [21]    NaN    NaN    NaN    NaN  74.00    NaN    NaN  80.25 100.00  21.50
##   [31]    NaN    NaN    NaN    NaN    NaN  50.00  25.00    NaN    NaN    NaN
##   [41]    NaN    NaN    NaN  75.00    NaN  32.00    NaN    NaN  75.00    NaN
##   [51]    NaN  51.50    NaN    NaN    NaN    NaN  97.75  96.50  24.75  73.00
##   [61]    NaN    NaN  99.25  99.75    NaN  49.00  99.50    NaN    NaN  75.00
##   [71]  39.50    NaN    NaN    NaN    NaN  25.00  71.25  35.75   8.75  95.00
##   [81]    NaN  97.25    NaN    NaN    NaN  50.00    NaN    NaN    NaN    NaN
##   [91]    NaN   4.75    NaN  25.00    NaN    NaN    NaN  41.50    NaN    NaN
##  [101]    NaN    NaN    NaN    NaN   4.50   9.75    NaN  69.00    NaN  75.00
##  [111]    NaN    NaN    NaN    NaN  62.75  90.75  84.00  29.00    NaN  31.00
##  [121]  66.75  57.75  29.75  58.50  70.00    NaN    NaN    NaN  68.75    NaN
##  [131]    NaN    NaN  23.00    NaN    NaN  59.50  69.75  32.50    NaN  55.50
##  [141]    NaN  48.25    NaN    NaN    NaN    NaN  76.50    NaN    NaN  84.00
##  [151]    NaN  33.50    NaN  48.25  48.50  23.75  85.50    NaN    NaN  59.00
##  [161]  50.75  39.25    NaN  64.00    NaN    NaN    NaN  38.25    NaN  51.50
##  [171]  59.25    NaN  20.25  68.50  42.25    NaN    NaN    NaN 100.00  26.00
##  [181]    NaN  12.50   0.00  45.75    NaN    NaN  84.00  50.25    NaN    NaN
##  [191]  85.00    NaN  38.50    NaN    NaN    NaN    NaN  39.50    NaN  38.00
##  [201]  44.50    NaN  40.50  20.00  75.00  62.00    NaN  90.50    NaN    NaN
##  [211]    NaN  64.00  35.00    NaN  48.25  78.00    NaN  47.25  36.75    NaN
##  [221]    NaN  48.25    NaN    NaN    NaN  75.00    NaN    NaN  17.25  53.00
##  [231]    NaN    NaN    NaN  44.00  41.50  65.50    NaN    NaN    NaN    NaN
##  [241]    NaN    NaN  73.75  15.75  66.75  69.50    NaN    NaN    NaN  48.75
##  [251]  99.75    NaN    NaN  91.00    NaN    NaN  56.00    NaN    NaN  86.75
##  [261]  33.75    NaN    NaN    NaN    NaN  49.25    NaN  51.00    NaN    NaN
##  [271]    NaN    NaN  26.75  34.00    NaN    NaN  49.75    NaN    NaN    NaN
##  [281]  94.50    NaN  62.25    NaN  43.25    NaN    NaN  61.00    NaN  51.75
##  [291]    NaN  53.50    NaN    NaN    NaN  73.50    NaN    NaN    NaN    NaN
##  [301]  71.00    NaN  18.00    NaN    NaN  72.00    NaN    NaN    NaN  47.00
##  [311]  46.25  58.25    NaN  45.75    NaN  58.50  49.00  75.00  46.00  54.75
##  [321]    NaN  44.50    NaN  32.25  74.50    NaN    NaN    NaN    NaN    NaN
##  [331]    NaN  45.00    NaN    NaN    NaN  49.50  44.25    NaN  59.75  98.75
##  [341]    NaN    NaN    NaN   4.25    NaN  47.75  43.00  49.00    NaN    NaN
##  [351]  52.25    NaN    NaN  48.75  57.00  34.00    NaN    NaN  83.25    NaN
##  [361]    NaN    NaN    NaN  58.75    NaN    NaN  52.25  51.75    NaN    NaN
##  [371]  45.25  46.75    NaN    NaN    NaN  38.75    NaN    NaN    NaN    NaN
##  [381]    NaN    NaN    NaN  39.75  38.75    NaN    NaN    NaN    NaN  43.00
##  [391]  11.50  47.50    NaN  39.50    NaN  50.00  48.25    NaN    NaN    NaN
##  [401]    NaN 100.00    NaN    NaN  45.75    NaN    NaN  41.25  41.25    NaN
##  [411]    NaN    NaN    NaN  24.75    NaN  37.00  33.25    NaN    NaN  38.00
##  [421]  41.50  53.50    NaN  50.25  87.25    NaN  42.25    NaN    NaN    NaN
##  [431]    NaN  63.25  48.25   5.25    NaN  38.00  65.00    NaN    NaN    NaN
##  [441]  47.00  39.50    NaN    NaN    NaN  48.00    NaN  25.50    NaN    NaN
##  [451]  34.50    NaN  51.75    NaN    NaN  37.75    NaN  35.50  50.00    NaN
##  [461]    NaN    NaN    NaN    NaN  21.50    NaN  75.00    NaN    NaN  32.25
##  [471]    NaN  34.75    NaN    NaN    NaN  35.50  27.25  33.75    NaN    NaN
##  [481]  30.00    NaN  29.75  29.00    NaN    NaN  43.00    NaN    NaN    NaN
##  [491]    NaN  32.50    NaN    NaN    NaN  36.00    NaN    NaN    NaN    NaN
##  [501]  31.75    NaN  68.25    NaN  83.75    NaN    NaN    NaN    NaN    NaN
##  [511]  25.00  89.50    NaN  73.50    NaN  25.00  25.00    NaN 100.00    NaN
##  [521]    NaN    NaN  34.00    NaN  49.00    NaN   3.00  75.00    NaN  49.75
##  [531]  25.75    NaN    NaN    NaN    NaN    NaN    NaN    NaN   5.25    NaN
##  [541]  94.75  62.00    NaN  51.75  77.00   8.00  97.50  28.00    NaN  98.50
##  [551]    NaN    NaN    NaN    NaN  52.75  71.75  60.00    NaN    NaN    NaN
##  [561]  51.50    NaN    NaN    NaN    NaN  55.75    NaN    NaN  25.50    NaN
##  [571]    NaN    NaN    NaN    NaN  41.50    NaN  61.25  37.00  25.00    NaN
##  [581]  34.75    NaN    NaN  71.00  27.50    NaN    NaN  16.50    NaN  48.00
##  [591]  51.25    NaN  56.25    NaN    NaN  96.25 100.00    NaN  42.75    NaN
##  [601]  66.00    NaN  53.50  83.50  19.75    NaN  31.50  49.75  41.25  25.00
##  [611]    NaN  31.75    NaN    NaN    NaN    NaN  56.00   3.25    NaN    NaN
##  [621]    NaN    NaN  48.50    NaN  30.50    NaN  54.00  65.75  40.25  28.75
##  [631]  56.50  60.75  37.75    NaN    NaN  13.50  53.00  68.00    NaN    NaN
##  [641]  87.25    NaN    NaN  46.00    NaN    NaN   0.00  81.00    NaN    NaN
##  [651]  60.00    NaN  56.75    NaN  55.50    NaN  41.25    NaN  49.00    NaN
##  [661]    NaN  60.25  39.50    NaN    NaN    NaN    NaN  49.00  12.50  49.00
##  [671]  50.25    NaN    NaN  48.00  62.50  60.50  49.75    NaN  45.75    NaN
##  [681]    NaN    NaN  39.75  37.00  61.00  31.50  40.50    NaN  24.50  44.00
##  [691]  58.25    NaN    NaN  57.25    NaN  44.25    NaN  49.00    NaN  55.50
##  [701]    NaN  50.25    NaN    NaN    NaN    NaN  55.25    NaN    NaN    NaN
##  [711]  48.25  40.00    NaN  46.50    NaN  35.00    NaN    NaN    NaN    NaN
##  [721]  49.00    NaN  54.25  99.75    NaN    NaN    NaN    NaN    NaN    NaN
##  [731]    NaN    NaN  66.25  84.00    NaN    NaN  31.00  36.25    NaN  34.00
##  [741]    NaN    NaN  35.75  23.25    NaN    NaN  83.25    NaN    NaN    NaN
##  [751]  65.50  37.75    NaN    NaN    NaN    NaN    NaN  29.50  86.75    NaN
##  [761]    NaN  41.25    NaN    NaN    NaN    NaN    NaN  35.75    NaN    NaN
##  [771]    NaN    NaN    NaN  99.75  61.25    NaN  33.25    NaN  38.00  37.00
##  [781]    NaN    NaN    NaN  35.00  63.50    NaN  36.25  51.75  28.25    NaN
##  [791]    NaN    NaN  36.75    NaN    NaN  73.25    NaN    NaN  87.75  34.25
##  [801]    NaN    NaN  72.75  77.25  23.25   8.50  54.75    NaN    NaN    NaN
##  [811]    NaN  41.00    NaN    NaN    NaN  74.75  43.50  72.25    NaN    NaN
##  [821]    NaN    NaN  15.25  53.00  18.50 100.00  34.75    NaN    NaN  92.75
##  [831]    NaN  61.50  32.00    NaN  44.50  58.25  58.25  61.25  35.50  62.75
##  [841]  86.25  55.50    NaN  72.75  25.00    NaN  84.00  47.50  49.25  44.00
##  [851]  45.25  45.75  50.00  43.50  85.00  48.50  29.75    NaN    NaN    NaN
##  [861]    NaN    NaN    NaN    NaN    NaN    NaN 100.00  17.00  65.50  45.50
##  [871]    NaN  25.50    NaN  87.25    NaN  31.00    NaN  98.50  44.25  12.25
##  [881]    NaN    NaN    NaN  44.75  48.25  50.00  59.25    NaN  39.50  27.50
##  [891]    NaN    NaN  27.00  83.00  60.25    NaN  75.00    NaN  74.50  75.00
##  [901]  50.75    NaN    NaN  61.50  68.00    NaN    NaN    NaN  24.00  50.00
##  [911]  34.25  63.00    NaN    NaN    NaN    NaN  43.50  38.25    NaN    NaN
##  [921]  14.75  39.50    NaN  71.00  45.25    NaN  78.00  68.50    NaN  51.25
##  [931]  50.50   1.25  25.50  34.00  36.25  99.50  40.75    NaN  93.75    NaN
##  [941]  55.75    NaN  24.75  31.50    NaN  71.25  44.25  49.50    NaN  44.75
##  [951]    NaN  79.00    NaN  75.25  89.25  37.25  42.00 100.00  54.75  49.00
##  [961]    NaN  49.00  34.50  72.25  25.00  46.00    NaN  49.00  65.00    NaN
##  [971]    NaN    NaN  70.50    NaN 100.00    NaN  64.50  53.00  60.00  99.00
##  [981]  68.25  16.50  75.50  49.25  59.00  50.00  54.25  45.50  42.00    NaN
##  [991]    NaN  46.00    NaN    NaN  82.50    NaN   4.75  80.25  55.00  54.75
## [1001]  31.75    NaN  35.00    NaN  61.50
PP$Familiarity_GFFB
##    [1]  NA  NA  NA   7  67  NA 100  50 100 100 100 100 100  88 100 100  24 100
##   [19] 100 100 100  70   0  52  52  NA  98  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [37]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [55]  NA  NA  NA   2  NA  NA  NA  98  NA  NA  NA  NA  NA  NA  NA  NA  NA 100
##   [73] 100   0  NA 100   6  NA  NA  80  NA  NA  NA  NA 100  NA  NA  NA  NA  20
##   [91] 100  NA  NA  NA  NA 100  NA  NA  90  94  NA  NA  NA  NA 100  72  NA  NA
##  [109]  97 100  83  NA  93  NA  NA  NA  NA  NA  NA  NA  NA  NA  69  NA  34  NA
##  [127]  NA  82  NA  67  36  NA  NA  NA  92  NA  NA 100  46  NA  NA  NA 100  NA
##  [145]  68  26  80  NA  25  NA  12  NA  85  NA  NA  NA  NA  77  76  NA  NA  NA
##  [163]  NA  NA  55  NA  NA  NA  68  NA  NA  76  NA  NA  74  NA 100  97   0  NA
##  [181]  NA  NA  NA  NA  NA  60  NA  NA  68  65  NA  NA  NA  89  65 100  48  NA
##  [199]   9  NA  NA  71  50  40  NA  NA  59  81  NA  NA  NA  NA  NA  NA  NA  NA
##  [217]  92  NA  NA  NA  46  NA  NA  NA  NA  NA  NA  NA   0  NA  NA  36  NA  NA
##  [235]  NA  NA  77  NA  87  NA  56  72  NA  NA  NA  NA  NA  NA  NA  NA  95  NA
##  [253]  NA  NA  55  29  70  81  NA  NA  NA  29  NA  92  NA  33 100  NA  41  NA
##  [271]  79  75  NA  NA  NA  NA   0  23  NA  NA  NA  NA  NA  40  24  75  NA  NA
##  [289]  NA  NA  74  NA  NA 100  NA  NA  NA  52 100  57  NA  64  NA  NA  11  NA
##  [307]  NA  NA  NA  68  46  85  NA  NA  64   3  NA  NA  NA  NA  50  65  NA  NA
##  [325]  NA  NA  NA  NA  NA  85   0  NA  NA  NA  74  NA  NA  NA  NA   0  95  78
##  [343]  39  NA  52  NA  NA  NA  NA  NA  NA  59  NA  NA  NA  NA  NA  53  NA  NA
##  [361]  30  54  NA  NA  64  NA  NA  NA  NA  NA  57  68  NA  28  NA  NA  NA  NA
##  [379]  NA  NA 100  NA  NA  NA  58  92  NA  NA 100  NA  NA  NA  36  67  21  NA
##  [397]  72  54  81  70  18  NA  40  69  NA  91  35  NA  NA  42  NA  89  NA  NA
##  [415]  51  NA  NA  NA  NA  75  NA  NA  NA  53  NA  NA  NA  NA  78  58  60  NA
##  [433]  NA  NA  37  43  NA  86  NA  NA  NA  NA  92  NA  91  NA  NA  NA  81  63
##  [451]  NA  82  NA  NA  52  76  NA  NA  NA  27  NA  38  NA  NA  NA  NA  NA  28
##  [469]  35  77  NA  NA  65  86  25  NA  NA  92  75  NA  NA  NA  NA  NA  NA  NA
##  [487]  85  NA   0  95  93  NA  NA  93  NA  NA  NA  29  NA   3  NA  NA  NA  NA
##  [505]  NA  NA 100  98   0 100 100  NA  NA  NA  NA  NA  NA  80 100  78  77 100
##  [523]  60 100  65   0  43 100 100 100  92 100 100  81  50   3   0 100  72 100
##  [541]  52  95 100  91  28 100 100  59  98  65  13 100  87  71  77  39  95  14
##  [559]  91  53  19  53 100  22  74  74  19  51  90 100   5  82   2  81 100  21
##  [577]  66  22 100  25  67  89  11  85  78  84  78  NA  95  88 100  20  27  80
##  [595] 100  81 100 100 100  28  83 100  31  75  25  84  64  82  50  12  37  83
##  [613]  75  10  73  15  39  17  52 100  36  79  75  80  22  91  60  18  59  61
##  [631]  30  15  29  95  66  92  NA  67  50  75  31  39  52  40  35  41  50  90
##  [649]  80  71  55  62  69   0  46  66   0  37  51  51  51  54  96  51  69  52
##  [667]   3  52  51  52  52  52  52  53   0  14  50  53  55  85  51  17  35  79
##  [685]  54  52  31  52  28  53  81  52  50  22  62  62  45  60  14   8  44  71
##  [703]  59  57  24  19  33  83  78  77  52  78  63  62  94  19  55  61  61  16
##  [721]  37  89  87 100   0  84  87  23  52  22  79  72  88  25  55  66  66 100
##  [739]  36  53  66  86  84  95  69   0  14  77  63  55  91  84  63  77  70  73
##  [757]  77  37   2   0 100  92  73  98  62  65  37  82  50 100  91  86  64  46
##  [775]  20  92  83  80  85  81  53  67  88  79  70  79  84  78  99  90  90  88
##  [793]  79  69  81  92  94 100   0 100  25  97 100 100  97  25   5 100   4 100
##  [811] 100 100 100 100   0  80   7  77 100   0   5 100  NA  NA  NA  NA  NA  NA
##  [829]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [847]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [883]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [901]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [919]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [937]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [955]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [973]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [991]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
PP$Familiarity_GFPRB 
##    [1]  NA  NA  NA  74 100  NA 100 100 100 100 100 100 100 100   0   0   0 100
##   [19]  98 100 100  35 100  51 100   0  76 100  72  86 100 100 100 100 100 100
##   [37] 100 100 100 100  52   1 100   0 100  81  50 100  70 100 100 100  82 100
##   [55] 100 100 100 100 100 100  65 100 100  78 100 100 100  52 100  87 100 100
##   [73] 100  99  88 100  97  98  52 100  93 100 100 100  90  94 100 100  71 100
##   [91] 100  89 100  64  87  79  93  85  91  94  92   9  94  93 100  98  96  90
##  [109]  19   5 100  86  96 100 100 100  80 100  84 100 100  86  93   0  75  20
##  [127]  63  77  87  89  88 100  78 100 100  32 100 100  58  39 100  53  96  85
##  [145]  70  67  79  83  70  53  85  83  93  92  62 100  81  94  84  73  66  72
##  [163]  80  84  53 100 100  81  61  21  72 100  70  52  26  94 100  98 100 100
##  [181]   0 100 100  80 100  31 100  83  75  93  NA  86  64  73  76  76  97   4
##  [199]  87  91  86  91  69  82 100  31  61  80  50  82  57  82  85  65  67 100
##  [217]  85  72  35  85  58  96  66  72   0 100  65  88  14  60  73  33  64  88
##  [235]  31 100  75  78  73  98  61  62 100  75  61  43  74 100  87  81 100  70
##  [253]  76  79  44  51  52  87  75  89 100  66  58  79 100  70  85  78  46  58
##  [271]  24  71  53  85  99  77   0  33 100  65 100 100  77  86  42  49  59  52
##  [289]  52  85  80  44  46  83  40  66  88  52 100  31  41  77  52 100  83  26
##  [307]  96  35  72  44  41  32  53  71  71  92  52 100  56  65  50  52  71  82
##  [325]  78  85  50 100  50  65  25   8  51  50 100  51  41  51  74  50  94  82
##  [343]  61  18  52  55  82  52  82   0  59  84  43  52  72  69  90  52  52  38
##  [361]  72  65  72  70  40  64  39  83 100  87  44  62  79  74  74  57  61  66
##  [379]  72 100  86  38  80  92  58  86  61  60  89  60  39  38  37  64  63  51
##  [397]  72  36  45  60  15  73  59  60  82  72  33  39  65  17   8  85  50 100
##  [415]  51  63  74  45  30  66  61  64  77  74  82  49  52  67  62  38  66  71
##  [433]  75  22  69  68  71  65  89 100  31  75  97  65  63  58  76  80  97  74
##  [451]  90  73 100  85  90  73  81  77 100  74  92  81  25  81  15  16  73  16
##  [469]  63  80  71  78  77  78 100  93  89  86  78  85  97  82  86  77  75  83
##  [487]  91 100   0  96  91  92  93  91  96  98  76  15 100  24  93  83  65  99
##  [505]  98 100  98 100 100 100 100 100 100  70  16 100  NA  NA  NA  NA  NA  NA
##  [523]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [541]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [559]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [577]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [595]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [613]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [631]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [649]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [667]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [685]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [703]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [721]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [739]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [757]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [775]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [793]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [811]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [829]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [847]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [883]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [901]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [919]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [937]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [955]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [973]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [991]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
PP$Familiarity_CBB
##    [1]  NA  NA   6  72  NA   0  NA  NA  NA  NA  NA  NA  NA  NA  16   0  NA  99
##   [19]  NA  NA  NA  NA   0   0  NA  NA  NA  NA  NA  NA   0   0  62  NA   0 100
##   [37]  NA  NA 100  NA  53  NA  NA  NA  12  NA   0  75   0  NA  60  NA  NA  19
##   [55]  NA 100  NA  NA  NA  NA  65  NA  13  NA  NA  NA  NA  NA 100  NA  NA  NA
##   [73]  NA  NA   0  NA  NA   7  NA  NA   6  NA  23  NA  NA 100 100  NA  60  NA
##   [91]  NA  NA   3  NA  11  NA  NA  19  22  12  NA  NA  14  NA  NA  NA   0  NA
##  [109]  NA  NA  NA   1  NA  67  NA  88  NA  NA   0  NA  51  NA  NA  45  NA  NA
##  [127]   5  NA  NA  NA  16  20  NA  38   0  NA  NA  NA  30  77  NA  NA  NA  17
##  [145]  NA  NA  NA  39  NA  NA  15  NA 100  72   2  NA  82  91  20   5  68  NA
##  [163]   0  NA  52  NA  82  24  NA  NA  NA  18  76  NA  NA  85  NA  NA  NA   0
##  [181]   0  NA  NA  NA  NA  73  83  NA  19  NA  NA  83  45  NA  77  NA  29  NA
##  [199]  NA  NA  NA  NA  NA  NA   0  NA  NA  NA   0  26  78  NA  NA  NA  NA  NA
##  [217]  25  NA  NA  NA  NA  NA  NA  12 100  NA  NA  82  NA  53  60  34  15  NA
##  [235]  NA  NA  NA  86  NA  59  28  65  91  NA  NA  NA  NA  25  22  17  NA  25
##  [253]  63  NA  NA  51  NA  56   0  53  19  NA  NA  NA   6  NA  NA  53  NA  51
##  [271]  NA  NA  NA  NA  66  NA  NA  36  NA  NA  NA   5  NA  NA  NA  NA  38  NA
##  [289]  53  29  NA  41  45  NA  65  NA  NA  NA  NA  NA  NA  NA   2   0   2  NA
##  [307]  NA  38  67  NA  NA  NA  NA  53  NA  NA  52  NA  34  NA  NA  NA  81  NA
##  [325]  NA  NA  50   0  NA  NA  NA  NA  51  37  27  NA  25  51  NA  NA  79  69
##  [343]  NA   0  52  NA  NA  NA   2   0  NA  NA  49  65  57  64  NA  NA  53  55
##  [361]  NA  60  72  NA  NA  70  NA  NA  NA  94  NA  NA  54  NA  NA  NA  53  68
##  [379]  77  98  NA  82  50  NA  NA  NA  73  NA  NA  NA  NA  NA  42  NA  NA  NA
##  [397]  NA  NA 100  61  54  NA  50  65  NA  NA  NA  NA  NA   0  53  NA  NA  15
##  [415]  51  NA  NA  62  NA  NA  NA  NA  76  NA  NA  NA  NA  63  NA  NA  NA  93
##  [433]  NA  NA  NA  NA  12  NA  NA  NA  31  56  NA  88  NA  NA  29 100  NA  67
##  [451]  NA  NA  NA  NA  NA  NA  93  NA  NA  NA  32  NA  32  NA  NA  97  NA  NA
##  [469]  NA  NA  90  NA  NA  96  NA  83  NA  NA  94  NA  NA  NA  NA  80   0  83
##  [487]  NA  NA   0  91 100 100   2  NA  98  NA  NA  NA  33  17  NA  85  NA  89
##  [505]  NA  NA  NA 100 100 100  NA   5 100  NA  18 100 100   0  NA   0  NA  NA
##  [523]  NA  51  NA  NA  NA  NA  NA  NA   0   0 100  34   0  NA  NA   0  NA  NA
##  [541]  12  NA  17   6   6  NA  NA  NA  NA   0  10  27  78  64  60  NA   0  NA
##  [559]  77  NA 100   5  NA   8  NA  NA   6  57  22   0   0  74   0  NA  NA  28
##  [577]  NA  NA 100  NA  NA  NA  33  NA  NA  NA  19  NA  26   0   0   5  31   0
##  [595]   0  NA  NA   2  50  NA   0   4  54  NA  64  14  NA  NA  NA  75  NA  NA
##  [613]  64   0  78   8  35  NA  35   0  64 100  NA  NA  97  68  NA  NA  59  NA
##  [631]  NA   8  26   3  NA  NA  52  32  NA  31  NA  30  85  41  39  53  54  NA
##  [649]  NA  NA  NA  NA  35 100  43  59  NA  NA  NA  NA  NA  29  NA  18  67  NA
##  [667]  NA  NA  97 100  52  NA  NA  53   0  NA  NA  16  NA  NA  NA  NA  NA  72
##  [685]  73  25  NA  31  NA  NA  56  NA  NA  NA  62  NA  NA  NA  14  NA  44  21
##  [703]  NA  NA  13   2  69  31  60  NA  NA  67  NA  NA  29  NA  65  47  NA  78
##  [721]  36  NA  NA  NA  95  NA  71  77  23  33   8  NA  NA  NA  40  61  67  NA
##  [739]  NA  NA   7  NA  NA  34  75  NA  89  72  NA  53  NA  NA  72  83  NA  NA
##  [757]  NA  NA  85   0 100  60  68 100  44  NA  19  87  NA  NA  86  NA  67  16
##  [775]  NA  NA  NA  75  93  NA   2  NA  90  NA  84  63  NA  76  NA   0  96  91
##  [793]  91  NA  91  NA   6 100   0   0  NA  NA  NA  NA  NA  NA 100  98  15  99
##  [811] 100  92 100 100   0  NA  NA  52  13   0  NA   0  NA  75  NA  NA  95  97
##  [829]  63   0  67  17  NA 100  NA  71  NA   0 100   8   4  92  69  69  94   3
##  [847]  NA  NA  64  NA  NA  54   0  NA   0  33  81   3  85 100  37  15   0  20
##  [865]  89  66   0  20  16  38  92  NA   0  10  61  55  48   1  69   3  32  58
##  [883]  27  NA  NA   0  61  12  69  42  41  74  NA  NA  79  49  NA 100  NA  68
##  [901]  NA  88   0  NA  NA  39  37  39  NA  33  67  24  70  10  38  64  NA  79
##  [919]  84  25  25  80   3  85  36  10  76  NA  86  75  53 100   0  NA  NA  15
##  [937]  70  NA   0   0  NA  48  98  11  63  NA  NA  NA  21  57  54  15  37  22
##  [955]   0  NA  35  50  31  52  99  44  88  NA  NA  69   0  NA  97  52   8  25
##  [973]  27  52 100  70  74  85  NA  NA  21  NA  21  53  88  54  35  56  43  18
##  [991]  52  28  22  14  NA  93  52  24  43  57  NA  11  78 100  NA
PP$Familiarity_PBPB
##    [1]  NA  95  90  NA 100  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [19]  NA   6  NA  NA  NA  NA  NA   2  NA  NA  NA  NA   0  NA  NA 100  50  NA
##   [37]   0 100  NA  77  NA  47   1  NA  NA  35   0  NA  NA  38  NA  36  36  NA
##   [55]  52  74  NA  NA  NA  NA  27  NA  NA  NA   0  NA  NA  88 100  21  51   0
##   [73]  NA 100  20  NA  NA  NA  NA  NA  NA  NA  NA  81   5  NA  NA  69  NA  13
##   [91]  84  NA   0  NA  31  69   2  NA  NA  NA  99  52  NA   3  NA  NA  37  NA
##  [109]  15  NA  99  70  83  92  NA  NA  NA  NA   0  89  NA  52  NA  NA  NA   0
##  [127]  22  NA  92  NA  NA  NA  35  NA  NA  NA  57  NA  NA  NA 100  NA 100  26
##  [145]  NA  NA  NA  28  NA  NA  NA  52  NA  NA  NA  25  NA  NA  NA  NA  NA  NA
##  [163]  65  77  NA  29 100  NA  66  NA  20  NA  NA  NA  NA  NA 100   8  NA  NA
##  [181]   0 100  NA  NA  31  NA  NA  17  NA  16  19  77  NA  NA  NA  29  NA   0
##  [199]   2  20  82  89  NA  NA  NA  27  60  NA 100  86  NA  NA  73  70  56  NA
##  [217]  NA  NA  22  24  68  NA  76  87  58  NA  82  NA  NA  NA  NA  NA  66  NA
##  [235]  NA  NA  NA  NA  NA  33  NA  NA  NA  NA  NA  42  54  45  NA  NA  NA  NA
##  [253]  84   2  76  NA  NA  NA  NA  NA  NA  62  23  61   0  NA 100  NA  NA  51
##  [271]  NA  19  90  16  NA  68  NA  NA   1  36  85  96  NA  NA  NA  NA  50  NA
##  [289]  53  NA  37  NA  26  91  25  20  68  52  NA  67  33  53  NA  NA  NA  72
##  [307] 100  31  50  NA  NA  NA  26  NA  NA  NA  NA  NA  NA  69  50  NA  NA  NA
##  [325]  86  86  50   0  50  69 100  NA  NA  50  NA  NA  NA  51  NA  NA  NA  NA
##  [343]  66  NA  NA  NA  36  54  NA  50  48  NA  38  NA  NA  NA  33  52  NA  NA
##  [361]  83  NA  68  NA  42  61  NA  90  77  94  NA  NA  NA  81  50  59  68  NA
##  [379]  67  NA  NA  64  38  NA  NA 100  65  61  69  NA  70  42  NA  NA  99   4
##  [397]  NA  25  NA  NA  NA  63  NA  NA  NA  86  30  19  55  NA  75  84 100  NA
##  [415]  NA  NA  NA  NA  17  NA  NA  NA  68  NA  NA  38  NA  NA  NA  NA  69  NA
##  [433]  34  NA  NA  NA  NA  52  NA 100  NA  NA  NA  NA  31  59  82  NA 100  NA
##  [451]  NA  61  NA  91  55  NA  NA  79  NA  NA  89  NA  NA  82  NA  NA  14  NA
##  [469]  36  NA  91  68  78  NA  NA  NA  NA  NA  NA  86  NA  90  83  NA  81  NA
##  [487]  NA  68  NA  NA  NA  NA  NA  NA  NA  NA  77   4  NA  NA  NA  82  NA  NA
##  [505]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  10  NA  52  50   0
##  [523]  NA  NA  53   0   0 100   0 100  NA   0  83  NA  39  NA 100  NA   0  89
##  [541]  NA  NA  42  NA  NA  NA  NA  NA   0  NA   7  72  22  NA  NA  76  NA  23
##  [559]  85  26  NA  NA  51  11  79  22  40 100  NA  NA   3  32  84  52  NA  30
##  [577]  47  NA  NA  88  NA  91  36  91  95  70  NA  42  70  NA  NA  NA  NA  NA
##  [595]   0  85  NA  72  NA  48  NA  NA  NA  NA  NA  NA  58  NA  36  NA  17  28
##  [613]  80  11  NA  37  NA  17  11  32  59  18  62   0  NA  70  36  NA  NA  NA
##  [631]   7  NA  NA   4  31  NA  NA  NA  61  NA  56  NA  NA  NA  NA  23  NA  NA
##  [649]  37  43  55  80  NA   0  NA  63   0 100  NA  50  51  NA  NA  96  10  17
##  [667]  51  52  NA  NA  NA  52  52  NA  NA  NA  NA  NA  NA  54  57  32  NA  NA
##  [685]  NA  NA  70  NA  NA  NA  NA  98  66  38  60  NA  54  NA  78  69  53  NA
##  [703]  70  52  47  32  NA  28  NA  76  NA  NA  71  64  83  25  62  67  26  NA
##  [721]  NA 100  75  27  NA  37  85  NA  20  NA  70  53   7  42  NA  69  NA 100
##  [739]  63   0  NA  83  NA  NA  NA   0  NA  84  62  57  24  NA  76 100  74  72
##  [757]  62  NA  NA 100  83  NA  67 100  NA  89  NA  NA  60  20  NA  69  32  NA
##  [775]  86  98  88  75  NA  73  NA  55  NA  NA  NA  NA  85  NA  NA  NA 100  84
##  [793]  NA  86  NA  NA  52 100  NA  NA 100  99  NA  NA  NA  NA  NA  NA  NA  99
##  [811]  NA  NA 100 100 100  68 100  NA  NA  NA 100  NA  50  NA  86  70  NA  77
##  [829]  66  NA  77  79  42  90  10  NA  63  65  NA  87  NA  NA  66  50  13  18
##  [847]  71  NA  56  91 100  NA  NA  56  NA  45  66   3  74   0  71  25   0  63
##  [865]  93  67  75  60  31  NA 100  31  15  NA  94  NA  25  96  65   3  76  82
##  [883]  19  79  52  NA  39  72  NA  NA  57  80  30   0  NA  56  57  93   0  NA
##  [901]  29  63   0  21  78  49  33  43  95  65  52  34  15   0  30  57  63  NA
##  [919]  22  71  NA  84  77  NA  57   0  30  28  42  NA  45  NA  NA  21  71  71
##  [937]  NA  65  70  48  39  61  88  59  64 100  76  91  90  NA  48  NA  52  50
##  [955]  NA  23  65  NA  NA  NA  92  NA  NA  26   3  41   0  71  96  79  97  89
##  [973]  98  21  NA  NA  23  72  37  80  19  80  27  30  88  50  44  60  NA  64
##  [991]  52  NA  64  18   3  69  NA  NA  37  NA   0  74  NA  88  38
PP$Familiarity_PBFB
##    [1]  NA  55  NA  NA  NA 100  53 100   0 100   0  NA  NA  NA  NA  NA   0  NA
##   [19]   1  NA   0  20  NA  NA  NA  NA  98  77   0  13  NA   0  31   0  NA  NA
##   [37]  NA 100   0  74 100  11   2   0  88  NA  NA  10  NA  52   9  NA 100  16
##   [55]   0  NA   0  NA   0   0  NA   0  NA   2   1   0  18   1  NA  NA  NA  NA
##   [73]   0  NA  NA  NA  NA  NA   5  NA  71   3   0  94  NA  NA  10  73  19  NA
##   [91]  NA   0  NA 100  NA  NA   8  NA  NA  NA  16  99  41   0  NA  NA  NA   3
##  [109]  NA  NA  NA  NA  NA  NA   0  NA  11  58  NA  NA  NA  NA  NA  NA  NA   0
##  [127]  NA  78  NA  76  NA  10  NA  42  NA  71  NA  NA  NA  NA   0  53  NA  NA
##  [145]  67  14  NA  NA  31  26  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  25
##  [163]  NA  NA  NA  52  NA  NA  NA  25  NA  NA  NA  68  NA  19  NA  NA  NA  NA
##  [181]  NA  NA 100  43  14  NA  NA  NA  NA  NA  NA  NA  NA  72  NA  NA  NA  NA
##  [199]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  60  74  NA  34  NA  29
##  [217]  NA  27  NA  39  NA   0  77  NA  NA  22  66  76  NA  NA  42  NA  NA  10
##  [235]  94  52  40  94  61  NA  NA  NA  NA  23   4  NA  54  NA  17  NA  NA   1
##  [253]  NA  NA  NA  NA  NA  NA  53  NA  NA  NA  83  NA  NA  NA  NA  NA  41  NA
##  [271]  27  NA  NA  NA  71  37  NA  NA   9  36  NA  NA  NA  38  NA  87  NA  25
##  [289]  NA  NA  NA  NA  NA  NA  NA  NA  27  NA  89  NA  NA  NA  NA  69  NA  NA
##  [307]  89  NA  NA  NA  NA  NA  37  NA  54  NA  NA  27  NA  NA  NA  NA  75  63
##  [325]  NA  55  NA  NA  50  NA  NA   0  51  NA  NA  51  NA  NA  59  NA  NA  NA
##  [343]  NA  NA  NA  51  NA  NA  41  NA  NA  61  NA  NA  NA  NA  19  NA  NA  50
##  [361]  NA  NA  NA  16  NA  NA  30  NA  21  NA  NA  NA  37  NA  50  NA  NA  68
##  [379]  NA  93  85  NA  NA  39  NA  NA  NA  67  NA  63  NA  NA  NA  NA  NA  NA
##  [397]  NA  NA  NA  NA  NA  NA  NA  NA  86  NA  NA  NA  NA  NA  NA  NA 100  NA
##  [415]  NA  69  84  63  28  NA  45  68  NA  NA  93  24  68  61  62  69  NA  NA
##  [433]  NA   0  75  NA  NA  NA  76 100  NA  NA  76  98  NA  NA  NA  NA  NA  NA
##  [451]  80  NA 100  86  NA  NA  97  NA 100  85  NA   7  31  77  29  85  NA  43
##  [469]  NA  NA  NA  NA  NA  NA  82  NA  87  NA  NA  83 100  91  NA  NA  NA  81
##  [487]  NA  72  NA  NA  NA  NA  27  95  70  76  72  NA  75  NA  93  NA  89  92
##  [505]  91  78 100  NA  NA  NA  NA  NA 100 100  11  NA  NA  NA 100  NA  36   0
##  [523]  31   0  NA   0  NA  NA   0  NA  NA  NA  NA  80  NA   0 100   0  NA  84
##  [541]  NA   4  NA  NA  NA   0 100   7   0  NA  NA  NA  NA  79  NA  NA  NA  16
##  [559]  NA  11  NA   0  36  NA  68  NA  NA  NA  NA  20  NA  NA  NA  36  22  NA
##  [577]  NA  25  NA  94  20  91  NA  NA  NA  17   6  NA  NA  NA  NA  70  NA  11
##  [595]  NA  NA   0  NA  NA   3  NA  47  NA  57  NA   1  NA  73  NA  NA  28  NA
##  [613]  NA  NA  88  NA  NA  NA  NA  NA  NA  NA  NA   0  NA  NA  NA  24  NA  41
##  [631]  NA  NA  NA  NA  19  86  NA  NA  88  68  NA  36  81  NA  12  NA  NA  57
##  [649]   5  37  NA  81  NA  NA  NA  NA  NA  30  51  54  51  NA  91  NA  NA  96
##  [667]  12  NA  NA  NA  NA  52  52  NA  NA  89  25   3  53  56  41   0  30  NA
##  [685]  NA  NA  NA  45  36  47  NA  40  68  NA  NA  NA  59  40  NA  NA  NA  NA
##  [703]  71  59  NA  NA  NA  NA  35  96  46  NA  62  NA  NA  NA  NA  NA  63  48
##  [721]  NA  51  NA  NA   0  84  NA  29  NA  63  NA  71  NA  NA  51  NA  NA  NA
##  [739]  51  NA  75  88  84  NA  80   2  NA  NA  55  NA  NA  73  NA  NA  70  97
##  [757]  72  38  NA  NA  NA  NA  NA  NA  70  83  24  NA  14   0  90  19  NA  NA
##  [775]  NA  72  NA  NA  NA  NA  53  55  83  86  NA  44  NA  NA  91  10  NA  NA
##  [793]  NA  75  99  68  NA  NA  NA  NA 100  99  86  78  98  11  NA 100  20  NA
##  [811] 100  NA  NA  NA  NA  NA  NA  NA  76  52  63 100  49  68  16   0  94  81
##  [829]  69  81  62  NA  52  74  10  32  74  NA  86  NA  47  87  75  NA  NA  20
##  [847]  16   0  NA  67 100  42   0  56   4  NA  NA   0  35   0  40  18   0  51
##  [865]  88  58  NA  NA  NA  39 100   8   0   0  84  17  35  NA  NA  NA  30  79
##  [883]  37  35  53   0  NA  23  69  34  44  66  53   0  36  48   0  87 100  91
##  [901]  77  85  14  36  73  64   0  37  81  NA  NA  NA  23  73  32  60  67  72
##  [919]  31  27  17  NA   0  75  NA   0  NA  69  58  78  NA 100  33   9  85  NA
##  [937]  79  21  NA  11  16  69  NA  NA  68  80  21  18  97  55  75  23  42  NA
##  [955]  25  95  NA   0  21  53  91  60  89  76   2  NA  17  62  NA  50  14  30
##  [973]  NA  23  80  64  NA  NA   3  31  NA  87  NA  NA  NA  NA  NA  NA  94  72
##  [991]  21  30  29   4   3  86  52   6  NA  44   0  21  79  79  52
PP$Familiarity_VB 
##    [1]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA   8 100 100  NA  NA  NA  NA
##   [19]  NA  NA  NA  NA  NA  NA 100  NA  NA 100 100  29  NA  NA  NA  NA  NA 100
##   [37]   0  NA  NA  NA  NA  NA  NA   0  NA  64  NA  NA  60  NA  NA 100  NA  NA
##   [55]  NA  NA  70 100  73 100  NA  NA  52  77  NA   2 100  NA  NA  31  61  NA
##   [73]  NA  NA  NA   0  89  74  13   0  NA 100  NA  NA  NA 100  NA  NA  NA  NA
##   [91]  NA  10  NA   0  NA  NA  NA 100  NA  NA  NA  NA  NA  NA  50   5  NA  51
##  [109]  NA   2  NA  NA  NA  NA  69  88  21   0  NA  81 100  87   1   5  66  NA
##  [127]  NA  NA  86  NA  NA  NA  19  NA  NA  71   7  10  NA  56  NA  53  NA  NA
##  [145]  NA  NA  85  NA  NA  50  NA  21  NA  29  39  21  84  NA  NA  74  73  71
##  [163]  NA  81  NA  NA  NA  25  NA  26  17  NA  73  73  61  NA  NA  NA  50   9
##  [181]  NA 100 100  67  NA  NA  50  50  NA  NA  81  NA  43  NA  NA  NA  NA  54
##  [199]  NA  27  90  NA  61  59  51  21  NA  52  NA  NA  NA  82  76  NA  73  45
##  [217]  NA  56  66  NA  NA  83  NA  NA  NA  11  NA  NA  12  59  NA  NA  NA  12
##  [235]  45  97  NA  NA  NA  NA  NA  NA  80  42  57  56  NA  NA  NA  21   0  NA
##  [253]  NA  16  NA  NA  52  NA  NA 100  34  NA  NA  NA  NA  25  NA  69  NA  NA
##  [271]  NA  NA 100  89  NA  NA  63  NA  NA  NA  94  NA  70  NA  82  NA  NA  53
##  [289]  NA  30  NA  63  NA  NA  NA  64  NA  NA  NA  NA  51  NA  63  NA  NA  70
##  [307]  NA  NA  NA  66  44  56  NA  86  NA  90  16  91  57  61  NA  58  NA  85
##  [325]  71  NA  NA  NA  NA  NA  NA  27  NA  NA  NA  51  41  NA  99  75  NA  NA
##  [343]  NA  31  NA  52  63  52  NA  NA  57  NA  NA  52  81  26  NA  NA  94  NA
##  [361]  NA  NA  NA  26  NA  NA  53  75  NA  NA  58  70  NA  NA  NA  58  NA  NA
##  [379]  NA  NA  NA  NA  NA  74  84  NA  NA  NA  NA  62  68  38  NA  65  NA  52
##  [397]  35  NA  NA  NA  NA  94  NA  NA  86  NA  NA  65  43  NA  NA  NA  NA  75
##  [415]  NA  71  84  NA  NA  67  65  69  NA  61  81  NA  63  NA  NA  NA  NA  21
##  [433]  84   0  NA  78  20  NA  NA  NA  73  75  NA  NA  NA  53  NA 100  NA  NA
##  [451]  98  NA  88  NA  NA  76  NA  79   0  NA  NA  NA  NA  NA  25  NA  88  NA
##  [469]  NA  84  NA  81  NA  NA  NA  79  95  94  NA  NA  97  NA  87  74  NA  NA
##  [487]  81  NA  NA  NA  NA 100  NA  NA  NA  99  NA  NA  NA  NA  52  NA  97  NA
##  [505]  92  NA  NA  NA  NA  NA 100 100  NA   0  NA 100 100  NA 100  NA  NA  NA
##  [523]  37  NA  52  NA  78 100  NA  30  98  NA  NA  NA  NA  NA  NA  NA   0  NA
##  [541]   3  11  NA  83  87  22 100  82  NA  96  NA  NA  NA  NA  89   7  94  NA
##  [559]  NA  NA  69  NA  NA  NA  NA  10  NA  NA   0  NA  NA  NA  NA  NA 100  NA
##  [577]  40  23 100  NA  24  NA  NA  11  87  NA  NA  45  NA  72   0  NA  39  NA
##  [595]  NA  94 100  NA 100  NA  58  NA  50  74  63  NA  29  88   0 100  NA  57
##  [613]  NA  NA  NA  NA  39  47  NA  NA  NA  NA  75  NA  84  NA  34  75  71  76
##  [631]  67  47  85  NA  NA  97  43  53  NA  NA   4  NA  NA  77  NA  NA   0  63
##  [649]  NA  NA  67  NA  69  NA  40  NA  35  NA  51  NA  NA  56  94  NA  NA  NA
##  [667]  NA  52  53  52  52  NA  NA  53   2  79  50  NA  55  NA  NA  NA  18  50
##  [685]  98  93  76  NA  42  82  74  NA  NA  53  NA  15  NA  45  NA  94  NA  86
##  [703]  NA  NA  NA  NA  50  NA  NA  NA  52  69  NA  70  NA  52  NA  NA  NA  NA
##  [721]  36  NA  96 100  NA  NA  NA  NA  NA  NA  NA  NA  66  45  NA  NA  55  42
##  [739]  NA   0  NA  NA  71  80  NA  NA  73  NA  NA  NA  87  92  NA  NA  NA  NA
##  [757]  NA  84 100  NA  NA  65  NA  NA  NA  NA  NA  77  NA  NA  NA  NA  NA  94
##  [775]  78  NA  84  NA  83  78  NA  NA  NA  80  81  NA  71  70  97  NA  NA  NA
##  [793]  71  NA  NA  87  NA  NA  93  67  NA  NA  60 100  96   5  29  NA  NA  NA
##  [811]  NA  58  NA  NA  NA   0  99  97  NA  NA  NA  NA  31  49  79  60  85  NA
##  [829]  NA  79  NA  89  68  NA  20  70  34  53  45  86  54  93  NA  84 100  NA
##  [847]  80  52  87  86  96  60 100  66 100  43  89  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA 100  51  75  40  NA  21  NA   6  NA  95  NA 100  70   1  NA  NA
##  [883]  NA  73  53 100  83  NA  68  43  NA  NA 100   1  70  NA   0  NA  62  77
##  [901] 100  NA  NA  62  19  NA  NA  NA  79  45  72  59  NA  NA  NA  NA  64  86
##  [919]  NA  NA  85  76  NA  91  34  NA  36  81  NA  77  53 100  83  83  77 100
##  [937]  74  NA 100  NA  36  NA  96  56  NA  68  69  50  NA  64  NA  68  NA  77
##  [955]  70  71  50   0  33  55  NA  38  96  86 100  28  NA  68  95  NA  NA  NA
##  [973]  98  NA 100  NA  99  61  42  98  42  83  69  38  86  50  47  64  83  NA
##  [991]  NA  48  NA  NA  62  NA   0 100  44  42   0  NA  81  NA  68
PP$Understanding_GFFB
##    [1]  NA  NA  NA  65  93  NA 100 100 100 100 100 100 100   0 100 100  12  97
##   [19] 100 100 100  80  69  NA  52  94  87  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [37]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [55]  NA  NA  NA 100  NA  NA  NA 100  NA  NA  NA  NA  NA  NA  NA  NA  NA 100
##   [73] 100 100  NA   0  59  NA  NA 100  NA  NA  NA  NA 100  NA  NA  NA  NA  18
##   [91] 100  NA  NA  NA  NA  90  NA  NA  91  92  NA  NA  NA  NA  89  95  NA  NA
##  [109]  91 100  93  NA  82  NA  NA  NA  NA  NA  NA  NA  NA  NA  78  NA  73  NA
##  [127]  NA  80  NA  85  69  NA  NA  NA 100  NA  NA 100  49  NA  NA  NA 100  NA
##  [145]  67  91  69  NA  69  NA  11  NA  18  NA  NA  NA  NA  88  36  NA  NA  NA
##  [163]  NA  NA  53  NA  NA  NA 100  NA  NA  22  NA  NA  75  NA 100  98 100  NA
##  [181]  NA  NA  NA  NA  NA  66  NA  NA  75  21  NA  NA  NA  88  29  90  72  NA
##  [199]  74  NA  NA  98  50  68  NA  NA  59  73  NA  NA  NA  NA  NA  NA  NA  NA
##  [217]  89  NA  NA  NA  44  NA  NA  NA  NA  NA  NA  NA  81  NA  NA  30  NA  NA
##  [235]  NA  NA  77  NA  54  NA  93  67  NA  NA  NA  NA  NA  NA  NA  NA   0  NA
##  [253]  NA  NA  56  29  94  82  NA  NA  NA  31  NA  73  NA  31 100  NA  22  NA
##  [271]  33  78  NA  NA  NA  NA   0  11  NA  NA  NA  NA  NA  67  69  16  NA  NA
##  [289]  NA  NA  70  NA  NA 100  NA  NA  NA  52   9  38  NA  82  NA  NA  40  NA
##  [307]  NA  NA  NA  45  59  22  NA  NA  66  96  NA  NA  NA  NA  50  59  NA  NA
##  [325]  NA  NA  NA  NA  NA  75 100  NA  NA  NA  69  NA  NA  NA  NA  73  86  82
##  [343]  50  NA  52  NA  NA  NA  NA  NA  NA  79  NA  NA  NA  NA  NA  53  NA  NA
##  [361]  25  54  NA  NA  53  NA  NA  NA  NA  NA  59  43  NA  20  NA  NA  NA  NA
##  [379]  NA  NA 100  NA  NA  NA  62  88  NA  NA  84  NA  NA  NA  37  72  81  NA
##  [397]  40  64  79  69   2  NA  55  79  NA  68  73  NA  NA  71  NA  84  NA  NA
##  [415]  56  NA  NA  NA  NA  78  NA  NA  NA  53  NA  NA  NA  NA  69  42  64  NA
##  [433]  NA  NA  38  38  NA  71  NA  NA  NA  NA  74  NA  32  NA  NA  NA  87  64
##  [451]  NA  68  NA  NA  96  76  NA  NA  NA  68  NA  53  NA  NA  NA  NA  NA  81
##  [469]  92  78  NA  NA  63  93 100  NA  NA  86  81  NA  NA  NA  NA  NA  NA  NA
##  [487]  85  NA  50  82 100  NA  NA  90  NA  NA  NA   4  NA  98  NA  NA  NA  NA
##  [505]  NA   0 100  98   0 100 100  NA  NA  NA  NA  NA 100 100 100  51  90 100
##  [523] 100 100 100   0 100 100 100 100  78 100 100  90 100   0   0  99  61  94
##  [541]  52  93  70  93  55  93 100  64  98  72 100  91  82 100  89  15  98  26
##  [559]  85  53  17  53 100  94  82  90  17  91  81  87  66  80  22  83 100  62
##  [577]  87  35 100  71  74  93  23  87  73  91  26 100  82  38 100  80  29  70
##  [595] 100  86 100 100 100  53  87  86  21  59  60  73  62 100  19  80  67  87
##  [613]  63  84 100  14  42  74  52  62  35  27  76 100  65  73  38  67  63  73
##  [631]  37  31  74  85  71  93  56  47  75  78  25  61 100  45  67  38  57  80
##  [649]  79  41  59  67  65 100  51 100 100  33  51  51  51  54  92  47  63  52
##  [667]  25  52  53  52  52  52  52  53  54  90  50  82  53  51  57  13  40  80
##  [685]   7  73  31  50  17  58  73  41  63  36  65  61  52  39  77   6  46  78
##  [703]  58  52  62 100  65  59  75  85  52  79  55  58  89  81  62  62  63  76
##  [721]  76  36  73 100  69  29  70  76  64  28  73  70  87  63  79  66  74  69
##  [739]  44  80  59 100  86  79  69   0  51  64  67  70  84  96  68 100  70  78
##  [757]  67  86   1   0 100  68  79  99  81  65  74  85  29 100  87 100 100  99
##  [775]  75  81  81  85  85  82  53  53  85  71  28  94  83  71 100 100  91  85
##  [793]  87  82  95  79  95 100  16 100 100  94 100  95  98  88 100 100  31  84
##  [811] 100  99 100 100  99  56  98  85 100   0  76 100  NA  NA  NA  NA  NA  NA
##  [829]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [847]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [883]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [901]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [919]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [937]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [955]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [973]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [991]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
PP$Understanding_GFPRB
##    [1]  NA  NA  NA  73 100 100  89 100 100 100 100 100 100 100   0 100   0 100
##   [19]  98 100 100  70 100  51 100   0  77  85 100  82 100   0 100 100 100 100
##   [37] 100 100 100 100 100 100 100   0 100   0 100 100   0 100 100 100 100 100
##   [55] 100 100 100 100 100 100  71 100  99  90 100 100 100  52 100  94 100 100
##   [73]   1  97 100 100  94 100  14 100 100 100 100  83 100 100 100  85 100 100
##   [91] 100  94  92  88 100  80  75  95  93 100  93   9  90  91  90  97  98  93
##  [109]  79  13  88  87  96  78 100  98  82  80  93 100  66  26 100   9  75  78
##  [127]  66  81  92  85  82 100  93 100 100  62 100 100  89  28 100  53 100  82
##  [145]  NA  66 100  74  20  81  89  86  88  91  50  97  83  86  71  64  66  76
##  [163]  70  91  53 100  52  76  98  19  76  69  87  87  24  93 100  96 100   0
##  [181]   0 100 100  72 100  81 100  84  73  89  17  77  59  95  91  85  90   5
##  [199]  84  81  98  81  50  69  90  32  20  82 100  76  34  89  73  67  87  93
##  [217]  78  77  56  69  68  92  77  83  33 100  79  99  82  68  81  32  57  69
##  [235]  30  89  76  88  89  80 100  70  72  37  39  56  55 100  87  64  97  75
##  [253]  80 100  41  19  56  87 100 100 100  31  61  69 100  29  88  81  50  51
##  [271]  75  71 100  62  99  69  59  29 100  50 100 100  54  64  37  69  77  52
##  [289]  52  33  84  45  44  70  44  60 100  40 100  64  49  66  48  86  80  72
##  [307]  26  34  37  30  56  39  58  34  71  94  20  96  56  26  50  42  75  18
##  [325] 100  92  50 100  50  45 100  20  51  54  91  51  66  51  84  58  85  76
##  [343]  62 100  52  52  80  52  86   0  56  65  55  62  81  30  81  52  53  45
##  [361]  29  65  74  34  71  36  69  42  95  16  61  37  68  34  39  60  43  38
##  [379]  67  85 100  71  66  90  59 100  52  39  88  68  36  43  40  71  73  95
##  [397]  70  31  41  63  45  99  65  38  32  34  71  34  64  32  78  72 100  90
##  [415]  51  64  84  66  67  63  64  75  70  53 100  56  62  66  67  70  66  85
##  [433]  76   8  77  65  79  35  81 100  29  70  95  71   0  36  78  15  74  69
##  [451]  84  73 100  77  94  73  80  71   2  85  75  87  75  82  32  85  60  86
##  [469]  21  86  74  87  77  98 100  92  73  72  83  93  85  97  79  42  79  92
##  [487]  79  79   0  89 100  96  89  78  81  94  90  11  84  95 100  91 100 100
##  [505]  68 100  96 100 100  98 100 100 100  75  20 100  NA  NA  NA  NA  NA  NA
##  [523]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [541]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [559]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [577]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [595]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [613]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [631]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [649]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [667]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [685]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [703]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [721]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [739]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [757]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [775]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [793]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [811]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [829]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [847]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [883]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [901]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [919]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [937]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [955]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [973]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [991]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
PP$Understanding_CBB
##    [1]  NA  NA  92  54  NA  95  NA  NA  NA  NA  NA  NA  NA  NA  30   0  NA 100
##   [19]  NA  NA  NA  NA  72   0  NA  NA  NA  NA  NA  NA   0  51  92  NA  82  50
##   [37]  NA  NA 100  NA 100  NA  NA  NA   6  NA   0  91  90  NA   0  NA  NA 100
##   [55]  NA  99  NA  NA  NA  NA  71  NA 100  NA  NA  NA  NA  NA 100  NA  NA  NA
##   [73]  NA  NA   3  NA  NA  65  NA  NA  30  NA  77  NA  NA 100 100  NA  24  NA
##   [91]  NA  NA  12  NA  96  NA  NA  75  84  90  NA  NA  65  NA  NA  NA   0  NA
##  [109]  NA  NA  NA  68  NA  76  NA  93  NA  NA   0  NA  51  NA  NA  87  NA  NA
##  [127]   5  NA  NA  NA  35 100  NA  38 100  NA  NA  NA  69  93  NA  NA  NA  86
##  [145]  NA  NA  NA  37  NA  NA  18  NA  99  80  11  NA  16  95  40  18  62  NA
##  [163]   1  NA  52  NA 100  50  NA  NA  NA  28  12  NA  NA  86  NA  NA  NA   0
##  [181]   0  NA  NA  NA  NA  70  77  NA  69  NA  NA  75  54  NA  75  NA  73  NA
##  [199]  NA  NA  NA  NA  NA  NA   0  NA  NA  NA 100  23  73  NA  NA  NA  NA  NA
##  [217]  28  NA  NA  NA  NA  NA  NA  36  30  NA  NA  86  NA  60  43  13  26  NA
##  [235]  NA  NA  NA  93  NA  53  69  57 100  NA  NA  NA  NA  10  51  69  NA  50
##  [253]  78  NA  NA  51  NA  69  25  67  72  NA  NA  NA 100  NA  NA  73  NA  56
##  [271]  NA  NA  NA  NA  66  NA  NA  54  NA  NA  NA  90  NA  NA  NA  NA  33  NA
##  [289]   3  33  NA  43  45  NA  63  NA  NA  NA  NA  NA  NA  NA  86   0   6  NA
##  [307]  NA  37  84  NA  NA  NA  NA  53  NA  NA  52  NA  39  NA  NA  NA  15  NA
##  [325]  NA  NA  50   0  NA  NA  NA  NA  58  93  19  NA  25  51  NA  NA  85  87
##  [343]  NA 100  52  NA  NA  NA  62   0  NA  NA  46  70  64  77  NA  NA  53  52
##  [361]  NA  62  23  NA  NA  29  NA  NA  NA  93  NA  NA  53  NA  NA  NA 100  58
##  [379]  71  96  NA  70  35  NA  NA  NA  70  NA  NA  NA  NA  NA  39  NA  NA  NA
##  [397]  NA  NA 100  59  NA  NA  75  70  NA  NA  NA  NA  NA  75  35  NA  NA  70
##  [415]  51  NA  NA  69  NA  NA  NA  NA  70  NA  NA  NA  NA  64  NA  NA  NA  86
##  [433]  NA  NA  NA  NA  72  NA  NA  NA  73  69  NA  38  NA  NA  75 100  NA  69
##  [451]  NA  NA  NA  NA  NA  NA  93  NA  NA  NA  83  NA  29  NA  NA 100  NA  NA
##  [469]  NA  NA  79  NA  NA  97  NA  86  NA  NA  95  NA  NA  NA  NA  86  83  88
##  [487]  NA  NA  50  75  92 100  14  NA  97  NA  NA  NA  36  72  NA  85  NA  82
##  [505]  NA  NA  NA  99 100 100  NA   0 100  NA  10 100 100   0  NA   0  NA  NA
##  [523]  NA  51  NA  NA  NA  NA  NA  NA  18 100 100  34   0  NA  NA   2  NA  NA
##  [541]  75  NA  21  20  34  NA  NA  NA  NA 100 100  31  83  41  63  NA  38  NA
##  [559]  78  NA 100   4  NA  95  NA  NA   7  62  61   0   0  73   0  NA  NA  15
##  [577]  NA  NA 100  NA  NA  NA  66  NA  NA  NA   0  NA  93   6 100  75  30  62
##  [595]  14  NA  NA 100 100  NA   5 100  38  NA  57  13  NA  NA  NA  30  NA  NA
##  [613]  28   3  83   2  55  NA  41   0  32  95  NA  NA  97  69  NA  NA  75  NA
##  [631]  NA  10  21  20  NA  NA  53  88  NA  79  NA  39   0  33  37  61  54  NA
##  [649]  NA  NA  NA  NA  43 100  45  62  NA  NA  NA  NA  NA  29  NA  15  67  NA
##  [667]  NA  NA   0 100  52  NA  NA  53  50  NA  NA  53  NA  NA  NA  NA  NA  85
##  [685]  81  42  NA  52  NA  NA  29  NA  NA  NA  56  NA  NA  NA  82  NA  52  59
##  [703]  NA  NA  33 100  35  63  65  NA  NA  66  NA  NA  68  NA  66  54  NA  73
##  [721]  62  NA  NA  NA  84  NA  59  87  22  26  76  NA  NA  NA 100  50  68  NA
##  [739]  NA  NA  33  NA  NA  81  73  NA  76  63  NA  68  NA  NA  84  77  NA  NA
##  [757]  NA  NA  33  70  96  64  86 100  69  NA  27  81  NA  NA  89  NA 100 100
##  [775]  NA  NA  NA  65  87  NA  22  NA  83  NA  85  74  NA  38  NA  28  94  83
##  [793]  89  NA  84  NA  20 100   8  35  NA  NA  NA  NA  NA  NA  72 100  16 100
##  [811] 100  93 100 100  57  NA  NA  49  78   0  NA 100  NA  70  NA  NA  92  23
##  [829]  66  75  38  67  NA 100  NA  80  NA  65  46  12  34 100  59  50  72   2
##  [847]  NA  52  65  NA  NA  61 100  NA   0  47  90  53  36 100  27  50  25  27
##  [865]  93  68  90   7  35  43  95  NA  99  25 100 100  51   4  51   3  26  83
##  [883]  63  NA  NA   3 100  29  28  31  56  64  NA  NA  74  46  NA  99  NA 100
##  [901]  NA  88   0  NA  NA  64  69  48  NA  59  87  63  74  15  83  60  NA  85
##  [919]  30  76  19  83  20 100  32  94  96  NA  76  65  54 100   0  NA  NA  68
##  [937]  72  NA  80  26  NA  62 100  56  62  NA  NA  NA  68  62  53  10  64  50
##  [955]   0  NA  44   0  30  52  96  43 100  NA  NA  66  21  NA  98  52  20  23
##  [973]  78  52 100  64  56  71  NA  NA  22  NA  78  52  91  50  44  63  24  33
##  [991]  52  24  60  41  NA  25  38  46  42  41  NA  13  79 100  NA
PP$Understanding_PBPB
##    [1]  NA  56  90  NA 100  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [19]  NA  71  NA  NA  NA  NA  NA   3  NA  NA  NA  NA   0  NA  NA 100  77  NA
##   [37]   0 100  NA 100  NA  91 100  NA  NA  34 100  NA  NA  52  NA  30 100  NA
##   [55]  62  99  NA  NA  NA  NA  31  NA  NA  NA   1  NA  NA  77 100  32 100 100
##   [73]  NA 100  13  NA  NA  NA  NA  NA  NA  NA  NA  24 100  NA  NA  57  NA  98
##   [91]  88  NA   0  NA  63  28  52  NA  NA  NA  13  75  NA   0  NA  NA  40  NA
##  [109]  86  NA  56  77  86  84  NA  NA  NA  NA   0  81  NA  52  NA  NA  NA  51
##  [127]  28  NA  91  NA  NA  NA  90  NA  NA  NA  63  NA  NA  NA 100  NA 100  72
##  [145]  NA  NA  NA  29  NA  NA  NA  73  NA  NA  NA  88  NA  NA  NA  NA  NA  NA
##  [163]   0  92  NA  78  24  NA 100  NA  67  NA  NA  NA  NA  NA   0  72  NA  NA
##  [181]   0 100  NA  NA  97  NA  NA  28  NA  90  16  78  NA  NA  NA  29  NA   0
##  [199]  42  78   3  83  NA  NA  NA  30  64  NA 100  19  NA  NA  74  59  70  NA
##  [217]  NA  NA  71  68  67  NA  73  82  33  NA  92  NA  NA  NA  NA  NA  29  NA
##  [235]  NA  NA  NA  NA  NA  62  NA  NA  NA  NA  NA  35  55  70  NA  NA  NA  NA
##  [253]  78   9  46  NA  NA  NA  NA  NA  NA  62  23  10 100  NA 100  NA  NA  50
##  [271]  NA  52 100  87  NA  41  NA  NA  99  50  82  91  NA  NA  NA  NA  50  NA
##  [289]  80  NA  26  NA  17 100  21  21 100  52  NA  29  47  58  NA  NA  NA  77
##  [307]  72  69  53  NA  NA  NA  74  NA  NA  NA  NA  NA  NA  74  50  NA  NA  NA
##  [325] 100  87  50 100  50  41 100  NA  NA  57  NA  NA  NA  51  NA  NA  NA  NA
##  [343]  70  NA  NA  NA  95  59  NA   0  59  NA  41  NA  NA  NA  29  52  NA  NA
##  [361] 100  NA  30  NA  42  31  NA  25  61  93  NA  NA  NA  17  76  58  64  NA
##  [379]  69  NA  NA  68  60  NA  NA  74  69  39  79  NA  64  60  NA  NA 100  48
##  [397]  NA  86  NA  NA  NA  74  NA  NA  NA  85  62  58  58  NA  58  86 100  NA
##  [415]  NA  NA  NA  NA  73  NA  NA  NA  84  NA  NA  33  NA  NA  NA  NA  66  NA
##  [433]  83  NA  NA  NA  NA  52  NA 100  NA  NA  NA  NA  65  59  72  NA 100  NA
##  [451]  NA  67  NA  72  52  NA  NA  71  NA  NA  77  NA  NA  80  NA  NA  24  NA
##  [469]  93  NA  66  71  86  NA  NA  NA  NA  NA  NA  90  NA  86  89  NA 100  NA
##  [487]  NA  28  NA  NA  NA  NA  NA  NA  NA  NA  20  14  NA  NA  NA  29  NA  NA
##  [505]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA   5  NA  51 100  50
##  [523]  NA  NA  57   0  81 100 100 100  NA 100  80  NA  65  NA 100  NA   7  85
##  [541]  NA  NA  17  NA  NA  NA  NA  NA  20  NA  93  63  80  NA  NA  29  NA  19
##  [559]  85  16  NA  NA  75  93  87  76  28  59  NA  NA 100  78  38  27  NA  70
##  [577]  86  NA  NA  77  NA  82  74 100  91 100  NA  45 100  NA  NA  NA  NA  NA
##  [595]  13  84  NA 100  NA  48  NA  NA  NA  NA  NA  NA   0  NA 100  NA  23  25
##  [613]  64  51  NA  35  NA  60  52  52  58  20  72   0  NA  72  34  NA  NA  NA
##  [631]  63  NA  NA  33  68  NA  NA  NA  52  NA  27  NA  NA  NA  NA  74  NA  NA
##  [649]  43  42  64  81  NA 100  NA  64 100  75  NA  52  51  NA  NA  90  68  61
##  [667]  89  52  NA  NA  NA  51  51  NA  NA  NA  NA  NA  NA  53  55  27  NA  NA
##  [685]  NA  NA  68  NA  NA  NA  NA  87  32  52  68  NA  52  NA  79  46  52  NA
##  [703]  67  50  65 100  NA  62  NA  85  NA  NA  64  42  76  98  34  61   4  NA
##  [721]  NA 100  72  28  NA  62  77  NA  26  NA  79  66  79  69  NA  68  NA  30
##  [739]  42  79  NA 100  NA  NA  NA  42  NA  64  62  81  87  NA  63 100  65  86
##  [757]  60  NA  NA 100 100  NA  67 100  NA  88  NA  NA  66  83  NA 100 100  NA
##  [775]  62  86  77  73  NA  81  NA  58  NA  NA  NA  NA  84  NA  NA  NA  82  90
##  [793]  NA  81  NA  NA  61 100  NA  NA 100  97  NA  NA  NA  NA  NA  NA  NA 100
##  [811]  NA  NA 100 100 100 100 100  NA  NA  NA  76  NA  71  NA  22 100  NA  72
##  [829]  64  NA  38  70  36  75  28  NA  62  85  NA  62  NA  NA  55  50  38  36
##  [847]  28  NA  56 100 100  NA  NA  73  NA  35  91  43  70   0  66  58  60  60
##  [865]  87  71  94  91  71  NA  87  65 100  NA  91  NA  31 100  68  69  28  59
##  [883]  23  77  52  NA 100  87  NA  NA  63  75 100 100  NA  52  61 100 100  NA
##  [901]  76  59  34  22  81  76 100  47  97  42  52  24  82  28  29  63  57  NA
##  [919]  31  71  NA  78  87  NA  28   0  75   3  91  NA  82  NA  NA  79  74  23
##  [937]  NA  31  85  77  41  40  75  44  73 100  60  84 100  NA  53  NA  34  52
##  [955]  NA  66  53  NA  NA  NA  93  NA  NA  76 100  69  63  72  95  44  93  92
##  [973]  98  25  NA  NA  22  52   1 100  27  77   0  45  80  47  45  62  NA  65
##  [991]  52  NA  83  33   7  84  NA  NA  36  NA  55  10  NA  88  43
PP$Understanding_PBFB 
##    [1]  NA  60  NA  NA  NA 100  52 100   0 100 100  NA  NA  NA  NA  NA   0  NA
##   [19]  81  NA   0   4  NA  NA  NA  NA  87 100   0   6  NA  51  26 100  NA  NA
##   [37]  NA 100   0 100   0 100   0   0  80  NA  NA  68  NA  57  54  NA 100   2
##   [55]   0  NA  70  NA   1   0  NA   0  NA   8   0  52 100  11  NA  NA  NA  NA
##   [73]   1  NA  NA  NA  NA  NA   1  NA  75 100 100  33  NA  NA 100  31  66  NA
##   [91]  NA  12  NA   6  NA  NA  28  NA  NA  NA  14  82  42  16  NA  NA  NA   3
##  [109]  NA  NA  NA  NA  NA  NA  15  NA  87  59  NA  NA  NA  NA  NA  NA  NA   0
##  [127]  NA  77  NA  67  NA 100  NA 100  NA  38  NA  NA  NA  NA  80  53  NA  NA
##  [145]  89  57  NA  NA  88  22  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  40
##  [163]  NA  NA  NA  52  NA  NA  NA  20  NA  NA  NA  70  NA  32  NA  NA  NA  NA
##  [181]  NA  NA 100  55 100  NA  NA  NA  NA  NA  NA  NA  NA  58  NA  NA  NA  NA
##  [199]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  40  74  NA   5  NA  32
##  [217]  NA  57  NA  69  NA  89  75  NA  NA  85  78  97  NA  NA  68  NA  NA  13
##  [235]  28  83  74  85  61  NA  NA  NA  NA  35   2  NA  54  NA  52  NA  NA  90
##  [253]  NA  NA  NA  NA  NA  NA  27  NA  NA  NA  28  NA  NA  NA  NA  NA  41  NA
##  [271]  28  NA  NA  NA  74  24  NA  NA  82  21  NA  NA  NA  28  NA  68  NA  52
##  [289]  NA  NA  NA  NA  NA  NA  NA  NA  84  NA  34  NA  NA  NA  NA  80  NA  NA
##  [307]  89  NA  NA  NA  NA  NA  64  NA  72  NA  NA  69  NA  NA  NA  NA  71  85
##  [325]  NA  43  NA  NA  50  NA  NA   0  52  NA  NA  51  NA  NA  93  NA  NA  NA
##  [343]  NA  NA  NA  52  NA  NA  71  NA  NA  68  NA  NA  NA  NA  22  NA  NA 100
##  [361]  NA  NA  NA  26  NA  NA  80  NA  26  NA  NA  NA  52  NA  66  NA  NA  65
##  [379]  NA  98 100  NA  NA  66  NA  NA  NA  39  NA  66  NA  NA  NA  NA  NA  NA
##  [397]  NA  NA  NA  NA  NA  NA  NA  NA  28  NA  NA  NA  NA  NA  NA  NA 100  NA
##  [415]  NA  67  75  62  78  NA  63  76  NA  NA  65  29  30  61 100  64  NA  NA
##  [433]  NA  50  75  NA  NA  NA  80 100  NA  NA  94 100  NA  NA  NA  NA  NA  NA
##  [451]  82  NA 100  74  NA  NA  86  NA   0  91  NA  65  25  83  34  73  NA  36
##  [469]  NA  NA  NA  NA  NA  NA  79  NA 100  NA  NA  88  90  96  NA  NA  NA  82
##  [487]  NA  75  NA  NA  NA  NA  56  98  83  79  70  NA  71  NA  95  NA  83  92
##  [505] 100  98 100  NA  NA  NA  NA  NA 100 100  23  NA  NA  NA  85  NA  78  51
##  [523] 100   0  NA   0  NA  NA 100  NA  NA  NA  NA  73  NA   1 100   2  NA  78
##  [541]  NA   5  NA  NA  NA  90  87  20   1  NA  NA  NA  NA  77  NA  NA  NA  16
##  [559]  NA  52  NA   0  66  NA  93  NA  NA  NA  NA  11  NA  NA  NA  35 100  NA
##  [577]  NA  15  NA  70  25  95  NA  NA  NA  50   0  NA  NA  NA  NA  75  NA  77
##  [595]  NA  NA   0  NA  NA  52  NA  77  NA  18  NA   0  NA  83  NA  NA  28  NA
##  [613]  NA  NA  83  NA  NA  NA  NA  NA  NA  NA  NA   0  NA  NA  NA  21  NA  84
##  [631]  NA  NA  NA  NA  66  88  NA  NA  70  33  NA  53 100  NA  33  NA  NA  69
##  [649]  73  41  NA  62  NA  NA  NA  NA  NA  67  51  53  51  NA 100  NA  NA  68
##  [667]  88  NA  NA  NA  NA  52  51  NA  NA  77  50  53  42  52  36  98  43  NA
##  [685]  NA  NA  NA  59  28  42  NA  41  62  NA  NA  NA  52  37  NA  NA  NA  NA
##  [703]  60  47  NA  NA  NA  NA  53  94  69  NA  45  NA  NA  NA  NA  NA  64  27
##  [721]  NA  82  NA  NA   3  70  NA  82  NA  30  NA  78  NA  NA  88  NA  NA  NA
##  [739]  67  NA  77 100  87  NA  78  57  NA  NA  61  NA  NA  34  NA  NA  72  79
##  [757]  62  63  NA  NA  NA  NA  NA  NA  62  82  21  NA  75  80  86 100  NA  NA
##  [775]  NA  78  NA  NA  NA  NA  52  98  72  75  NA  55  NA  NA  77  75  NA  NA
##  [793]  NA  77  61  12  NA  NA  NA  NA 100  92 100  98 100  10  NA 100 100  NA
##  [811] 100  NA  NA  NA  NA  NA  NA  NA  77  53  28 100  65  47  81  80  95  82
##  [829]  65  89  66  NA  15  73  35  75  89  NA  82  NA  53  90  68  NA  NA   2
##  [847]  73  19  NA  66 100  34   0  67  50  NA  NA  21  64   0  36  34  28  76
##  [865]  89  65  NA  NA  NA  24  89  64 100  70  11  13  43  NA  NA  NA  10  82
##  [883]  28  37  47   0  NA  84  70  39  54  69 100  78  79  52   0  93 100 100
##  [901]  87  37  36  29 100  81  44  47  81  NA  NA  NA  87  31  74  59  64  61
##  [919]  21  72  13  NA  83  97  NA  12  NA  28  61  76  NA 100  41  73  62  NA
##  [937]  88  NA  NA  67  18  70  NA  NA  64  80  28  21  96  58  74  43  35  NA
##  [955]  10  81  NA   0  39  52  87  59  99  24   0  NA  33  68  NA  47  74  27
##  [973]  NA  26 100  37  NA  NA   0  71  NA  89  NA  NA  NA  NA  NA  NA  21  30
##  [991]  52  30  43  40   9  93  72  34  NA  52  46  14  72  71  52
PP$Understanding_VB
##    [1]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 100 100 100  NA  NA  NA  NA
##   [19]  NA  NA  NA  NA  NA  NA 100  NA  NA 100 100 100  NA  NA  NA  NA  NA  50
##   [37] 100  NA  NA  NA  NA  NA  NA   0  NA  26  NA  NA 100  NA  NA 100  NA  NA
##   [55]  NA  NA  92 100  12 100  NA  NA  98 100  NA  52 100  NA  NA  56  79  NA
##   [73]  NA  NA  NA   5  82  83   9 100  NA 100  NA  NA  NA 100  NA  NA  NA  NA
##   [91]  NA   5  NA   0  NA  NA  NA 100  NA  NA  NA  NA  NA  NA  41  68  NA  91
##  [109]  NA   0  NA  NA  NA  NA  76  82  81  37  NA  78  61  52  92  18  51  NA
##  [127]  NA  NA  88  NA  NA  NA  79  NA  NA  81 100  90  NA  75  NA  53  NA  NA
##  [145]  NA  NA  74  NA  NA  82  NA  76  NA  74  66  86  82  NA  NA  32  22  77
##  [163]  NA  89  NA  NA  NA  63  NA  31  34  NA  81  67 100  NA  NA  NA 100   3
##  [181]  NA 100 100  60  NA  NA  88  50  NA  NA  22  NA  89  NA  NA  NA  NA  56
##  [199]  NA  75  77  NA  83  23  51  17  NA  79  NA  NA  NA  85  75  NA  34  77
##  [217]  NA  70  75  NA  NA 100  NA  NA  NA  85  NA  NA  27  59  NA  NA  NA  15
##  [235]  69  90  NA  NA  NA  NA  NA  NA  79  39  48  68  NA  NA  NA  28   0  NA
##  [253]  NA 100  NA  NA  52  NA  NA 100  64  NA  NA  NA  NA  18  NA  84  NA  NA
##  [271]  NA  NA 100  78  NA  NA  79  NA  NA  NA 100  NA  17  NA  76  NA  NA  52
##  [289]  NA  15  NA  44  NA  NA  NA  40  NA  NA  NA  NA  49  NA  75  NA  NA  69
##  [307]  NA  NA  NA  39  44  70  NA  42  NA  91  11 100  55  69  NA  63  NA  92
##  [325]  83  NA  NA  NA  NA  NA  NA  61  NA  NA  NA  51  69  NA 100  89  NA  NA
##  [343]  NA 100  NA  52  28  52  NA  NA  45  NA  NA  52  79  31  NA  NA   3  NA
##  [361]  NA  NA  NA  30  NA  NA  87  84  NA  NA  41  68  NA  NA  NA  61  NA  NA
##  [379]  NA  NA  NA  NA  NA  88  62  NA  NA  NA  NA  61  64  62  NA  60  NA  52
##  [397]  74  NA  NA  NA  NA  91  NA  NA  85  NA  NA  31  64  NA  NA  NA  NA  85
##  [415]  NA  71  81  NA  NA  45  66  71  NA  53  63  NA  68  NA  NA  NA  NA  81
##  [433]  60  35  NA  68  28  NA  NA  NA  26  79  NA  NA  NA  52  NA 100  NA  NA
##  [451]  87  NA  89  NA  NA  80  NA  74 100  NA  NA  NA  NA  NA  21  NA  88  NA
##  [469]  NA  82  NA  92  NA  NA  NA  79  82  88  NA  NA 100  NA  91  74  NA  NA
##  [487]  97  NA  NA  NA  NA  13  NA  NA  NA  84  NA  NA  NA  NA  84  NA  77  NA
##  [505] 100  NA  NA  NA  NA  NA 100  NA  NA  83  NA 100 100  NA 100  NA  NA  NA
##  [523]  68  NA  52  NA 100 100  NA 100 100  NA  NA  NA  NA  NA  NA  NA 100  NA
##  [541]  29   1  NA  86  68  65 100  58  NA  92  NA  NA  NA  NA  95  24  85  NA
##  [559]  NA  NA  40  NA  NA  NA  NA  99  NA  NA  75  NA  NA  NA  NA  NA 100  NA
##  [577]  87  90 100  NA  53  NA  NA  89  88  NA  NA   0  NA  79 100  NA  35  NA
##  [595]  NA  87 100  NA   0  NA  83  NA  25  61  77  NA  31 100   0 100  NA  26
##  [613]  NA  NA  NA  NA  72  20  NA  NA  NA  NA  75  NA  93  NA  65  40  75  79
##  [631]  67  32  82  NA  NA  81  43  48  NA  NA  64  NA  NA  65  NA  NA   0  67
##  [649]  NA  NA  60  NA  40  NA  24  NA  38  NA  51  NA  NA  50  74  NA  NA  NA
##  [667]  NA  52   0  52  52  NA  NA  52  50  56  50  NA  34  NA  NA  NA  82  70
##  [685]  90  82  23  NA  34  92  26  NA  NA  52  NA  61  NA 100  NA  77  NA  85
##  [703]  NA  NA  NA  NA  38  NA  NA  NA  52  82  NA  90  NA  68  NA  NA  NA  NA
##  [721]  35  NA 100 100  NA  NA  NA  NA  NA  NA  NA  NA  90  88  NA  NA  63  69
##  [739]  NA  87  NA  NA  86  93  NA  NA  65  NA  NA  NA  90  83  NA  NA  NA  NA
##  [757]  NA  96 100  NA  NA  70  NA  NA  NA  NA  NA  82  NA  NA  NA  NA  NA  97
##  [775]  82  NA  18  NA  96  68  NA  NA  NA  88  17  NA  78  52 100  NA  NA  NA
##  [793]  21  NA  NA  80  NA  NA 100 100  NA  NA  80 100  97  76  69  NA  NA  NA
##  [811]  NA  60  NA  NA  NA 100  65  99  NA  NA  NA  NA  93  63  79 100  88  NA
##  [829]  NA 100  NA  85  46  NA  19  67  81  69 100  61  79  99  NA 100 100  NA
##  [847]  75  52  59  24 100  62 100  99 100  60  89  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA 100  70  88  40  NA  63  NA  81  NA  15  NA 100  66  18  NA  NA
##  [883]  NA  19  52 100  82  NA  73  64  NA  NA 100  79  64  NA  98  NA 100  71
##  [901] 100  NA  NA  60 100  NA  NA  NA 100  33  84  63  NA  NA  NA  NA  88  88
##  [919]  NA  NA   8  73  NA 100  36  NA 100  93  NA  81  71 100  80  93  77 100
##  [937]  75  NA 100  NA  36  NA  96  53  NA 100  67  49  NA  53  NA  72  NA  67
##  [955]  50  73  73   0  37  31  NA  44  88  93 100  66  NA  73  99  NA  NA  NA
##  [973]  90  NA 100  NA 100  52  31 100  71  88  83  52  51  50  48  52  70  NA
##  [991]  NA  46  NA  NA  59  NA  72 100  39  58  51  NA  79  NA  33
PP$Disgust_GFFB
##    [1]  NA  NA  NA  95  59  NA   0   0   0   0   0   0   0   0   0   0  17  12
##   [19]  15   0   0   0  68  51 100  72  91  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [37]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [55]  NA  NA  NA  62  NA  NA  NA   3  NA  NA  NA  NA  NA  NA  NA  NA  NA   0
##   [73]   0 100  NA   0  72  NA  NA   0  NA  NA  NA  NA   0  NA  NA  NA  NA  67
##   [91]  50  NA  NA  NA  NA 100  NA  NA  10   3  NA  NA  NA  NA   0   3  NA  NA
##  [109]   0   0  86  NA  12  NA  NA  NA  NA  NA  NA  NA  NA  NA   1  NA  76  NA
##  [127]  NA  13  NA  10  16  NA  NA  NA  87  NA  NA   0  53  NA  NA  NA   0  NA
##  [145]   0  51  84  NA  22  NA  28  NA  87  NA  NA  NA  NA  22  33  NA  NA  NA
##  [163]  NA  NA  30  NA  NA  NA  32  NA  NA  31  NA  NA  82  NA   0   2 100  NA
##  [181]  NA  NA  NA  NA  NA  40  NA  NA  35  36  NA  NA  NA  11  71  25  46  NA
##  [199]  69  NA  NA  27  99  55  NA  NA  21  66  NA  NA  NA  NA  NA  NA  NA  NA
##  [217] 100  NA  NA  NA  58  NA  NA  NA  NA  NA  NA  NA  88  NA  NA  38  NA  NA
##  [235]  NA  NA  22  NA  33  NA  49  37  NA  NA  NA  NA  NA  NA  NA  NA   0  NA
##  [253]  NA  NA  48 100  52  33  NA  NA  NA  26  NA  89  NA  28   1  NA  27  NA
##  [271]  32 100  NA  NA  NA  NA 100  37  NA  NA  NA  NA  NA  69  77  32  NA  NA
##  [289]  NA  NA  73  NA  NA   0  NA  NA  NA  41  16  36  NA  56  NA  NA  56  NA
##  [307]  NA  NA  NA  37  61  32  NA  NA  37  97  NA  NA  NA  NA  50  64  NA  NA
##  [325]  NA  NA  NA  NA  NA  43 100  NA  NA  NA  23  NA  NA  NA  NA   0  85  20
##  [343]  53  NA  52  NA  NA  NA  NA  NA  NA  69  NA  NA  NA  NA  NA  53  NA  NA
##  [361]  28  57  NA  NA  63  NA  NA  NA  NA  NA  48  64  NA  20  NA  NA  NA  NA
##  [379]  NA  NA 100  NA  NA  NA  43 100  NA  NA  82  NA  NA  NA  36  68  28  NA
##  [397]  79  34  30  70  34  NA  66  26  NA  74  36  NA  NA 100  NA  65  NA  NA
##  [415] 100  NA  NA  NA  NA  71  NA  NA  NA  62  NA  NA  NA  NA  60  77  61  NA
##  [433]  NA  NA  34  67  NA   7  NA  NA  NA  NA  90  NA  32  NA  NA  NA  87  64
##  [451]  NA  75  NA  NA  51  78  NA  NA  NA  95  NA  79  NA  NA  NA  NA  NA 100
##  [469]  20  95  NA  NA  77  86 100  NA  NA   5  76  NA  NA  NA  NA  NA  NA  NA
##  [487]  75  NA  50  77  88  NA  NA  95  NA  NA  NA  99  NA   7  NA  NA  NA  NA
##  [505]  NA  NA 100 100   0 100 100  NA  NA  NA  NA  NA  NA   0   0   1   0   0
##  [523]   0   0   0   0   0   0   0   0  16   0   0   4   0   0   3   1   0   3
##  [541]   1   4   2   3   6   0   0   9   2   0  10   1  22  17  15  18  16  18
##  [559]  10  11  19   4  31  18   9  72  18  11  25  81  51  19 100  17  66  28
##  [577]  75  22   0   7  10   3  75  85  10  32  20  34  33  59   0   3  24  38
##  [595]   0  81 100 100   0  53  48  92  29  33  23  53  16  99  46  74  79  26
##  [613]  25 100  91   7  44  30  52  43  39  30  25  32  66  28  26  52  40  39
##  [631]  40  49  30  40  39   5  77  53  40  32  50  55  48  24  39  53  50   6
##  [649]  60  33  58  38  38 100  45  50 100  28  51  51  52  54   6  51  66  52
##  [667]  49  52  53  52  52  53  52  53  57  84  50  53  53   0  56  86  12  13
##  [685]  54  89  38  49  86  81  35  41  82  77  57  60  52  64  72  73  46  75
##  [703]  62  52  43  53  74  78 100  22  52  32  63  66  75  36  71  48  64  28
##  [721]  39  92  62  52  53  30  67 100  66  42  77  77  15 100 100  68  65  81
##  [739]  82  81  74 100  14  26  69  45  69  72  65  78  93  94  64   0  71  11
##  [757]  80  42   0 100  72  60  68   1  84  87  72  87  89  91  94  82  65 100
##  [775]  19  81  85  91  81  90 100  70  83  79  24 100  86  85  82 100  85  86
##  [793]  90  86  88  84  95 100 100 100 100  98 100 100  97  81 100   5 100 100
##  [811] 100  99 100 100 100 100 100 100 100 100 100 100  NA  NA  NA  NA  NA  NA
##  [829]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [847]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [883]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [901]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [919]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [937]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [955]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [973]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [991]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
PP$Disgust_GFPRB
##    [1]  13  NA  NA  83   0   0   0   0   4   0   0   0   0   0   0   0   0   1
##   [19]   0   0   0   0   0   0   0   6   0   0   0   0   0   0   0   0   0   0
##   [37]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   [55]   0   0   0   0   0   0   0   0   2   0   0   0   0   2   0   0   0   2
##   [73]   2   0   0   0   7   1   1   0   1   4   2   0   4   4   0   2   0   5
##   [91]   0   3   0   3   0   0   0   0   5   0   3  11  12  13   0   8   0  90
##  [109]   3  13   0   6   7   0   0   5   3   0   0  81   0  23  90  11   0  51
##  [127]  21   5  12   6   7   0  17  14   0  73  23   0  23  10   0  53  18   0
##  [145]   9  12  20   7  22  15  30  10  18  19   0  18  17  21   5   0  20  17
##  [163]   0  20  24   0  11  15  40  26  19  30  21  18  24  25   0   0   0 100
##  [181] 100  50   0   0   0  71   0  24  19  13  17  14  12  30  11  27   5  86
##  [199]   0  13   3   6  31  18  51  37  26  23   0  13  27  36  27  66  39  40
##  [217]  19  15   0  32  40  25  22  33 100  76  62  19  59  22  67  32  17  22
##  [235]  33   3  28   0  38  35  33  31  39  46  97  NA  34   0  65  18  32  18
##  [253]  29   0  38  80  35  12   0  52   0  30  39  23  35  27  15  10  31  40
##  [271]  79  70 100  80  15  34  77  50   9  35  12   9  20   3  25  81  85  52
##  [289]   0  27  60  45  NA   4  66  33   2  52  74  58  45  80  43  10   4  69
##  [307]   4  57  50  49  59  66  34  38  36  88   8  57  52  14  46  58  72  20
##  [325]   0  30  50 100  50  77  59  56  50  50   7  51  86  51  50  53  18  24
##  [343]  43  17  52  52  25  52  51 100  47  67  66  52  35  87  44  52  53   0
##  [361]  25  44  24  93  35  29  57  66   6  94  57  40  14  50  38  74  57  67
##  [379]  65   2   0  65  28  44  63  74  39  41  37  44  68  64  30  10  94  94
##  [397]  27  25  37  60  75  63  36  76  92  74  36  49  56 100   3  71 100   0
##  [415] 100  61  22  58   0  62  64  28  26  55  42  84  72  66  60  39  66  74
##  [433]  71 100  73  68  83  20  86  50  33  38  12  64  59  52  17  94  81  65
##  [451]  24  71   0  77  21  77  30  74   0  85  76  67  40  81  81  80  73 100
##  [469]  95  91  68  75  59  87 100  35  95  87  85  12  97  96  92  38  92  91
##  [487]  85  89 100  88  91  84  54  72   0  18  82  89  85  91  98 100 100  97
##  [505] 100 100 100 100 100 100 100 100 100 100 100 100  NA  NA  NA  NA  NA  NA
##  [523]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [541]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [559]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [577]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [595]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [613]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [631]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [649]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [667]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [685]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [703]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [721]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [739]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [757]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [775]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [793]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [811]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [829]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [847]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [883]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [901]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [919]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [937]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [955]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [973]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [991]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
PP$Disgust_CBB
##    [1]  NA  NA 100  NA  NA   0  NA  NA  NA  NA  NA  NA  NA  NA  14 100  NA   0
##   [19]  NA  NA  NA  NA 100   0  NA  NA  NA  NA  NA  NA 100 100  21  NA  82   0
##   [37]  NA  NA   0  NA   0  NA  NA  NA 100  NA   0   0 100  NA 100  NA  NA  89
##   [55]  NA 100  NA  NA  NA  NA   0  NA   1  NA  NA  NA  NA  NA   0  NA  NA  NA
##   [73]  NA  NA   0  NA  NA  65  NA  NA 100  NA  90  NA  NA  13   0  NA  32  NA
##   [91]  NA  NA 100  NA  52  NA  NA   6  58  94  NA  NA  28  NA  NA  NA 100  NA
##  [109]  NA  NA  NA  19  NA   1  NA  86  NA  NA   0  NA   0  NA  NA   9  NA  NA
##  [127]  56  NA  NA  NA  64  49  NA 100   0  NA  NA  NA  75 100  NA  NA  NA  15
##  [145]  NA  NA  NA  86  NA  NA  10  NA 100  76  47  NA  81  18  60 100  37  NA
##  [163]  95  NA  27  NA 100  82  NA  NA  NA  76  10  NA  NA   6  NA  NA  NA 100
##  [181] 100  NA  NA  NA  NA  79  79  NA  78  NA  NA  21  11  NA  90  NA  82  NA
##  [199]  NA  NA  NA  NA  NA  NA 100  NA  NA  NA   0  44  18  NA  NA  NA  NA  NA
##  [217]  28  NA  NA  NA  NA  NA  NA   9   4  NA  NA   8  NA  22  28  38  66  NA
##  [235]  NA  NA  NA   4  NA  86  91  40  30  NA  NA  NA  NA  40  81  13  NA  18
##  [253]  82  NA  NA  51  NA  54   0   0  31  NA  NA  NA  60  NA  NA   9  NA  39
##  [271]  NA  NA  NA  NA  19  NA  NA  61  NA  NA  NA  96  NA  NA  NA  NA  61  NA
##  [289]  52  52  NA  39  44  NA  31  NA  NA  NA  NA  NA  NA  NA  16 100  66  NA
##  [307]  NA  71  67  NA  NA  NA  NA  55  NA  NA  52  NA  32  NA  NA  NA   7  NA
##  [325]  NA  NA  50 100  NA  NA  NA  NA  53  67  63  NA  65  51  NA  NA  87  36
##  [343]  NA 100  52  NA  NA  NA   0 100  NA  NA  39   3   7  83  NA  NA   0   0
##  [361]  NA  72  30  NA  NA  37  NA  NA  NA  94  NA  NA  53  NA  NA  NA  90  66
##  [379]  75  10  NA  17  50  NA  NA  NA  70  NA  NA  NA  NA  NA  38  NA  NA  NA
##  [397]  NA  NA   0  66  NA  NA   7  75  NA  NA  NA  NA  NA 100  74  NA  NA  10
##  [415]   0  NA  NA  82  NA  NA  NA  NA  26  NA  NA  NA  NA  64  NA  NA  NA  96
##  [433]  NA  NA  NA  NA 100  NA  NA  NA  78  83  NA  69  NA  NA  87   0  NA  65
##  [451]  NA  NA  NA  NA  NA  NA  51  NA  NA  NA  83  NA  76  NA  NA 100  NA  NA
##  [469]  NA  NA  64  NA  NA  86  NA  85  NA  NA 100  NA  NA  NA  NA  85 100  86
##  [487]  NA  NA 100  97  72 100  24  NA   8  NA  NA  NA  98  13  NA 100  NA 100
##  [505]  NA  NA  NA  99 100 100  NA   0 100  NA 100 100  NA   0  NA 100  NA  NA
##  [523]  NA  51  NA  NA  NA  NA  NA  NA 100 100   0  93 100  NA  NA 100  NA  NA
##  [541] 100  NA  92  22  22  NA  NA  NA  NA 100  10  61  85  89   4  NA  86  NA
##  [559]  27  NA   5  21  NA  74  NA  NA   9   0  26 100   0  21 100  NA  NA  22
##  [577]  NA  NA   1  NA  NA  NA  61  NA  NA  NA 100  NA  75  81  82   5  26  87
##  [595] 100  NA  NA  99   0  NA  85 100  23  NA  54 100  NA  NA  NA  67  NA  NA
##  [613] 100  52   9  82  19  NA  52  41  66  14  NA  NA  94  36  NA  NA  42  NA
##  [631]  NA  49  37  62  NA  NA  53  37  NA  60  NA  51   0  74  34  61  45  NA
##  [649]  NA  NA  NA  NA  66   0  63  50  NA  NA  NA  NA  NA  75  NA  18  29  NA
##  [667]  NA  NA   0   0  52  NA  NA  53 100  NA  NA  75  NA  NA  NA  NA  NA  79
##  [685]  22  59  NA  64  NA  NA  54  NA  NA  NA  58  NA  NA  NA  80  NA  47  80
##  [703]  NA  NA  31 100  69  59   0  NA  NA  32  NA  NA  50  NA  77  58  NA  28
##  [721]  72  NA  NA  NA   1  NA  48  30  70  51  18  NA  NA  NA  42  58  67  NA
##  [739]  NA  NA  85  NA  NA  78  84  NA  18  67  NA  89  NA  NA  70  13  NA  NA
##  [757]  NA  NA  97 100   5  60  68 100  35  NA  67  79  NA  NA  89  NA  90 100
##  [775]  NA  NA  NA  84  89  NA  53  NA  86  NA  52  10  NA  80  NA 100  95  92
##  [793]  96  NA  87  NA 100   0  88  65  NA  NA  NA  NA  NA  NA   9  97 100 100
##  [811] 100  91 100 100 100  NA  NA   8  25 100  NA 100  NA  22  NA  NA  87  15
##  [829]  65   0  77  73  NA   0  NA  66  NA   0  34  59  88   9  35   0  82 100
##  [847]  NA  52  68  NA  NA  56   0  NA 100  58  76  55  72   0   2  41 100   0
##  [865]   8  60 100  98  50  43  25  NA  90 100   0   4  17  35  69 100  31  73
##  [883]  43  NA  NA   0  66  64  66  97  54  84  NA  NA  16  47  NA  90  NA   0
##  [901]  NA  65  96  NA  NA  42   0  72  NA  70  58  19  72 100  32  51  NA  73
##  [919]  32  32  51  88 100  80  57   8  78  NA  22  19  66   0  51  NA  NA  90
##  [937]  80  NA   5  36  NA  42 100  41  38  NA  NA  NA  24  61  54  43  75  59
##  [955]  60  NA  50  50  28  52  99  52  72  NA  NA  58  43  NA  10  38  77  30
##  [973]  16  94   0  NA  59  76  NA  NA  44  NA  74  52   3  50  61  73  68  36
##  [991]  52   0  90  59  NA  54   2  69  41  44  NA  73  80   1  NA
PP$Disgust_PBPB
##    [1]  NA  44 100  NA   0  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [19]  NA 100  NA  NA  NA  NA  NA   0  NA  NA  NA  NA 100  NA  NA  50 100  NA
##   [37] 100   0  NA   1  NA  47  28  NA  NA  86   0  NA  NA  64  NA  30  36  NA
##   [55]  80 100  NA  NA  NA  NA  93  NA  NA  NA   1  NA  NA   7 100  31  63   0
##   [73]  NA  80   0  NA  NA  NA  NA  NA  NA  NA  NA   8 100  NA  NA  27  NA 100
##   [91]  13  NA 100  NA  36   0  94  NA  NA  NA  88  37  NA  95  NA  NA  97  NA
##  [109]  15  NA   0  88  15   2  NA  NA  NA  NA 100  79  NA  56  NA  NA  NA 100
##  [127]  77  NA  14  NA  NA  NA  31  NA  NA  NA  57  NA  NA  NA   0  NA   0  71
##  [145]  NA  NA  NA  77  NA  NA  NA   4  NA  NA  NA  41  NA  NA  NA  NA  NA  NA
##  [163]  25  21  NA 100 100  NA  32  NA  28  NA  NA  NA  NA  NA 100 100  NA  NA
##  [181]   0   0  NA  NA   1  NA  NA  22  NA  32  19  27  NA  NA  NA  37  NA 100
##  [199]  43  35   5  19  NA  NA  NA  23  23  NA   0   0  NA  NA  53  12  70  NA
##  [217]  NA  NA 100  69  24  NA  24  10 100  NA 100  NA  NA  NA  NA  NA  31  NA
##  [235]  NA  NA  NA  NA  NA  91  NA  NA  NA  NA  NA   7  16  25  NA  NA  NA  NA
##  [253]  21  27  66  NA  NA  NA  NA  NA  NA  76  67  39  23  NA   0  NA  NA  30
##  [271]  NA  36 100  23  NA  37  NA  NA  32  68   0   8  NA  NA  NA  NA  37  NA
##  [289]   2  NA  75  NA  19   6  80   0   3  52  NA  64  63  48  NA  NA  NA  28
##  [307]   0  30  54  NA  NA  NA  76  NA  NA  NA  NA  NA  NA  29  50  NA  NA  NA
##  [325] 100   0  50 100  50  72   0  NA  NA  60  NA  NA  NA  49  NA  NA  NA  NA
##  [343]  27  NA  NA  NA  34  52  NA  50  46  NA  50  NA  NA  NA  67  53  NA  NA
##  [361]  64  NA  89  NA  66  87  NA  80  18  81  NA  NA  NA  35  24  58  54  NA
##  [379]  74  NA  NA  68  61  NA  NA   0  44  54  78  NA  67  58  NA  NA 100   7
##  [397]  NA  68  NA  NA  NA  79  NA  NA  NA  25  25  70  61  NA  59  14   0  NA
##  [415]  NA  NA  NA  NA  29  NA  NA  NA  13  NA  NA  64  NA  NA  NA  NA  72  NA
##  [433]  78  NA  NA  NA  NA  83  NA   0  NA  NA  NA  NA  73  64  25  NA  79  NA
##  [451]  NA  66  NA  94  12  NA  NA  76  NA  NA  96  NA  NA  81  NA  NA  65  NA
##  [469]  89  NA  76  66  77  NA  NA  NA  NA  NA  NA  82  NA  87  94  NA   0  NA
##  [487]  NA  36  NA  NA  NA  NA  NA  NA  NA  NA   2  88  NA  NA  NA  79  NA  NA
##  [505]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  70  NA   0   0 100
##  [523]  NA  NA  54   0 100   0   0   0  NA 100   4  NA   0  NA   0  NA 100   9
##  [541]  NA  NA  43  NA  NA  NA  NA  NA  46  NA  16  71  78  NA  NA  35  NA  23
##  [559]  24  98  NA  NA  37  91   9 100  19   5  NA  NA  78  23  72  74  NA  17
##  [577]   8  NA  NA   6  NA   2  79   7   3  11  NA 100  36  NA  NA  NA  NA  NA
##  [595] 100  12  NA   5  NA  86  NA  NA  NA  NA  NA  NA  43  NA  50  NA  84  29
##  [613]  86   0  NA  88  NA 100   3  33  67   4   0   0  NA  36  32  NA  NA  NA
##  [631]  63  NA  NA  69  58  NA  NA  NA  29  NA  36  NA  NA  NA  NA  30  NA  NA
##  [649]  10  46  63  35  NA 100  NA  50 100  79  NA  53  51  NA  NA  15  63  14
##  [667]  79  52  NA  NA  NA  52  53  NA  NA  NA  NA  NA  NA  53  55  78  NA  NA
##  [685]  NA  NA  61  NA  NA  NA  NA  27  76  53  74  74  51  NA  48  40  61  NA
##  [703]  66  52  46   0  NA  26  NA  31  NA  NA 100  74   0  64  40  53  78  NA
##  [721]  NA   7   0 100  NA  37  98  NA  52  NA  71  68   8  37  NA  70  NA  58
##  [739]  23 100  NA   3  NA  NA  NA  66  NA  68  67  93   0  NA  71  25  69  19
##  [757]  33  NA  NA   0   5  NA  52 100  NA  88  NA  NA  17  34  NA   0  71  NA
##  [775]  61  84  95  78  NA  80  NA  54  NA  NA  NA  NA  84  NA  NA  NA 100  79
##  [793]  NA  85  NA  NA  37  36  NA  NA   0  97  NA  NA  NA  NA  NA  NA  NA 100
##  [811]  NA  NA 100 100   0   0   3  NA  NA  NA   0  NA 100  NA  80   0  NA  77
##  [829]  75  NA  71   9  89  63  26  NA  40   8  NA  20  NA  NA  42  50  24  50
##  [847]  37  NA  68   1  10  NA  NA  44  NA  73  80  36  32   0  69  78  79   0
##  [865]   7  79  62  98  26  NA  23  64   0  NA   3  NA  27   0  34  75  77  86
##  [883]  75  23  53  NA  41  19  NA  NA  42  81 100  83  NA   0 100  98 100  NA
##  [901]   0  64 100  48  93  34  66  77  82  42 100  19  22  77  69  67  58  NA
##  [919]  29  71  NA  72  80  NA  27 100  40  79  30  NA  28  NA  NA  88  71  73
##  [937]  NA  63   0  16  35  62  79  69  72   0  24  91   0  NA  53  NA  29  50
##  [955]  NA  69  48  NA  NA  NA  92  NA  NA  12   2  64 100  20   2  27   0   7
##  [973]   9  16  NA  NA   0  83 100  17  84  26  77  44  14  50  25  64  NA  66
##  [991]  52  NA  99  74 100  65  NA  NA  37  NA 100  89  NA   3  65
PP$Disgust_PBFB
##    [1]  NA  40  NA  NA  NA   0  50   0 100   0 100  NA  NA  NA  NA  NA  21  NA
##   [19] 100  NA 100  22  NA  NA  NA  NA   0  53 100  83  NA 100  55  50  NA  NA
##   [37]  NA 100   0   5   0  68  71   0  22  NA  NA 100  NA  54  59  NA   0 100
##   [55] 100  NA  19  NA 100 100  NA 100  NA  79   0 100  10  70  NA  NA  NA  NA
##   [73] 100  NA  NA  NA  NA  NA  98  NA  23   3   0   8  NA  NA   0  31 100  NA
##   [91]  NA 100  NA   0  NA  NA  82  NA  NA  NA  87  96  45  98  NA  NA  NA  99
##  [109]  NA  NA  NA  NA  NA  NA 100  NA  14 100  NA  NA  NA  NA  NA  NA  NA 100
##  [127]  NA  19  NA  81  NA   0  NA  52  NA  64  NA  NA  NA  NA 100  53  NA  NA
##  [145]  14  83  NA  NA  15  69  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  50
##  [163]  NA  NA  NA 100  NA  NA  NA  80  NA  NA  NA  23  NA  31  NA  NA  NA  NA
##  [181]  NA  NA 100   0   0  NA  NA  NA  NA  NA  NA  NA  NA  87  NA  NA  NA  NA
##  [199]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  24  12  NA  68  NA   0
##  [217]  NA  51  NA  63  NA   9  23  NA  NA   0  35  38  NA  NA  71  NA  NA  17
##  [235]  21  31  30   8  56  NA  NA  NA  NA  78  99  NA  23  NA  84  NA  NA 100
##  [253]  NA  NA  NA  NA  NA  NA   0  NA  NA  NA  70  NA  NA  NA  NA  NA  30  NA
##  [271]  16  NA  NA  NA  19  69  NA  NA  42  63  NA  NA  NA  66  NA  17  NA  70
##  [289]  NA  NA  NA  NA  NA  NA  NA  NA   8  NA   0  NA  NA  NA  NA  24  NA  NA
##  [307]   3  NA  NA  NA  NA  NA  41  NA  65  NA  NA  40  NA  NA  NA  NA  78  66
##  [325]  NA  25  NA  NA  50  NA  NA  98  51  NA  NA  51  NA  NA  19  NA  NA  NA
##  [343]  NA  NA  NA  55  NA  NA  51  NA  NA  48  NA  NA  NA  NA  17  NA  NA   1
##  [361]  NA  NA  NA   2  NA  NA  64  NA  37  NA  NA  NA  69  NA  22  NA  NA  61
##  [379]  NA   0  87  NA  NA  20  NA  NA  NA  35  NA  40  NA  NA  NA  NA  NA  NA
##  [397]  NA  NA  NA  NA  NA  NA  NA  NA  90  NA  NA  NA  NA  NA  NA  NA   0  NA
##  [415]  NA  69  15  69  66  NA  62  18  NA  NA  66  77  75  62  69  38  NA  NA
##  [433]  NA 100  11  NA  NA  NA  35  10  NA  NA  95  68  NA  NA  NA  NA  NA  NA
##  [451]  86  NA   0  81  NA  NA  19  NA   0  80  NA  23  74  85  79  83  NA  84
##  [469]  NA  NA  NA  NA  NA  NA  59  NA  95  NA  NA  83  99  89  NA  NA  NA  81
##  [487]  NA  77  NA  NA  NA  NA  48  97  17  27   2  NA  78  NA  62  NA   6 100
##  [505]   0 100 100  NA  NA  NA  NA  NA 100 100 100  NA  NA  NA   0  NA   3 100
##  [523]  69   0  NA   0  NA  NA   0  NA  NA  NA  NA  26  NA 100  16 100  NA  26
##  [541]  NA  95  NA  NA  NA  14 100  16  16  NA  NA  NA  NA  21  NA  NA  NA   5
##  [559]  NA  88  NA   0 100  NA  32  NA  NA  NA  NA  91  NA  NA  NA  87  74  NA
##  [577]  NA  27  NA  15  48   6  NA  NA  NA  11 100  NA  NA  NA  NA  80  NA  61
##  [595]  NA  NA 100  NA  NA 100  NA  83  NA  51  NA  96  NA  27  NA  NA  97  NA
##  [613]  NA  NA   9  NA  NA  NA  NA  NA  NA  NA  NA 100  NA  NA  NA  77  NA  73
##  [631]  NA  NA  NA  NA  60   5  NA  NA   0  35  NA  64 100  NA  64  NA  NA  17
##  [649]  94  44  NA  31  NA  NA  NA  NA  NA  35  51  54  51  NA  34  NA  NA   1
##  [667]  95  NA  NA  NA  NA  52  52  NA  NA  28  50 100  53  57  38 100  90  NA
##  [685]  NA  NA  NA  56  93  92  NA  52  30  NA  NA  NA  55  32  NA  NA  NA  NA
##  [703]  61  70  NA  NA  NA  NA  16  10  36  NA  62  NA  NA  NA  NA  NA  67  26
##  [721]  NA  65  NA  NA  29  74  NA   5  NA  21  NA  36  NA  NA  32  NA  NA  NA
##  [739]  59  NA  78   2  13  NA  80  27  NA  NA  67  NA  NA  81  NA  NA  74  12
##  [757]  75  71  NA  NA  NA  NA  NA  NA  73  32  22  NA   0   0  91   0  NA  NA
##  [775]  NA  80  NA  NA  NA  NA  15   3  84  81  NA  59  NA  NA  88 100  NA  NA
##  [793]  NA  75  53  11  NA  NA  NA  NA  25  96   3   3 100  90  NA  56 100  NA
##  [811] 100  NA  NA  NA  NA  NA  NA  NA  78  53 100 100 100  19  83  20  91  39
##  [829]  65   0  65  NA  91  71  70  68  83  NA  12  NA  91   6  70  NA  NA  50
##  [847]  18  57  NA  33  16  66 100  89  50  NA  NA   8  66   0  75  25 100  15
##  [865]   3  39  NA  NA  NA  37  29  68  31 100   2  12 100  NA  NA  NA  34  79
##  [883] 100  22  46 100  NA  66  67  97  58  64 100 100  36  47 100  87 100  21
##  [901]   0  71 100  79 100  41  38  53  82  NA  NA  NA  19  34  67  52  63  75
##  [919]  31  30  94  NA  76  77  NA  99  NA  84  58  22  NA   0  41  89  71  NA
##  [937]  78  43  NA  34  22  38  NA  NA  22   0  72  87  17  60  52  89  44  NA
##  [955] 100  76  NA  80  17  52  89  31  30  28 100  NA 100  31  NA  38  18  29
##  [973]  NA  24  95  58  NA  NA  99  13  NA  85  NA  NA  NA  NA  NA  NA  67  20
##  [991] 100  39  67  92  99  26  83   0  NA  46 100  19  74   0  66
PP$Disgust_VB
##    [1]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 100   0   0  NA  NA  NA  NA
##   [19]  NA  NA  NA  NA  NA  NA  48  NA  NA 100   0  88  NA  NA  NA  NA  NA  50
##   [37] 100  NA  NA  NA  NA  NA  NA   0  NA  69  NA  NA  40  NA  NA  18  NA  NA
##   [55]  NA  NA  67  47  66   0  NA  NA  99   3  NA 100   4  NA  NA  33  30  NA
##   [73]  NA  NA  NA 100  58  20 100 100  NA   5  NA  NA  NA   0  NA  NA  NA  NA
##   [91]  NA  72  NA   0  NA  NA  NA  22  NA  NA  NA  NA  NA  NA  54  95  NA  74
##  [109]  NA   0  NA  NA  NA  NA 100   7  19 100  NA  86   1  52 100  24   0  NA
##  [127]  NA  NA  16  NA  NA  NA  19  NA  NA  20 100  90  NA  10  NA  53  NA  NA
##  [145]  NA  NA  35  NA  NA  61  NA  52  NA  36  51  62  18  NA  NA  33  25  51
##  [163]  NA  18  NA  NA  NA  84  NA  78  16  NA   8  10  80  NA  NA  NA   0  35
##  [181]  NA  50   0   0  NA  NA  80  94  NA  NA  20  NA   0  NA  NA  NA  NA  79
##  [199]  NA  48   7  NA  53  82  51  42  NA   0  NA  NA  NA  24  28  NA  32   0
##  [217]  NA  46 100  NA  NA  38  NA  NA  NA   0  NA  NA  17  26  NA  NA  NA  19
##  [235]  27  52  NA  NA  NA  NA  NA  NA  25  55   9  19  NA  NA  NA  22   0  NA
##  [253]  NA  92  NA  NA  37  NA  NA   0  28  NA  NA  NA  NA  27  NA  10  NA  NA
##  [271]  NA  NA  98  35  NA  NA   0  NA  NA  NA  60  NA  46  NA  16  NA  NA  29
##  [289]  NA 100  NA  42  NA  NA  NA   0  NA  NA  NA  NA  11  NA  46  NA  NA  33
##  [307]  NA  NA  NA  33  58  33  NA  53  NA   8  10  84  65  48  NA  65  NA  16
##  [325]   0  NA  NA  NA  NA  NA  NA  43  NA  NA  NA  51  63  NA   9   0  NA  NA
##  [343]  NA  70  NA  52  25  52  NA  NA  60  NA  NA  52  60  80  NA  NA   3  NA
##  [361]  NA  NA  NA   4  NA  NA  62  86  NA  NA  61  42  NA  NA  NA  59  NA  NA
##  [379]  NA  NA  NA  NA  NA   0  57  NA  NA  NA  NA  38  71  58  NA  67  NA  11
##  [397]  74  NA  NA  NA  NA  70  NA  NA  28  NA  NA  50  63  NA  NA  NA  NA   0
##  [415]  NA  76  28  NA  NA  73  62  37  NA  53  29  NA  31  NA  NA  NA  NA  82
##  [433]  65 100  NA  72  16  NA  NA  NA  70  55  NA  NA  NA  53  NA 100  NA  NA
##  [451]  18  NA  92  NA  NA  75  NA  76   0  NA  NA  NA  NA  NA  89  NA   0  NA
##  [469]  NA  91  NA  82  NA  NA  NA  27  81  86  NA  NA  93  NA  84  29  NA  NA
##  [487]  82  NA  NA  NA  NA 100  NA  NA  NA  23  NA  NA  NA  NA  91  NA  50  NA
##  [505]   0  NA  NA  NA  NA  NA 100   0  NA 100  NA 100 100  NA   0  NA  NA  NA
##  [523]  67  NA  52  NA 100   0  NA   0   0  NA  NA  NA  NA  NA  NA  NA 100  NA
##  [541]   5   0  NA   5  14  72   0  15  NA   5  NA  NA  NA  NA  37  20   1  NA
##  [559]  NA  NA   4  NA  NA  NA  NA  86  NA  NA 100  NA  NA  NA  NA  NA   3  NA
##  [577]  10  24  21  NA  33  NA  NA  13   3  NA  NA 100  NA  68  76  NA   9  NA
##  [595]  NA   0   1  NA 100  NA  92  NA  29  43  70  NA  76   5  22  88  NA  26
##  [613]  NA  NA  NA  NA  38 100  NA  NA  NA  NA   0  NA  78  NA  61  51  35  76
##  [631]  22  16  31  NA  NA   0  44  98  NA  NA   4  NA  NA  39  NA  NA   0  76
##  [649]  NA  NA  27  NA  67  NA  51  NA  NA  NA  51  NA  NA  34  24  NA  NA  NA
##  [667]  NA  52  27  54  52  NA  NA  52   0  28  50  NA  52  NA  NA  NA  67  21
##  [685]  21  30  74  NA  68   9  76  NA  NA  26  NA  65  NA  40  NA  32  NA  27
##  [703]  NA  NA  NA  NA  26  NA  NA  NA  53  31  NA  81  NA  41  NA  NA  NA  NA
##  [721]  65  NA  66   0  NA  NA  NA  NA  NA  NA  NA  NA  13  23  NA  NA  70  79
##  [739]  NA 100  NA  NA  16  81  NA  NA  12  NA  NA  NA   4  68  NA  NA  NA  NA
##  [757]  NA 100   0  NA  NA  77  NA  NA  NA  NA  NA  79  NA  NA  NA  NA  NA   0
##  [775]  53  NA  84  NA  75  73  NA  NA  NA  90  21  NA  50  61  92  NA  NA  NA
##  [793]  58  NA  NA   1  NA  NA   0   0  NA  NA   2   1 100  92  61  NA  NA  NA
##  [811]  NA  63  NA  NA  NA   0  65   2  NA  NA  NA  NA  89  49  80   0  85  NA
##  [829]  NA   0  NA  NA  85  NA  91  32  24  19   1  24  57  36  NA   0 100  NA
##  [847]  10  53  46  27  19  43   0  46   0  60  89  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA   1  75  13  37  NA  65  NA   0  NA  32  NA   0  51  67  NA  NA
##  [883]  NA  21  52 100  20  NA  74  96  NA  NA  30  90  31  NA   0  NA   0  64
##  [901]   0  NA  NA  50 100  NA  NA  NA  23  54  42  80  NA  NA  NA  NA  64  77
##  [919]  NA  NA  77  81  NA  46  65  NA  85  25  NA  22  52   0  37  37  64   1
##  [937]  83  NA   0  NA  32  NA 100  73  NA  15  78  51  NA  73  NA  52  NA  20
##  [955]  80  82  74 100  33  52  NA  44  76   0   1  19  NA  42   6  NA  NA  NA
##  [973]   1  NA   0  NA   0  50  99   0  31  25  23  52  25  50  23  58  49  NA
##  [991]  NA  45  NA  NA  29  NA  99   0  34  40 100  NA  80  NA  74
PP$Control_GFFB 
##    [1]  NA  NA  NA  40  35  NA 100 100 100 100 100 100 100 100 100   0   0  74
##   [19]  85  92 100   0  68  51  71  82  96  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [37]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [55]  NA  NA  NA   3  NA  NA  NA  93  NA  NA  NA  NA  NA  NA  NA  NA  NA 100
##   [73] 100 100  NA   0  36  NA  NA  80  NA  NA  NA  NA 100  NA  NA  NA  NA  39
##   [91] 100  NA  NA  NA  NA 100  NA  NA  80  81  NA  NA  NA  NA  97  94  NA  NA
##  [109] 100 100  73  NA  11  NA  NA  NA  NA  NA  NA  NA  NA  NA  87  NA  77  NA
##  [127]  NA  82  NA  90  59  NA  NA  NA 100  NA  NA 100  52  NA  NA  NA 100  NA
##  [145]  73  63  85  NA  24  NA   8  NA  85  NA  NA  NA  NA  77  66  NA  NA  NA
##  [163]  NA  NA  53  NA  NA  NA  68  NA  NA  71  NA  NA  71  NA   0   0   0  NA
##  [181]  NA  NA  NA  NA  NA  23  NA  NA  75  61  NA  NA  NA  85  66  76  45  NA
##  [199]  72  NA  NA  82  50  78  NA  NA  56  44  NA  NA  NA  NA  NA  NA  NA  NA
##  [217]  87  NA  NA  NA  64  NA  NA  NA  NA  NA  NA  NA  81  NA  NA  35  NA  NA
##  [235]  NA  NA  71  NA  54  NA  83  64  NA  NA  NA  NA  NA  NA  NA  NA   0  NA
##  [253]  NA  NA  61  56  40  78  NA  NA  NA  26  NA  96  NA  22 100  NA  33  NA
##  [271]  31  78  NA  NA  NA  NA  28  29  NA  NA  NA  NA  NA  72  77  76  NA  NA
##  [289]  NA  NA  77  NA  NA  75  NA  NA  NA  52 100  61  NA  57  NA  NA  51  NA
##  [307]  NA  NA  NA  42  40   5  NA  NA  74  95  NA  NA  NA  NA  51  61  NA  NA
##  [325]  NA  NA  NA  NA  NA  55   0  NA  NA  NA  76  NA  NA  NA  NA  95  88  68
##  [343]  57  NA  46  NA  NA  NA  NA  NA  NA  64  NA  NA  NA  NA  NA  56  NA  NA
##  [361]  33  56  NA  NA  62  NA  NA  NA  NA  NA  55  49  NA  15  NA  NA  NA  NA
##  [379]  NA  NA  82  NA  NA  NA  61 100  NA  NA  85  NA  NA  NA  74  83  89  NA
##  [397]  81  39  73  66  82  NA  49  32  NA  33  59  NA  NA  35  NA  85  NA  NA
##  [415] 100  NA  NA  NA  NA  73  NA  NA  NA  57  NA  NA  NA  NA  68  12  65  NA
##  [433]  NA  NA  26  63  NA  77  NA  NA  NA  NA  90  NA  37  NA  NA  NA  89  64
##  [451]  NA  72  NA  NA  92  75  NA  NA  NA  87  NA  53  NA  NA  NA  NA  NA  69
##  [469]  69  96  NA  NA  81  81  82  NA  NA  92  75  NA  NA  NA  NA  NA  NA  NA
##  [487]  81  NA  50  82  87  NA  NA  95  NA  NA  NA  10  NA  86  NA  NA  NA  NA
##  [505]  NA  NA 100  99   0 100 100  NA  NA  NA  NA  NA 100 100 100  51  67 100
##  [523]  87 100 100   0  80 100 100 100   2 100  78 100  51   1   0 100 100  92
##  [541]  31  97 100  93  79  81  63  84  88   0 100  71  50  69  76   9  76  19
##  [559]  53  76  18  53  59  79  73  79   6  56  81   6 100  80  99  65 100 100
##  [577]  84  28 100  25  82  94  71  95  94  81  11 100  90  56 100  50  21  64
##  [595] 100  65   0  62 100  22  63  75  48  72  61  69  62  85  14  80  58  65
##  [613]  80  87  84  12  41  29  23  65  67  62  84  86 100  75  60  68  60  25
##  [631]  62  58  70 100  41  89  52  45  50  80  61  57  52  25  36  37  56  64
##  [649]  66  62  50  64  74   0  49  50   0  37  51  51  51  53  69  52  35  52
##  [667]  49  52   0  52  52  53  52  41  54  89  53  53  51  51  47  16  30  63
##  [685]  54  78  76  55  34  69  75  41  58  40  60  57  59  32  71  55  52  57
##  [703]  56  64  58   4  39  66  69  26  53  72  57  60  85  73  69  62  65  68
##  [721]  67  76  73  52  51  87  78  32  63  40  53  69  85  60  90  66  71  61
##  [739]  41  51  65  83  79  86  75   0  67  70  65  79  63  84  76   0  72  98
##  [757]  65  84 100   0 100  76  89 100  66  87  86  86  53  68  95 100  84 100
##  [775]  68  78  79  75  84  94  53  55  91  78  81  26 100  83  87  50  86  83
##  [793]  78  80  85  64  NA 100  17 100 100  95 100  86  97  72  91  95 100  92
##  [811] 100  98 100 100  99   0   4  88 100   0  50 100  NA  NA  NA  NA  NA  NA
##  [829]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [847]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [883]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [901]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [919]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [937]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [955]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [973]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [991]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
PP$Control_GFPRB
##    [1]  NA  NA  NA  32  89  61 100 100 100 100 100 100 100 100   0  54  76 100
##   [19]  21  95 100  17 100 100 100   0  80  50  80  65 100 100 100 100 100 100
##   [37] 100 100   0  81 100  31  76   0 100  72   0  88  95  75 100  75 100 100
##   [55] 100 100 100   1 100 100  64 100 100  81   0  52 100  95   0  88   0 100
##   [73]  97  94   0 100  90 100  50 100  92 100  92  67  98 100 100  38  85 100
##   [91] 100  25  65  79  91  86  53  78  74 100  97  13  81  91  81  96  96  91
##  [109]  96   9 100  40  11  22 100 100  20  86  74  74  64  52 100  25 100  83
##  [127]  75  74  84  84  87 100  80  80  33  60  57 100  80  69  50  53  71  92
##  [145]  66  59  96  70  92  81  83  84  22  80  40  88  87  77  24  64  11  77
##  [163]  95  90  26 100 100  81  48  24  27  74  88  80  19  75 100   1 100 100
##  [181]   0 100   0  55  99  33  50  54  70  73  71   8  62  85  88  89  82  12
##  [199]  29  68  43  83  50  70  51  28  66  65  56  78  44  68  54  64  60  25
##  [217]  79  76  38  70  63  77  74  76 100 100  73  83  66  70  73   9  36  46
##  [235]  35  87  75  71  59  83  68  48  88  72  36  NA  42  75  71  73  35  50
##  [253]  79 100  55  62  43  68 100  71  26  65  12  40 100  20  88  81  35  58
##  [271]  27  68  88  21  94  37  71  59 100  60  70 100  32  64  38  34  80  53
##  [289]  52  52  71  47  44 100  40  26  99  52 100  29  55  67  40  68  51  66
##  [307]  73  31  55  69  59  35  36  53  36  90  76  92  56  74  50  54  74  79
##  [325]  96  85  50 100  50  41   0  31  45  50  61  51  32  51  73  55  89  26
##  [343]  74  87  52  53  78  52  76   0  46  66  53  48  83  76  88  53  53  44
##  [361]  82  64  72  31  37  74  56  84  94  23  59  78  74  50  76  84  56  62
##  [379]  53  13  85  64  72  63  42  88  65  85  78  62  62  42  88  61  76  51
##  [397]  82  68  64  62  70  62  50  82  85  85  65  62  63  79  66  40 100 100
##  [415]  51  63  84  68  30  57  60  75  76  53  38  41  56  66  63  45  65  90
##  [433]  65  41  30  65  25  66  73 100  69  71  94 100  61  66  89  91  84  66
##  [451]  91  68  93  91  16  71  74  83   0  37  52  76  28  82  27  70  25  14
##  [469]  25  85  67  77  80  64  21  91  88  76  83  84  82  78  88  70  92  89
##  [487]  88  95   0  78  85  82  25  89  89  87  80  19  81  94  95  82  81  99
##  [505]  34  85  99 100  74 100 100 100 100   0 100 100  NA  NA  NA  NA  NA  NA
##  [523]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [541]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [559]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [577]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [595]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [613]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [631]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [649]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [667]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [685]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [703]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [721]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [739]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [757]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [775]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [793]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [811]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [829]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [847]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [883]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [901]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [919]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [937]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [955]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [973]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [991]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
PP$Control_CBB
##    [1]  NA  NA  98  33  NA 100  NA  NA  NA  NA  NA  NA  NA  NA  24   0  NA  99
##   [19]  NA  NA  NA  NA  73 100  NA  NA  NA  NA  NA  NA   0 100  89  NA   0 100
##   [37]  NA  NA   0  NA 100  NA  NA  NA  20  NA 100  89  60  NA  56  NA  NA  72
##   [55]  NA 100  NA  NA  NA  NA  72  NA  31  NA  NA  NA  NA  NA 100  NA  NA  NA
##   [73]  NA  NA 100  NA  NA  60  NA  NA  32  NA  32  NA  NA  94 100  NA  71  NA
##   [91]  NA  NA  47  NA  22  NA  NA  82  80  91  NA  NA  89  NA  NA  NA   0  NA
##  [109]  NA  NA  NA  81  NA  34  NA  90  NA  NA   0  NA  31  NA  NA  85  NA  NA
##  [127]  39  NA  NA  NA  94  50  NA  85 100  NA  NA  NA  78  87  NA  NA  NA  86
##  [145]  NA  NA  NA  40  NA  NA  19  NA 100  68  99  NA  16 100  45  60  62  NA
##  [163]   0  NA  52  NA   6  92  NA  NA  NA  96  17  NA  NA  87  NA  NA  NA 100
##  [181]   0  NA  NA  NA  NA  76  70  NA  68  NA  NA  72  61  NA  75  NA  73  NA
##  [199]  NA  NA  NA  NA  NA  NA  51  NA  NA  NA  93  78  73  NA  NA  NA  NA  NA
##  [217]  71  NA  NA  NA  NA  NA  NA  86  77  NA  NA  82  NA  61  69  29  67  NA
##  [235]  NA  NA  NA  32  NA  51  50  57  73  NA  NA  NA  NA  40  38  20  NA  83
##  [253]  59  NA  NA  32  NA  64 100  78  71  NA  NA  NA  78  NA  NA  82  NA  51
##  [271]  NA  NA  NA  NA  70  NA  NA  18  NA  NA  NA  24  NA  NA  NA  NA  74  NA
##  [289]  25  41  NA  37  47  NA  61  NA  NA  NA  NA  NA  NA  NA  70  20  21  NA
##  [307]  NA  35  43  NA  NA  NA  NA  53  NA  NA  52  NA  42  NA  NA  NA  81  NA
##  [325]  NA  NA  50   0  NA  NA  NA  NA  52  69  82  NA  81  51  NA  NA  96  87
##  [343]  NA  18  52  NA  NA  NA  73  50  NA  NA  39  69  87  78  NA  NA  53  54
##  [361]  NA  63  72  NA  NA  29  NA  NA  NA  90  NA  NA  51  NA  NA  NA  67  36
##  [379]  71  89  NA  81  72  NA  NA  NA  73  NA  NA  NA  NA  NA  75  NA  NA  NA
##  [397]  NA  NA 100  65  52  NA  84  85  NA  NA  NA  NA  NA   0  28  NA  NA  90
##  [415]  51  NA  NA  64  NA  NA  NA  NA  28  NA  NA  NA  NA  63  NA  NA  NA  79
##  [433]  NA  NA  NA  NA  71  NA  NA  NA  77  72  NA  70  NA  NA  70 100  NA  65
##  [451]  NA  NA  NA  NA  NA  NA  84  NA  NA  NA  76  NA  86  NA  NA 100  NA  NA
##  [469]  NA  NA  70  NA  NA  93  NA  83  NA  NA  91  NA  NA  NA  NA  88  25  84
##  [487]  NA  NA 100  80 100 100  91  NA  91  NA  NA  NA  22  91  NA 100  NA  96
##  [505]  NA  NA  NA 100 100 100  NA   0 100  NA  16 100 100  50  NA  15  NA  NA
##  [523]  NA  51  NA  NA  NA  NA  NA  NA   0   0  72  24 100  NA  NA  74  NA  NA
##  [541] 100  NA 100   8  81  NA  NA  NA  NA   0  85  82  88  69  65  NA  21  NA
##  [559]  78  NA   6  29  NA  75  NA  NA   1   7  40 100   0  23  89  NA  NA  88
##  [577]  NA  NA 100  NA  NA  NA  74  NA  NA  NA  21  NA  93  87  96  85  58  30
##  [595] 100  NA  NA  15   0  NA  52  89  45  NA  39   5  NA  NA  NA  66  NA  NA
##  [613]  34  91  96  93  37  NA  40  52  65  49  NA  NA  92  62  NA  NA  63  NA
##  [631]  NA  51  65 100  NA  NA  52  35  NA  72  NA  44   0  34  64  52  47  NA
##  [649]  NA  NA  NA  NA  67  53  51  52  NA  NA  NA  NA  NA  23  NA  13  60  NA
##  [667]  NA  NA   0 100  56  NA  NA  53  50  NA  NA  53  NA  NA  NA  NA  NA  80
##  [685]  75  76  NA  54  NA  NA  43  NA  NA  NA  59  NA  NA  NA  72  NA  59  58
##  [703]  NA  NA  27   0  40  68 100  NA  NA  73  NA  NA  98  NA  39  47  NA  71
##  [721]  62  NA  NA  NA   9  NA  91  66  12  46  74  NA  NA  NA 100  50  33  NA
##  [739]  NA  NA  57  NA  NA  32  78  NA  32  74  NA 100  NA  NA  66  81  NA  NA
##  [757]  NA  NA  84   9 100  78  58  98  64  NA  69  83  NA  NA  88  NA  88   0
##  [775]  NA  NA  NA  87  90  NA  53  NA  81  NA  24  38  NA  83  NA  19  91  88
##  [793]  93  NA  94  NA  52 100  24  66  NA  NA  NA  NA  NA  NA  73 100  81 100
##  [811] 100  83 100 100  99  NA  NA   0  22   0  NA 100  NA  29  NA  NA  89  81
##  [829]  69  87  70  83  NA 100  NA  70  NA   0  98  57  27  99  60  50  21   3
##  [847]  NA  52  63  NA  NA  63   0  NA  56  67  92 100  69 100  23  80  22  66
##  [865]  91  64   0  76  60  70  96  NA  45  50  80 100  58  85  63  58  31  90
##  [883]  12  NA  NA   6  93  61  70   9  68  70  NA  NA  82  49  NA  91  NA 100
##  [901]  NA  76  43  NA  NA  65 100  61  NA  56  47  84  76   4  33  65  NA 100
##  [919]  77  74  62  78  78  95  25  64  39  NA  78  73  52 100   0  NA  NA  62
##  [937]  74  NA  80  53  NA  71 100  74  69  NA  NA  NA  44  56  52  37  69  75
##  [955]  50  NA  50  80  38  52  90  47 100  NA  NA  64  52  NA  99  65  72  28
##  [973]  78  78   1  32  69  24  NA  NA  69  NA  13  53  87  50  48  65  30  67
##  [991]  47   1  52  46  NA  32  69  73  40  52  NA  16  79 100  NA
PP$Control_PBPB
##    [1]  NA  45  87  NA 100  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [19]  NA  80  NA  NA  NA  NA  NA   2  NA  NA  NA  NA 100  NA  NA 100   0  NA
##   [37]   0 100  NA 100  NA  76 100  NA  NA  38 100  NA  NA 100  NA  74 100  NA
##   [55]  63  97  NA  NA  NA  NA  68  NA  NA  NA   0  NA  NA  79   0  16   0 100
##   [73]  NA 100  60  NA  NA  NA  NA  NA  NA  NA  NA  79 100  NA  NA  43  NA  87
##   [91]  81  NA  36  NA  29  79  53  NA  NA  NA  90  64  NA  94  NA  NA  40  NA
##  [109]  80  NA 100  97  90  26  NA  NA  NA  NA   0  86  NA  52  NA  NA  NA  83
##  [127]  83  NA  59  NA  NA  NA  66  NA  NA  NA  67  NA  NA  NA 100  NA 100  71
##  [145]  NA  NA  NA  31  NA  NA  NA  82  NA  NA  NA  97  NA  NA  NA  NA  NA  NA
##  [163]  60  87  NA  52  74  NA  79  NA  31  NA  NA  NA  NA  NA 100  72  NA  NA
##  [181]   0  50  NA  NA  99  NA  NA  87  NA  72  80  84  NA  NA  NA  64  NA   0
##  [199]  82  69  77  89  NA  NA  NA  33  64  NA  52  75  NA  NA  73  66  53  NA
##  [217]  NA  NA  79  42  58  NA  79  84  38  NA 100  NA  NA  NA  NA  NA  76  NA
##  [235]  NA  NA  NA  NA  NA  53  NA  NA  NA  NA  NA  38  81  80  NA  NA  NA  NA
##  [253]  85  87  71  NA  NA  NA  NA  NA  NA  60  75  61 100  NA 100  NA  NA  51
##  [271]  NA  65 100  21  NA  53  NA  NA 100  65  78  85  NA  NA  NA  NA  54  NA
##  [289]  52  NA  28  NA  26 100  53  20 100  52  NA  28  49  55  NA  NA  NA  82
##  [307]  94  35  45  NA  NA  NA  38  NA  NA  NA  NA  NA  NA  28  47  NA  NA  NA
##  [325] 100  75  50   0  50  67 100  NA  NA  58  NA  NA  NA  51  NA  NA  NA  NA
##  [343]  60  NA  NA  NA  69  52  NA  55  55  NA  42  NA  NA  NA  76  53  NA  NA
##  [361]  75  NA  67  NA  35  58  NA  73 100  93  NA  NA  NA  50  53  59  66  NA
##  [379]  72  NA  NA  62  66  NA  NA 100  63  58  75  NA  75  60  NA  NA  80  80
##  [397]  NA  64  NA  NA  NA  65  NA  NA  NA  18  35  70  52  NA  60  88 100  NA
##  [415]  NA  NA  NA  NA  91  NA  NA  NA  88  NA  NA  54  NA  NA  NA  NA  70  NA
##  [433]  33  NA  NA  NA  NA  82  NA 100  NA  NA  NA  NA  64  60  72  NA  79  NA
##  [451]  NA  64  NA  93  78  NA  NA  88  NA  NA  80  NA  NA  79  NA  NA  27  NA
##  [469]  78  NA  83  60  93  NA  NA  NA  NA  NA  NA  88  NA  85  89  NA 100  NA
##  [487]  NA  28  NA  NA  NA  NA  NA  NA  NA  NA  68  16  NA  NA  NA  11  NA  NA
##  [505]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  85  NA  52  87   0
##  [523]  NA  NA  58   0 100 100 100 100  NA 100  27  NA  64  NA 100  NA  77  82
##  [541]  NA  NA  38  NA  NA  NA  NA  NA  47  NA  98  71  75  NA  NA  74  NA  10
##  [559]  23  30  NA  NA  67  91  27  76  15   0  NA  NA   0  89  37  41  NA  93
##  [577]  82  NA  NA  65  NA  79  74 100  89  81  NA  64  69  NA  NA  NA  NA  NA
##  [595] 100  90  NA  98  NA  53  NA  NA  NA  NA  NA  NA  53  NA 100  NA  58  28
##  [613]  73  83  NA  80  NA  60  52  71  70  17  61   0  NA  39  40  NA  NA  NA
##  [631]  14  NA  NA 100  67  NA  NA  NA  61  NA  38  NA  NA  NA  NA  52  NA  NA
##  [649]  77  74  66  79  NA 100  NA  90 100  NA  NA  54  52  NA  NA  87   6 100
##  [667]  29  55  NA  NA  NA  53  53  NA  NA  NA  NA  NA  NA  56  59  56  NA  NA
##  [685]  NA  NA  65  NA  NA  NA  NA  34  84  53  66  NA  52  NA  73  43  54  NA
##  [703]  72  52  43  71  NA  30  NA  19  NA  NA  59  26  50  25  71  63  35  NA
##  [721]  NA 100 100  29  NA  67  71  NA  14  NA  70  76  85  61  NA  63  NA  58
##  [739]  52  20  NA   3  NA  NA  NA  74  NA  62  64  79   3  NA  63   0  67 100
##  [757]  56  NA  NA 100 100  NA  63 100  NA  86  NA  NA  52 100  NA 100  70  NA
##  [775]  63  81  22  83  NA  75  NA  55  NA  NA  NA  NA  82  NA  NA  NA 100  95
##  [793]  NA  85  NA  NA  49 100  NA  NA 100  96  NA  NA  NA  NA  NA  NA  NA  99
##  [811]  NA  NA 100 100 100  66 100  NA  NA  NA 100  NA  85  NA  26 100  NA  76
##  [829]  63  NA  38  71  55  29  35  NA  75  69  NA  75  NA  NA  54  50  88  49
##  [847]  47  NA  60  84  97  NA  NA  62  NA  45  89 100  28 100  71  77  79  73
##  [865]  95  70  37  85  79  NA  93  70  90  NA  90  NA  45 100  74 100  24  78
##  [883]  37  72  53  NA  66  44  NA  NA  61  87 100  15  NA  47  85 100 100  NA
##  [901] 100  71 100  55  75  65 100  53  97  69  55  38  79  21  33  60  65  NA
##  [919]  83  71  NA  76  82  NA  30  43  68  94  65  NA  84  NA  NA  74  61  50
##  [937]  NA  65  90  82  34  56  92  64  70  80  33  75  74  NA  55  NA  69  51
##  [955]  NA  63  65  NA  NA  NA  99  NA  NA  81 100  61  69  71  98  52  98  31
##  [973] 100  82  NA  NA  23  86  19  53  71  30  70  47   3  50  57  60  NA  27
##  [991]  52  NA  77  65  37  79  NA  NA  34  NA  51  12  NA  98  55
PP$Control_PBFB
##    [1]  NA  44  NA  NA  NA 100  52 100 100 100   0  NA  NA  NA  NA  NA  71  NA
##   [19]  11  NA 100  18  NA  NA  NA  NA 100 100   0  20  NA   0  87 100  NA  NA
##   [37]  NA 100 100   0 100  83 100   0  84  NA  NA  78  NA  68  58  NA 100  36
##   [55] 100  NA   0  NA   1 100  NA 100  NA 100   0  52  93  23  NA  NA  NA  NA
##   [73]   0  NA  NA  NA  NA  NA  52  NA  71 100  88  86  NA  NA 100  27  80  NA
##   [91]  NA 100  NA   3  NA  NA  75  NA  NA  NA  63  91  90  80  NA  NA  NA   4
##  [109]  NA  NA  NA  NA  NA  NA  80  NA  91  76  NA  NA  NA  NA  NA  NA  NA  51
##  [127]  NA  76  NA  83  NA  26  NA  88  NA  87  NA  NA  NA  NA  50  53  NA  NA
##  [145]  70  85  NA  NA  81  27  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  36
##  [163]  NA  NA  NA  52  NA  NA  NA  74  NA  NA  NA  77  NA  80  NA  NA  NA  NA
##  [181]  NA  NA  98  50 100  NA  NA  NA  NA  NA  NA  NA  NA  73  NA  NA  NA  NA
##  [199]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  50  67  NA  64  NA  78
##  [217]  NA  57  NA  36  NA  73  74  NA  NA 100  80  58  NA  NA  42  NA  NA  20
##  [235]  29  85  73  91  66  NA  NA  NA  NA  64   5  NA  77  NA  52  NA  NA 100
##  [253]  NA  NA  NA  NA  NA  NA 100  NA  NA  NA  34  NA  NA  NA  NA  NA  39  NA
##  [271]  11  NA  NA  NA  95  69  NA  NA  85  59  NA  NA  NA  84  NA  60  NA  52
##  [289]  NA  NA  NA  NA  NA  NA  NA  NA 100  NA 100  NA  NA  NA  NA  67  NA  NA
##  [307]  96  NA  NA  NA  NA  NA  20  NA  70  NA  NA  44  NA  NA  NA  NA  75  89
##  [325]  NA  80  NA  NA  50  NA  NA   0  52  NA  NA  51  NA  NA  94  NA  NA  NA
##  [343]  NA  NA  NA  52  NA  NA  63  NA  NA  53  NA  NA  NA  NA  75  NA  NA  50
##  [361]  NA  NA  NA  10  NA  NA  59  NA 100  NA  NA  NA  38  NA  82  NA  NA  60
##  [379]  NA  92  76  NA  NA  78  NA  NA  NA  36  NA  66  NA  NA  NA  NA  NA  NA
##  [397]  NA  NA  NA  NA  NA  NA  NA  NA  76  NA  NA  NA  NA  NA  NA  NA 100  NA
##  [415]  NA  76  82  66  20  NA  73  68  NA  NA 100  11  78  65  64  65  NA  NA
##  [433]  NA 100  20  NA  NA  NA  85 100  NA  NA  69  67  NA  NA  NA  NA  NA  NA
##  [451]  71  NA  90  93  NA  NA  88  NA 100  55  NA  76  72  81  33  24  NA  60
##  [469]  NA  NA  NA  NA  NA  NA  85  NA 100  NA  NA  89  71  73  NA  NA  NA  81
##  [487]  NA  74  NA  NA  NA  NA  83  95  77  71  79  NA  83  NA  66  NA  92  96
##  [505] 100  35 100  NA  NA  NA  NA  NA 100 100  16  NA  NA  NA 100  NA  53   0
##  [523]  93  51  NA   0  NA  NA  59  NA  NA  NA  NA  92  NA   0  15 100  NA  81
##  [541]  NA   5  NA  NA  NA  88   0  84  46  NA  NA  NA  NA  83  NA  NA  NA  12
##  [559]  NA  78  NA   0  45  NA  81  NA  NA  NA  NA  97  NA  NA  NA  33 100  NA
##  [577]  NA  16  NA  33  52  96  NA  NA  NA  83  30  NA  NA  NA  NA  40  NA  63
##  [595]  NA  NA 100  NA  NA  52  NA  24  NA  60  NA  68  NA  88  NA  NA  53  NA
##  [613]  NA  NA  95  NA  NA  NA  NA  NA  NA  NA  NA  50  NA  NA  NA  29  NA  18
##  [631]  NA  NA  NA  NA  63  85  NA  NA  66  28  NA  56   0  NA   8  NA  NA  55
##  [649]  68  61  NA  74  NA  NA  NA  NA  NA  64  51  54  51  NA  66  NA  NA  98
##  [667]   3  NA  NA  NA  NA  52  52  NA  NA   7  75  53  52  54  38  14  28  NA
##  [685]  NA  NA  NA  63  38  74  NA  43  62  NA  NA  NA  52  35  NA  NA  NA  NA
##  [703]  44  58  NA  NA  NA  NA  71  94  43  NA  57  NA  NA  NA  NA  NA  66  59
##  [721]  NA 100  NA  NA  29  29  NA   0  NA  46  NA  80  NA  NA 100  NA  NA  NA
##  [739]  62  NA  91  96  83  NA  75  77  NA  NA  52  NA  NA  78  NA  NA  69  75
##  [757]  74  72  NA  NA  NA  NA  NA  NA  67  84  17  NA  85 100  88 100  NA  NA
##  [775]  NA  75  NA  NA  NA  NA  72  50  72  87  NA  57  NA  NA  81 100  NA  NA
##  [793]  NA  81  84  81  NA  NA  NA  NA 100  97  71  98 100  12  NA  98 100  NA
##  [811] 100  NA  NA  NA  NA  NA  NA  NA  75  53  65 100  73  38  34  90  96  72
##  [829]  69  92  43  NA  64  79  80  34  89  NA  67  NA  69  96  64  NA  NA  50
##  [847]  15  35  NA  96  98  68   0  50  49  NA  NA  97  79 100  38  80  59  52
##  [865]  89  70  NA  NA  NA  35 100  72  80  50  91   4  64  NA  NA  NA  31  83
##  [883]  29  38  52  12  NA  52  68  43  37  12 100   2  64  46  99  99   0 100
##  [901]  94  78   0  39  29  65 100  47  80  NA  NA  NA  45  72  70  61  64  81
##  [919]  81  76  87  NA  80  74  NA  27  NA  81  72  39  NA 100  62  58  81  NA
##  [937]  71  71  NA  70  24  43  NA  NA  63  71  22  80  73  60  44  89  51  NA
##  [955]  98  70  NA  33  33  52  88  59  92  24 100  NA  79  63  NA  57  80  31
##  [973]  NA  89  92  40  NA  NA  41  69  NA  81  NA  NA  NA  NA  NA  NA  79  71
##  [991]  54  37  52  58  12  82  85  43  NA  41  61  78  73  90  51
PP$Control_VB 
##    [1]  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 100 100 100  NA  NA  NA  NA
##   [19]  NA  NA  NA  NA  NA  NA 100  NA  NA 100 100  26  NA  NA  NA  NA  NA 100
##   [37] 100  NA  NA  NA  NA  NA  NA   0  NA  67  NA  NA 100  NA  NA  23  NA  NA
##   [55]  NA  NA  86   1  13 100  NA  NA  99 100  NA  52 100  NA  NA   3  52  NA
##   [73]  NA  NA  NA   0  11  85  93  58  NA 100  NA  NA  NA 100  NA  NA  NA  NA
##   [91]  NA  94  NA   0  NA  NA  NA  83  NA  NA  NA  NA  NA  NA  45  94  NA  97
##  [109]  NA 100  NA  NA  NA  NA 100  83  89  21  NA  77  41  52  88  22  80  NA
##  [127]  NA  NA  80  NA  NA  NA  83  NA  NA  28 100 100  NA  91  NA  53  NA  NA
##  [145]  NA  NA  85  NA  NA  83  NA  83  NA  34  83 100  90  NA  NA  96  23  76
##  [163]  NA  95  NA  NA  NA  42  NA  31  29  NA  22  67  64  NA  NA  NA 100  73
##  [181]  NA  50 100  50  NA  NA  82  73  NA  NA  79  NA  64  NA  NA  NA  NA  51
##  [199]  NA  80  78  NA  31  48  20  21  NA 100  NA  NA  NA  65  73  NA  76  93
##  [217]  NA  66  70  NA  NA  83  NA  NA  NA  85  NA  NA  84  52  NA  NA  NA  43
##  [235]  50  95  NA  NA  NA  NA  NA  NA  77  76  53  45  NA  NA  NA  86   0  NA
##  [253]  NA 100  NA  NA  52  NA  NA 100  70  NA  NA  NA  NA  29  NA  81  NA  NA
##  [271]  NA  NA 100  81  NA  NA  73  NA  NA  NA 100  NA  88  NA  67  NA  NA  52
##  [289]  NA  34  NA  57  NA  NA  NA   3  NA  NA  NA  NA  51  NA  51  NA  NA  71
##  [307]  NA  NA  NA 100  51  41  NA  67  NA  90   0 100  57  36  NA  59  NA  39
##  [325]   8  NA  NA  NA  NA  NA  NA  23  NA  NA  NA  51  75  NA 100  80  NA  NA
##  [343]  NA  16  NA  52  58  52  NA  NA  45  NA  NA  52  96  81  NA  NA 100  NA
##  [361]  NA  NA  NA  19  NA  NA  61  33  NA  NA  61  51  NA  NA  NA  60  NA  NA
##  [379]  NA  NA  NA  NA  NA 100  60  NA  NA  NA  NA  63  61  40  NA  61  NA  55
##  [397]  39  NA  NA  NA  NA  92  NA  NA  69  NA  NA  69  69  NA  NA  NA  NA  95
##  [415]  NA  74  91  NA  NA  66  61  64  NA  53  87  NA  70  NA  NA  NA  NA  20
##  [433]  18 100  NA  60  25  NA  NA  NA  70  68  NA  NA  NA  59  NA 100  NA  NA
##  [451]  88  NA 100  NA  NA  73  NA  73  34  NA  NA  NA  NA  NA  21  NA  77  NA
##  [469]  NA  68  NA  82  NA  NA  NA  41 100 100  NA  NA  96  NA  90  89  NA  NA
##  [487]  98  NA  NA  NA  NA  11  NA  NA  NA  96  NA  NA  NA  NA  66  NA  82  NA
##  [505] 100  NA  NA  NA  NA  NA 100  53  NA   1  NA 100 100  NA 100  NA  NA  NA
##  [523]  70  NA  52  NA  83 100  NA 100  60  NA  NA  NA  NA  NA  NA  NA 100  NA
##  [541]  28   9  NA  80  64  69 100  65  NA  98  NA  NA  NA  NA  73  14  90  NA
##  [559]  NA  NA  65  NA  NA  NA  NA  82  NA  NA   1  NA  NA  NA  NA  NA 100  NA
##  [577]  16  20 100  NA  82  NA  NA  13  87  NA  NA   0  NA 100  75  NA  26  NA
##  [595]  NA  89 100  NA   0  NA  99  NA  25  31  78  NA  60 100  29  92  NA  57
##  [613]  NA  NA  NA  NA  43 100  NA  NA  NA  NA  58  NA  88  NA  30  56  71  38
##  [631]  59  67  69  NA  NA  99  52  45  NA  NA  50  NA  NA  66  NA  NA   0   4
##  [649]  NA  NA  61  NA  62  NA  74  NA  NA  NA  51  NA  NA  52  89  NA  NA  NA
##  [667]  NA  52   0  52  52  NA  NA  52 100  25  50  NA  57  NA  NA  NA  26  53
##  [685]  80  63  34  NA  62 100  77  NA  NA  51  NA  34  NA  58  NA  85  NA  72
##  [703]  NA  NA  NA  NA  65  NA  NA  NA  52  81  NA  80  NA  80  NA  NA  NA  NA
##  [721]  57  NA  98 100  NA  NA  NA  NA  NA  NA  NA  NA  85  72  NA  NA  67  70
##  [739]  NA  52  NA  NA  79  86  NA  NA  82  NA  NA  NA  76  72  NA  NA  NA  NA
##  [757]  NA 100  69  NA  NA  70  NA  NA  NA  NA  NA  94  NA  NA  NA  NA  NA  81
##  [775]  66  NA  86  NA  83  74  NA  NA  NA  72  78  NA  83  65  95  NA  NA  NA
##  [793]  28  NA  NA  89  NA  NA 100  64  NA  NA  64  53  99  84 100  NA  NA  NA
##  [811]  NA  47  NA  NA  NA  44  77  93  NA  NA  NA  NA  83  44  22  80  90  NA
##  [829]  NA  91  NA  77  29  NA  25  29  26  72  98  30  85  93  NA  61 100  NA
##  [847]  81  52  75  82  76  55   0  44 100  64  86  NA  NA  NA  NA  NA  NA  NA
##  [865]  NA  NA 100  20  71  32  NA  58  NA  50  NA  69  NA 100  53  96  NA  NA
##  [883]  NA  75  52   2  85  NA  71  35  NA  NA 100  79  74  NA  74  NA  68  74
##  [901] 100  NA  NA  53  90  NA  NA  NA  15  54  62  85  NA  NA  NA  NA  65  80
##  [919]  NA  NA  70  97  NA  89  71  NA  69  12  NA  75  40  97  42  82  65 100
##  [937]  70  NA  95  NA  31  NA  98  60  NA  50  45  50  NA  55  NA  85  NA  77
##  [955]  95  72  82 100  35  52  NA  46  71  44 100  95  NA  35  99  NA  NA  NA
##  [973]  93  NA 100  NA 100  85  38 100  37  36  74  52   0  50  80  61  63  NA
##  [991]  NA  22  NA  NA  62  NA  52 100  43  59  51  NA  77  NA  36
length(PP$Naturalness_Score_GFFB_Tot)
## [1] 1005
length(PP$Naturalness_Score_GFPRB_Tot)
## [1] 1005
length(PP$Naturalness_Score_CBB_Tot)
## [1] 1005
length(PP$Naturalness_Score_PBPB_Tot)
## [1] 1005
length(PP$Naturalness_Score_PBFB_Tot)
## [1] 1005
length(PP$Naturalness_Score_VB_Tot)
## [1] 1005
length(PP$Behav_Score_GFFB)
## [1] 1005
length(PP$Behav_Score_GFPRB)
## [1] 1005
length(PP$Behav_Score_CBB)
## [1] 1005
length(PP$Behav_Score_PBPB)
## [1] 1005
length(PP$Behav_Score_PBFB)
## [1] 1005
length(PP$Behav_Score_VB)
## [1] 1005
length(PP$Ben_Score_GFFB)
## [1] 1005
length(PP$Ben_Score_GFPRB)
## [1] 1005
length(PP$Ben_Score_CBB)
## [1] 1005
length(PP$Ben_Score_PBPB)
## [1] 1005
length(PP$Ben_Score_PBFB)
## [1] 1005
length(PP$Ben_Score_VB)
## [1] 1005
length(PP$Control_GFFB )
## [1] 1005
length(PP$Control_GFPRB)
## [1] 1005
length(PP$Control_CBB)
## [1] 1005
length(PP$Control_PBPB)
## [1] 1005
length(PP$Control_PBFB)
## [1] 1005
length(PP$Control_VB)
## [1] 1005
length(PP$Familiarity_GFFB)
## [1] 1005
length(PP$Familiarity_GFPRB) 
## [1] 1005
length(PP$Familiarity_CBB)
## [1] 1005
length(PP$Familiarity_PBPB)
## [1] 1005
length(PP$Familiarity_PBFB)
## [1] 1005
length(PP$Familiarity_VB )
## [1] 1005
length(PP$Understanding_GFFB)
## [1] 1005
length(PP$Understanding_GFPRB)
## [1] 1005
length(PP$Understanding_CBB)
## [1] 1005
length(PP$Understanding_PBPB)
## [1] 1005
length(PP$Understanding_PBFB )
## [1] 1005
length(PP$Understanding_VB)
## [1] 1005
length(PP$Risk_Score_GFFB)
## [1] 1005
length(PP$Risk_Score_GFPRB)
## [1] 1005
length(PP$Risk_Score_CBB)
## [1] 1005
length(PP$Risk_Score_PBPB)
## [1] 1005
length(PP$Risk_Score_PBFB)
## [1] 1005
length(PP$Risk_Score_VB)
## [1] 1005
length(PP$Disgust_GFFB)
## [1] 1005
length(PP$Disgust_GFPRB)
## [1] 1005
length(PP$Disgust_CBB)
## [1] 1005
length(PP$Disgust_PBPB)
## [1] 1005
length(PP$Disgust_PBFB)
## [1] 1005
length(PP$Disgust_VB)
## [1] 1005
length(PP$CCBelief_Score)
## [1] 1005
length(PP$CNS_Score)
## [1] 1005
length(PP$DS_Score)
## [1] 1005
length(PP$Ideology)
## [1] 1005
length(PP$ATNS_Score )
## [1] 1005
length(PP$AW_Score )
## [1] 1005
length(PP$Collectivism_Score)
## [1] 1005
length(PP$Individualism_Score)
## [1] 1005

Long Form

#Renaming variables to fit pivot_longer command
PP$Naturalness.GFFB <- PP$Naturalness_Score_GFFB_Tot
length(PP$Naturalness.GFFB)
## [1] 1005
PP$Naturalness.GFPRB <- PP$Naturalness_Score_GFPRB_Tot
length(PP$Naturalness.GFPRB)
## [1] 1005
PP$Naturalness.CBB <- PP$Naturalness_Score_CBB_Tot 
length(PP$Naturalness.CBB)
## [1] 1005
PP$Naturalness.PBPB <- PP$Naturalness_Score_PBPB_Tot
length(PP$Naturalness.PBPB)
## [1] 1005
PP$Naturalness.PBFB <- PP$Naturalness_Score_PBFB_Tot
length(PP$Naturalness.PBFB)
## [1] 1005
PP$Naturalness.VB <- PP$Naturalness_Score_VB_Tot
length(PP$Naturalness.VB)
## [1] 1005
PP$Behav.GFFB <- PP$Behav_Score_GFFB
length(PP$Behav.GFFB)
## [1] 1005
PP$Behav.GFPRB <- PP$Behav_Score_GFPRB
length(PP$Behav.GFPRB)
## [1] 1005
PP$Behav.CBB <- PP$Behav_Score_CBB
length(PP$Behav.CBB)
## [1] 1005
PP$Behav.PBPB <- PP$Behav_Score_PBPB
length(PP$Behav.PBPB)
## [1] 1005
PP$Behav.PBFB <- PP$Behav_Score_PBFB
length(PP$Behav.PBFB)
## [1] 1005
PP$Behav.VB <- PP$Behav_Score_VB
length(PP$Behav.VB)
## [1] 1005
PP$Familiarity.GFFB <- PP$Familiarity_GFFB
length(PP$Familiarity.GFFB)
## [1] 1005
PP$Familiarity.GFPRB <- PP$Familiarity_GFPRB
length(PP$Familiarity.GFPRB)
## [1] 1005
PP$Familiarity.CBB <- PP$Familiarity_CBB
length(PP$Familiarity.CBB)
## [1] 1005
PP$Familiarity.PBPB <- PP$Familiarity_PBPB
length(PP$Familiarity.PBPB)
## [1] 1005
PP$Familiarity.PBFB <- PP$Familiarity_PBFB
length(PP$Familiarity.PBFB)
## [1] 1005
PP$Familiarity.VB <- PP$Familiarity_VB
length(PP$Familiarity.VB)
## [1] 1005
PP$Understanding.GFFB <- PP$Understanding_GFFB
length(PP$Understanding.GFFB)
## [1] 1005
PP$Understanding.GFPRB <- PP$Understanding_GFPRB
length(PP$Understanding.GFPRB)
## [1] 1005
PP$Understanding.CBB <- PP$Understanding_CBB
length(PP$Understanding.CBB)
## [1] 1005
PP$Understanding.PBPB <- PP$Understanding_PBPB
length(PP$Understanding.PBPB)
## [1] 1005
PP$Understanding.PBFB <- PP$Understanding_PBFB
length(PP$Understanding.PBFB)
## [1] 1005
PP$Understanding.VB <- PP$Understanding_VB
length(PP$Understanding.VB)
## [1] 1005
PP$Disgust.GFFB <-PP$Disgust_GFFB
length(PP$Disgust.GFFB)
## [1] 1005
PP$Disgust.GFPRB <-PP$Disgust_GFPRB
length(PP$Disgust.GFPRB)
## [1] 1005
PP$Disgust.CBB <-PP$Disgust_CBB
length(PP$Disgust.CBB)
## [1] 1005
PP$Disgust.PBPB <-PP$Disgust_PBPB
length(PP$Disgust.PBPB)
## [1] 1005
PP$Disgust.PBFB <-PP$Disgust_PBFB
length(PP$Disgust.PBFB)
## [1] 1005
PP$Disgust.VB <-PP$Disgust_VB
length(PP$Disgust.VB)
## [1] 1005
PP$Control.GFFB <- PP$Control_GFFB 
length(PP$Control.GFFB)
## [1] 1005
PP$Control.GFPRB <- PP$Control_GFPRB 
length(PP$Control.GFPRB)
## [1] 1005
PP$Control.CBB <- PP$Control_CBB
length(PP$Control.CBB)
## [1] 1005
PP$Control.PBPB <- PP$Control_PBPB 
length(PP$Control.PBPB)
## [1] 1005
PP$Control.PBFB <- PP$Control_PBFB 
length(PP$Control.PBFB)
## [1] 1005
PP$Control.VB <- PP$Control_VB 
length(PP$Control.VB)
## [1] 1005
PP$Ben.GFFB <- PP$Ben_Score_GFFB
length(PP$Ben.GFFB)
## [1] 1005
PP$Ben.GFPRB <- PP$Ben_Score_GFPRB
length(PP$Ben.GFPRB)
## [1] 1005
PP$Ben.CBB <- PP$Ben_Score_CBB
length(PP$Ben.CBB) 
## [1] 1005
PP$Ben.PBPB <- PP$Ben_Score_PBPB
length(PP$Ben.PBPB)
## [1] 1005
PP$Ben.PBFB <- PP$Ben_Score_PBFB
length(PP$Ben.PBFB) 
## [1] 1005
PP$Ben.VB <- PP$Ben_Score_VB
length(PP$Ben.VB) 
## [1] 1005
##Risk Length
PP$Risk.GFFB <- PP$Risk_Score_GFFB
length(PP$Risk.GFFB)
## [1] 1005
PP$Risk.GFPRB <- PP$Risk_Score_GFPRB
length(PP$Risk.GFPRB)
## [1] 1005
PP$Risk.CBB <- PP$Risk_Score_CBB
length(PP$Risk.CBB)
## [1] 1005
PP$Risk.PBPB <- PP$Risk_Score_PBPB
length(PP$Risk.PBPB) 
## [1] 1005
PP$Risk.PBFB <- PP$Risk_Score_PBFB
length(PP$Risk.PBFB)
## [1] 1005
PP$Risk.VB <- PP$Risk_Score_VB
length(PP$Risk.VB)
## [1] 1005
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(lme4)

#Reshape to long form
PPvector <- c("Naturalness.GFFB", "Naturalness.GFPRB", "Naturalness.CBB","Naturalness.PBPB", "Naturalness.PBFB", "Naturalness.VB", "Behav.GFFB", "Behav.GFPRB", "Behav.CBB","Behav.PBPB", "Behav.PBFB", "Behav.VB", "Familiarity.GFFB","Familiarity.GFPRB", "Familiarity.CBB", "Familiarity.PBPB","Familiarity.PBFB", "Familiarity.VB", "Understanding.GFFB", "Understanding.GFPRB", "Understanding.CBB", "Understanding.PBPB", "Understanding.PBFB", "Understanding.VB", "Disgust.GFFB", "Disgust.GFPRB", "Disgust.CBB", "Disgust.PBPB", "Disgust.PBFB","Disgust.VB",  "Ben.GFFB","Ben.GFPRB","Ben.CBB", "Ben.PBPB",  "Ben.PBFB", "Ben.VB", "Risk.GFFB",  "Risk.GFPRB","Risk.CBB","Risk.PBPB", "Risk.PBFB", "Risk.VB", "BRDiff.GFFB", "BRDiff.GFPRB", "BRDiff.CBB", "BRDiff.PBPB", "BRDiff.PBFB", "BRDiff.VB", "FR.GFFB", "FR.GFFB", "FR.GFPRB", "FR.PBPB", "FR.PBFB", "FR.VB")


L <- reshape(data = PP,
       varying = PPvector,
       timevar = "Type",
       direction = "long")

Correlations

length(L$Ben)
## [1] 6030
length(L$FR)
## [1] 6030
length(L$Naturalness)
## [1] 6030
length(L$Risk)
## [1] 6030
length(L$Behav)
## [1] 6030
length(L$AW_Score)
## [1] 6030
length(L$ATNS_Score)
## [1] 6030
length(L$CCBelief_Score)
## [1] 6030
length(L$CNS_Score)
## [1] 6030
length(L$DS_Score)
## [1] 6030
length(L$Individualism_Score)
## [1] 6030
length(L$Ideology)
## [1] 6030
length(L$Ideology)
## [1] 6030
length(L$SESNum)
## [1] 6030
length(L$EdNum)
## [1] 6030
length(L$Dem_Age)
## [1] 6030
length(L$Dem_Gen)
## [1] 6030
L$corR <- data.frame(L$Ben, L$FR, L$Naturalness, L$Risk, L$Behav, L$Dem_Age, L$Dem_Gen, L$EdNum, L$SESNum, L$AW_Score, L$ATNS_Score, L$CCBelief_Score, L$Collectivism_Score, L$CNS_Score, L$DS_Score, L$Individualism_Score, L$Ideology)

mydata.cor11A = cor(L$corR, use = "pairwise.complete.obs")
head(round(mydata.cor11A,2))
##               L.Ben  L.FR L.Naturalness L.Risk L.Behav L.Dem_Age L.Dem_Gen
## L.Ben          1.00  0.44          0.27  -0.26    0.80     -0.10      0.06
## L.FR           0.44  1.00          0.10  -0.09    0.48     -0.01      0.06
## L.Naturalness  0.27  0.10          1.00  -0.39    0.28      0.05      0.01
## L.Risk        -0.26 -0.09         -0.39   1.00   -0.25     -0.08     -0.02
## L.Behav        0.80  0.48          0.28  -0.25    1.00     -0.18      0.07
## L.Dem_Age     -0.10 -0.01          0.05  -0.08   -0.18      1.00      0.00
##               L.EdNum L.SESNum L.AW_Score L.ATNS_Score L.CCBelief_Score
## L.Ben            0.06     0.06       0.20         0.05             0.23
## L.FR             0.08     0.08       0.20         0.10             0.22
## L.Naturalness    0.02     0.02       0.02         0.00             0.02
## L.Risk          -0.03    -0.03       0.02         0.11            -0.03
## L.Behav          0.08     0.06       0.22         0.01             0.25
## L.Dem_Age        0.08     0.06       0.06         0.03             0.02
##               L.Collectivism_Score L.CNS_Score L.DS_Score L.Individualism_Score
## L.Ben                         0.24        0.06       0.05                  0.17
## L.FR                          0.19        0.09      -0.03                  0.20
## L.Naturalness                -0.01        0.04      -0.01                  0.01
## L.Risk                        0.08       -0.08       0.04                 -0.03
## L.Behav                       0.19        0.06       0.02                  0.12
## L.Dem_Age                     0.10        0.11       0.04                  0.08
##               L.Ideology
## L.Ben              -0.06
## L.FR               -0.03
## L.Naturalness       0.03
## L.Risk             -0.05
## L.Behav            -0.05
## L.Dem_Age           0.00
library("Hmisc")
mydata.rcorr11A = rcorr(as.matrix(mydata.cor11A))
mydata.rcorr11A
##                       L.Ben  L.FR L.Naturalness L.Risk L.Behav L.Dem_Age
## L.Ben                  1.00  0.71          0.46  -0.57    0.97     -0.38
## L.FR                   0.71  1.00          0.21  -0.36    0.73     -0.27
## L.Naturalness          0.46  0.21          1.00  -0.74    0.46     -0.04
## L.Risk                -0.57 -0.36         -0.74   1.00   -0.55     -0.09
## L.Behav                0.97  0.73          0.46  -0.55    1.00     -0.45
## L.Dem_Age             -0.38 -0.27         -0.04  -0.09   -0.45      1.00
## L.Dem_Gen             -0.02 -0.04         -0.02  -0.09    0.01     -0.09
## L.EdNum               -0.08 -0.05         -0.05  -0.12   -0.04      0.03
## L.SESNum              -0.08 -0.07         -0.05  -0.11   -0.07      0.00
## L.AW_Score             0.20  0.24         -0.09  -0.05    0.21     -0.08
## L.ATNS_Score          -0.13 -0.04         -0.23   0.18   -0.17     -0.05
## L.CCBelief_Score       0.27  0.29         -0.05  -0.15    0.28     -0.14
## L.Collectivism_Score   0.21  0.19         -0.17   0.06    0.15     -0.03
## L.CNS_Score           -0.04  0.02         -0.04  -0.16   -0.04      0.08
## L.DS_Score            -0.08 -0.20         -0.15   0.11   -0.12     -0.01
## L.Individualism_Score  0.12  0.18         -0.13  -0.07    0.07     -0.01
## L.Ideology            -0.26 -0.24         -0.01  -0.08   -0.24     -0.04
##                       L.Dem_Gen L.EdNum L.SESNum L.AW_Score L.ATNS_Score
## L.Ben                     -0.02   -0.08    -0.08       0.20        -0.13
## L.FR                      -0.04   -0.05    -0.07       0.24        -0.04
## L.Naturalness             -0.02   -0.05    -0.05      -0.09        -0.23
## L.Risk                    -0.09   -0.12    -0.11      -0.05         0.18
## L.Behav                    0.01   -0.04    -0.07       0.21        -0.17
## L.Dem_Age                 -0.09    0.03     0.00      -0.08        -0.05
## L.Dem_Gen                  1.00    0.24     0.34      -0.39        -0.38
## L.EdNum                    0.24    1.00     0.57      -0.28        -0.31
## L.SESNum                   0.34    0.57     1.00      -0.36        -0.33
## L.AW_Score                -0.39   -0.28    -0.36       1.00         0.47
## L.ATNS_Score              -0.38   -0.31    -0.33       0.47         1.00
## L.CCBelief_Score          -0.32   -0.19    -0.26       0.70         0.39
## L.Collectivism_Score      -0.28   -0.27    -0.13       0.39         0.43
## L.CNS_Score               -0.27   -0.15    -0.26       0.49         0.43
## L.DS_Score                -0.34   -0.21    -0.23       0.04         0.21
## L.Individualism_Score     -0.36   -0.30    -0.24       0.62         0.54
## L.Ideology                -0.11   -0.11    -0.07      -0.18        -0.09
##                       L.CCBelief_Score L.Collectivism_Score L.CNS_Score
## L.Ben                             0.27                 0.21       -0.04
## L.FR                              0.29                 0.19        0.02
## L.Naturalness                    -0.05                -0.17       -0.04
## L.Risk                           -0.15                 0.06       -0.16
## L.Behav                           0.28                 0.15       -0.04
## L.Dem_Age                        -0.14                -0.03        0.08
## L.Dem_Gen                        -0.32                -0.28       -0.27
## L.EdNum                          -0.19                -0.27       -0.15
## L.SESNum                         -0.26                -0.13       -0.26
## L.AW_Score                        0.70                 0.39        0.49
## L.ATNS_Score                      0.39                 0.43        0.43
## L.CCBelief_Score                  1.00                 0.25        0.58
## L.Collectivism_Score              0.25                 1.00        0.04
## L.CNS_Score                       0.58                 0.04        1.00
## L.DS_Score                       -0.05                 0.30       -0.19
## L.Individualism_Score             0.56                 0.67        0.41
## L.Ideology                       -0.23                -0.29       -0.02
##                       L.DS_Score L.Individualism_Score L.Ideology
## L.Ben                      -0.08                  0.12      -0.26
## L.FR                       -0.20                  0.18      -0.24
## L.Naturalness              -0.15                 -0.13      -0.01
## L.Risk                      0.11                 -0.07      -0.08
## L.Behav                    -0.12                  0.07      -0.24
## L.Dem_Age                  -0.01                 -0.01      -0.04
## L.Dem_Gen                  -0.34                 -0.36      -0.11
## L.EdNum                    -0.21                 -0.30      -0.11
## L.SESNum                   -0.23                 -0.24      -0.07
## L.AW_Score                  0.04                  0.62      -0.18
## L.ATNS_Score                0.21                  0.54      -0.09
## L.CCBelief_Score           -0.05                  0.56      -0.23
## L.Collectivism_Score        0.30                  0.67      -0.29
## L.CNS_Score                -0.19                  0.41      -0.02
## L.DS_Score                  1.00                  0.16      -0.16
## L.Individualism_Score       0.16                  1.00      -0.14
## L.Ideology                 -0.16                 -0.14       1.00
## 
## n= 17 
## 
## 
## P
##                       L.Ben  L.FR   L.Naturalness L.Risk L.Behav L.Dem_Age
## L.Ben                        0.0015 0.0607        0.0163 0.0000  0.1283   
## L.FR                  0.0015        0.4153        0.1547 0.0009  0.2855   
## L.Naturalness         0.0607 0.4153               0.0007 0.0609  0.8795   
## L.Risk                0.0163 0.1547 0.0007               0.0209  0.7178   
## L.Behav               0.0000 0.0009 0.0609        0.0209         0.0706   
## L.Dem_Age             0.1283 0.2855 0.8795        0.7178 0.0706           
## L.Dem_Gen             0.9465 0.8936 0.9350        0.7394 0.9819  0.7280   
## L.EdNum               0.7729 0.8455 0.8534        0.6544 0.8662  0.9101   
## L.SESNum              0.7580 0.7975 0.8484        0.6839 0.7988  0.9892   
## L.AW_Score            0.4330 0.3558 0.7417        0.8359 0.4115  0.7498   
## L.ATNS_Score          0.6190 0.8698 0.3821        0.4988 0.5120  0.8560   
## L.CCBelief_Score      0.2959 0.2657 0.8602        0.5729 0.2702  0.5800   
## L.Collectivism_Score  0.4152 0.4632 0.5234        0.8100 0.5684  0.8949   
## L.CNS_Score           0.8839 0.9309 0.8823        0.5425 0.8916  0.7538   
## L.DS_Score            0.7539 0.4498 0.5781        0.6846 0.6384  0.9772   
## L.Individualism_Score 0.6538 0.4875 0.6065        0.8035 0.8013  0.9553   
## L.Ideology            0.3179 0.3532 0.9565        0.7636 0.3473  0.8713   
##                       L.Dem_Gen L.EdNum L.SESNum L.AW_Score L.ATNS_Score
## L.Ben                 0.9465    0.7729  0.7580   0.4330     0.6190      
## L.FR                  0.8936    0.8455  0.7975   0.3558     0.8698      
## L.Naturalness         0.9350    0.8534  0.8484   0.7417     0.3821      
## L.Risk                0.7394    0.6544  0.6839   0.8359     0.4988      
## L.Behav               0.9819    0.8662  0.7988   0.4115     0.5120      
## L.Dem_Age             0.7280    0.9101  0.9892   0.7498     0.8560      
## L.Dem_Gen                       0.3566  0.1791   0.1209     0.1341      
## L.EdNum               0.3566            0.0175   0.2734     0.2299      
## L.SESNum              0.1791    0.0175           0.1601     0.1909      
## L.AW_Score            0.1209    0.2734  0.1601              0.0557      
## L.ATNS_Score          0.1341    0.2299  0.1909   0.0557                 
## L.CCBelief_Score      0.2072    0.4740  0.3149   0.0018     0.1207      
## L.Collectivism_Score  0.2727    0.2964  0.6081   0.1265     0.0814      
## L.CNS_Score           0.2983    0.5535  0.3102   0.0448     0.0879      
## L.DS_Score            0.1777    0.4257  0.3732   0.8901     0.4246      
## L.Individualism_Score 0.1542    0.2447  0.3448   0.0079     0.0238      
## L.Ideology            0.6791    0.6778  0.7821   0.4797     0.7298      
##                       L.CCBelief_Score L.Collectivism_Score L.CNS_Score
## L.Ben                 0.2959           0.4152               0.8839     
## L.FR                  0.2657           0.4632               0.9309     
## L.Naturalness         0.8602           0.5234               0.8823     
## L.Risk                0.5729           0.8100               0.5425     
## L.Behav               0.2702           0.5684               0.8916     
## L.Dem_Age             0.5800           0.8949               0.7538     
## L.Dem_Gen             0.2072           0.2727               0.2983     
## L.EdNum               0.4740           0.2964               0.5535     
## L.SESNum              0.3149           0.6081               0.3102     
## L.AW_Score            0.0018           0.1265               0.0448     
## L.ATNS_Score          0.1207           0.0814               0.0879     
## L.CCBelief_Score                       0.3251               0.0144     
## L.Collectivism_Score  0.3251                                0.8684     
## L.CNS_Score           0.0144           0.8684                          
## L.DS_Score            0.8543           0.2389               0.4668     
## L.Individualism_Score 0.0186           0.0031               0.1028     
## L.Ideology            0.3799           0.2645               0.9282     
##                       L.DS_Score L.Individualism_Score L.Ideology
## L.Ben                 0.7539     0.6538                0.3179    
## L.FR                  0.4498     0.4875                0.3532    
## L.Naturalness         0.5781     0.6065                0.9565    
## L.Risk                0.6846     0.8035                0.7636    
## L.Behav               0.6384     0.8013                0.3473    
## L.Dem_Age             0.9772     0.9553                0.8713    
## L.Dem_Gen             0.1777     0.1542                0.6791    
## L.EdNum               0.4257     0.2447                0.6778    
## L.SESNum              0.3732     0.3448                0.7821    
## L.AW_Score            0.8901     0.0079                0.4797    
## L.ATNS_Score          0.4246     0.0238                0.7298    
## L.CCBelief_Score      0.8543     0.0186                0.3799    
## L.Collectivism_Score  0.2389     0.0031                0.2645    
## L.CNS_Score           0.4668     0.1028                0.9282    
## L.DS_Score                       0.5505                0.5336    
## L.Individualism_Score 0.5505                           0.6009    
## L.Ideology            0.5336     0.6009
library(corrplot)
corrplot(mydata.cor11A, method="color")

corrplot(mydata.cor11A, addCoef.col = 1,  number.cex = 0.3, method = 'number')

Tech Ratings

L$corT <- data.frame(L$Ben, L$FR, L$Naturalness, L$Risk, L$Behav)

mydata.cor11AT = cor(L$corT, use = "pairwise.complete.obs")
head(round(mydata.cor11AT,2))
##               L.Ben  L.FR L.Naturalness L.Risk L.Behav
## L.Ben          1.00  0.44          0.27  -0.26    0.80
## L.FR           0.44  1.00          0.10  -0.09    0.48
## L.Naturalness  0.27  0.10          1.00  -0.39    0.28
## L.Risk        -0.26 -0.09         -0.39   1.00   -0.25
## L.Behav        0.80  0.48          0.28  -0.25    1.00
library("Hmisc")
mydata.rcorr11AT = rcorr(as.matrix(mydata.cor11AT))
mydata.rcorr11AT
##               L.Ben  L.FR L.Naturalness L.Risk L.Behav
## L.Ben          1.00  0.55          0.35  -0.78    0.96
## L.FR           0.55  1.00          0.01  -0.49    0.58
## L.Naturalness  0.35  0.01          1.00  -0.82    0.34
## L.Risk        -0.78 -0.49         -0.82   1.00   -0.78
## L.Behav        0.96  0.58          0.34  -0.78    1.00
## 
## n= 5 
## 
## 
## P
##               L.Ben  L.FR   L.Naturalness L.Risk L.Behav
## L.Ben                0.3385 0.5665        0.1194 0.0109 
## L.FR          0.3385        0.9929        0.4066 0.3024 
## L.Naturalness 0.5665 0.9929               0.0883 0.5705 
## L.Risk        0.1194 0.4066 0.0883               0.1196 
## L.Behav       0.0109 0.3024 0.5705        0.1196
library(corrplot)
corrplot(mydata.cor11AT, method="color")

corrplot(mydata.cor11AT, addCoef.col = 1,  number.cex = 0.3, method = 'number')

Scatterplots

library(car)
attach(L)
plot(Behav, Naturalness, main="Naturalness and Support",
   xlab="Support", ylab="Naturalness", pch=19)

plot(Risk, Ben, main="Risk and Benefit",
   xlab= "Risk", ylab="Benefit", pch=19)

Mixed Effects Models

Center Variables

table(L$Type) 
## 
##   CBB  GFFB GFPRB  PBFB  PBPB    VB 
##  1005  1005  1005  1005  1005  1005
describe(L$Ben) 
## L$Ben 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2996     3034      296    0.999    60.36    30.63    2.333   22.667 
##      .25      .50      .75      .90      .95 
##   44.667   61.000   82.000   98.167  100.000 
## 
## lowest :   0.0000000   0.3333333   0.6666667   1.0000000   1.3333333
## highest:  98.6666667  99.0000000  99.3333333  99.6666667 100.0000000
describe(L$Control) 
##  
## NULL
describe(L$Familiarity) 
## L$Familiarity 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2996     3034      101    0.998     57.8    36.28        0        6 
##      .25      .50      .75      .90      .95 
##       32       63       85      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$Naturalness) 
## L$Naturalness 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3006     3024      399        1    50.22    26.67     7.00    22.50 
##      .25      .50      .75      .90      .95 
##    34.75    49.38    65.50    82.00    96.19 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  99.00  99.25  99.50  99.75 100.00
describe(L$Risk) 
## L$Risk 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3319     2711      506        1    44.56    32.81     0.00     2.50 
##      .25      .50      .75      .90      .95 
##    21.25    46.50    65.00    84.00    95.00 
## 
## lowest :   0.0000000   0.2500000   0.3333333   0.5000000   0.7500000
## highest:  99.2500000  99.5000000  99.6666667  99.7500000 100.0000000
describe(L$Behav) 
## L$Behav 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3008     3022      402    0.999    56.27    34.23    0.000    6.925 
##      .25      .50      .75      .90      .95 
##   36.000   58.500   80.250   96.750  100.000 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  99.00  99.25  99.50  99.75 100.00
describe(L$Understanding) 
## L$Understanding 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2999     3031      101    0.995    65.01    32.66        5       21 
##      .25      .50      .75      .90      .95 
##       47       70       89      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$BRDiff) 
## L$BRDiff 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2993     3037     1596        1    15.62    48.87  -68.333  -33.200 
##      .25      .50      .75      .90      .95 
##   -5.917    7.250   45.750   80.400   96.700 
## 
## lowest : -100.00000  -99.75000  -99.66667  -99.33333  -99.00000
## highest:   99.33333   99.50000   99.66667   99.75000  100.00000
describe(L$FR) 
## L$FR 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2986     3044      197    0.999    63.81    29.08    16.00    28.25 
##      .25      .50      .75      .90      .95 
##    49.12    64.50    85.00    99.50   100.00 
## 
## lowest :   0.0   0.5   1.0   1.5   2.5, highest:  98.0  98.5  99.0  99.5 100.0
L$Benefit.c <- L$Ben - 60.36
L$Familiarity.c <- L$Familiarity - 57.8 
L$Naturalness.c <- L$Naturalness - 46.43 
L$Risk.c <- L$Risk - 44.56
L$Behav.c <- L$Behav - mean(L$Behav) - 56.27
L$Understanding.c <- L$Understanding - 65.01
L$FR.c <- L$FR - 63.81

describe(L$AW_Score)
## L$AW_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6006       24      172    0.995    70.53     27.4     25.0     39.5 
##      .25      .50      .75      .90      .95 
##     52.0     73.5     92.5    100.0    100.0 
## 
## lowest :   0.0   1.0   2.0   2.5   3.0, highest:  98.0  98.5  99.0  99.5 100.0
L$AW_Score.c <- L$AW_Score - 70.53 
describe(L$ATNS_Score)
## L$ATNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6012       18      313        1    62.48    19.38     34.2     42.4 
##      .25      .50      .75      .90      .95 
##     51.2     62.0     73.4     84.4     94.8 
## 
## lowest :   0.0   1.0   2.4   3.6   7.2, highest:  98.8  99.2  99.6  99.8 100.0
L$ATNS_Score.c <- L$ATNS_Score - 62.48 
describe(L$CCBelief_Score)
## L$CCBelief_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6006       24      275    0.997    72.51    25.71    31.75    44.75 
##      .25      .50      .75      .90      .95 
##    56.00    75.25    93.25   100.00   100.00 
## 
## lowest :   0.00   0.50   0.75   1.00   1.25, highest:  99.00  99.25  99.50  99.75 100.00
L$CCBelief_Score.c <- L$CCBelief_Score - 72.51
describe(L$CNS_Score)
## L$CNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6012       18      240        1    57.53    12.96     40.0     45.0 
##      .25      .50      .75      .90      .95 
##     50.6     56.6     61.8     71.8     80.2 
## 
## lowest :  18.0  20.0  21.8  22.2  22.6, highest:  98.0  98.8  99.6  99.8 100.0
L$CNS_Score.c <- L$CNS_Score - 57.53 
describe(L$DS_Score)
## L$DS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6006       24      237        1    57.55    23.19    20.67    32.67 
##      .25      .50      .75      .90      .95 
##    45.33    58.67    67.67    86.00    96.00 
## 
## lowest :   0.0000000   0.6666667   1.6666667   2.6666667   3.6666667
## highest:  98.0000000  98.3333333  99.3333333  99.6666667 100.0000000
L$DS_Score.c <- L$DS_Score - 57.55
describe(L$Individualism_Score)
## L$Individualism_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6012       18      250    0.999    73.77    20.34    45.50    51.00 
##      .25      .50      .75      .90      .95 
##    60.50    75.00    88.00    98.75   100.00 
## 
## lowest :   0.00  11.50  22.75  25.00  27.75, highest:  99.00  99.25  99.50  99.75 100.00
L$Individualism_Score.c <- L$Individualism_Score - 73.77
describe(L$Collectivism_Score)
## L$Collectivism_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6018       12      292        1    66.53    23.13    30.25    40.00 
##      .25      .50      .75      .90      .95 
##    52.25    66.75    81.75    94.00   100.00 
## 
## lowest :   0.00   1.25   7.00   9.50  10.50, highest:  99.00  99.25  99.50  99.75 100.00
L$Collectivism_Score.c <- L$Collectivism_Score - 66.53

describe(L$Ben)
## L$Ben 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2996     3034      296    0.999    60.36    30.63    2.333   22.667 
##      .25      .50      .75      .90      .95 
##   44.667   61.000   82.000   98.167  100.000 
## 
## lowest :   0.0000000   0.3333333   0.6666667   1.0000000   1.3333333
## highest:  98.6666667  99.0000000  99.3333333  99.6666667 100.0000000
L$Benefit.c <- L$Ben - 60.36
describe(L$Disgust)
## L$Disgust 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2996     3034      101    0.997    47.64    39.28        0        0 
##      .25      .50      .75      .90      .95 
##       17       50       77      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
L$Disgust.c <- L$Disgust - 47.64
describe(L$Familiarity)
## L$Familiarity 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2996     3034      101    0.998     57.8    36.28        0        6 
##      .25      .50      .75      .90      .95 
##       32       63       85      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
L$Familiarity.c <-  L$Familiarity - 57.8
describe(L$Naturalness)
## L$Naturalness 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3006     3024      399        1    50.22    26.67     7.00    22.50 
##      .25      .50      .75      .90      .95 
##    34.75    49.38    65.50    82.00    96.19 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  99.00  99.25  99.50  99.75 100.00
L$Naturalness.c <-  L$Naturalness - 46.43
describe(L$Risk)
## L$Risk 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3319     2711      506        1    44.56    32.81     0.00     2.50 
##      .25      .50      .75      .90      .95 
##    21.25    46.50    65.00    84.00    95.00 
## 
## lowest :   0.0000000   0.2500000   0.3333333   0.5000000   0.7500000
## highest:  99.2500000  99.5000000  99.6666667  99.7500000 100.0000000
L$Risk.c <- L$Risk -  44.56
describe(L$Behav)
## L$Behav 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3008     3022      402    0.999    56.27    34.23    0.000    6.925 
##      .25      .50      .75      .90      .95 
##   36.000   58.500   80.250   96.750  100.000 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  99.00  99.25  99.50  99.75 100.00
L$Behav.c <- L$Behav - 56.27
describe(L$Understanding)
## L$Understanding 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2999     3031      101    0.995    65.01    32.66        5       21 
##      .25      .50      .75      .90      .95 
##       47       70       89      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
L$Understanding.c <- L$Understanding - 65.01
describe(L$FR)
## L$FR 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2986     3044      197    0.999    63.81    29.08    16.00    28.25 
##      .25      .50      .75      .90      .95 
##    49.12    64.50    85.00    99.50   100.00 
## 
## lowest :   0.0   0.5   1.0   1.5   2.5, highest:  98.0  98.5  99.0  99.5 100.0
L$FR.c <- L$FR - 63.81

describe(L$BRDiff)
## L$BRDiff 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     2993     3037     1596        1    15.62    48.87  -68.333  -33.200 
##      .25      .50      .75      .90      .95 
##   -5.917    7.250   45.750   80.400   96.700 
## 
## lowest : -100.00000  -99.75000  -99.66667  -99.33333  -99.00000
## highest:   99.33333   99.50000   99.66667   99.75000  100.00000

Contrast Codes

#CBB, PBPB,PBFB vs. VB, GFPRB, GFFB - NEWTECH
L$C1 <- (1/2)*(L$Type == 'CBB') + (-1/2)*(L$Type == 'GFFB') + (-1/2)*(L$Type == 'GFPRB') +(1/2)*(L$Type == 'PBFB') +(1/2)*(L$Type == 'PBPB') + (-1/2)*(L$Type == 'VB')

#CBB vs. PFPB, PBPB - LABCULTURED
L$C2 <- (2/3)*(L$Type == 'CBB') + (-1/3)*(L$Type == 'PBFB') + (-1/3)*(L$Type == 'PBPB') +(0)*(L$Type == 'VB') + (0)*(L$Type == 'GFFB') + (0)*(L$Type == 'GFPRB')

#GFFB, GFPRB vs. CBB, PFPB, PBPB, VB - TRADITIONAL BEEF 
L$C3 <- (0)*(L$Type == 'CBB') + (0)*(L$Type == 'PBFB') + (0)*(L$Type == 'PBPB') +(2/3)*(L$Type == 'VB') + (-1/3)*(L$Type == 'GFFB') + (-1/3)*(L$Type == 'GFPRB')

#GFFB vs. GFPRB - GRAIN FED BEEF vs. GRASS FED BEEF
L$C4 <- (0)*(L$Type == 'CBB') + (0)*(L$Type == 'PBFB') + (0)*(L$Type == 'PBPB') + (0)*(L$Type == 'VB') + (1/2)*(L$Type == 'GFFB') + (-1/2)*(L$Type == 'GFPRB')

#VB vs. GFPRB - VEGGIE vs. GRASS FED (Orthogonality Code - Not meaningful comparison)
L$C5 <- (0)*(L$Type == 'CBB') + (1/2)*(L$Type == 'PBFB') + (-1/2)*(L$Type == 'PBPB') + (0)*(L$Type == 'VB') + (0)*(L$Type == 'GFFB') + (0)*(L$Type == 'GFPRB')

# Sex
## F vs M
L$MF <- (1/2)*(L$Dem_Gen == '1') + (-1/2)*(L$Dem_Gen == '2') + (0)*(L$Dem_Gen == '3') 

## O vs MF
L$OMF <- (-1/3)*(L$Dem_Gen == '1') + (-1/3)*(L$Dem_Gen == '2') + (2/3)*(L$Dem_Gen == '3') 

ANOVAs

Support (Behavioral Intent)

modA.1 <- lmer(Behav ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)


modC.1 <- lmer(Behav ~ 1 + (1|id), data = L)

summary(modA.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28169.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5456 -0.4179  0.0521  0.4301  3.3434 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 449.2    21.19   
##  Residual             431.8    20.78   
## Number of obs: 3008, groups:  id, 1003
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   56.4847     0.7747 1001.8181  72.908  < 2e-16 ***
## C1            -6.4914     0.8047 2201.0504  -8.066 1.18e-15 ***
## C2            -6.1986     1.2296 2292.4556  -5.041 4.99e-07 ***
## C3             5.1803     1.2795 2341.2427   4.049 5.32e-05 ***
## C4             0.2924     1.4180 2293.3067   0.206 0.836669    
## C5            -5.1045     1.4401 2316.5191  -3.545 0.000401 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.003                            
## C2 -0.020  0.006                     
## C3 -0.007 -0.057  0.027              
## C4 -0.017 -0.063  0.051  0.000       
## C5 -0.014  0.067 -0.029  0.064  0.074
tab_model(modA.1,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.48 0.77 54.97 – 58.00 72.91 <0.001
C1 -6.49 0.80 -8.07 – -4.91 -8.07 <0.001
C2 -6.20 1.23 -8.61 – -3.79 -5.04 <0.001
C3 5.18 1.28 2.67 – 7.69 4.05 <0.001
C4 0.29 1.42 -2.49 – 3.07 0.21 0.837
C5 -5.10 1.44 -7.93 – -2.28 -3.54 <0.001
Random Effects
σ2 431.78
τ00 id 449.18
ICC 0.51
N id 1003
Observations 3008
Marginal R2 / Conditional R2 0.022 / 0.521
summary(modC.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28293.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3388 -0.4207  0.0627  0.4499  3.2169 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 443.6    21.06   
##  Residual             454.7    21.32   
## Number of obs: 3008, groups:  id, 1003
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   56.3747     0.7759 1002.0581   72.66   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.1,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.37 0.78 54.85 – 57.90 72.66 <0.001
Random Effects
σ2 454.75
τ00 id 443.56
ICC 0.49
N id 1003
Observations 3008
Marginal R2 / Conditional R2 0.000 / 0.494
anova(modC.1, modA.1)
## refitting model(s) with ML (instead of REML)

Naturalness

modA.2 <- lmer(Naturalness ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

modC.2 <- lmer(Naturalness ~ 1 + (1|id), data = L)
## boundary (singular) fit: see ?isSingular
summary(modA.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26923.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.92273 -0.65184 -0.03425  0.61938  3.08384 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   1.535   1.239  
##  Residual             455.241  21.336  
## Number of obs: 3006, groups:  id, 1004
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   50.3942     0.3914 1002.1123 128.753  < 2e-16 ***
## C1            -8.1457     0.7797 2793.3500 -10.447  < 2e-16 ***
## C2           -17.9940     1.1570 2769.4763 -15.552  < 2e-16 ***
## C3            -4.6214     1.1903 2759.6843  -3.883 0.000106 ***
## C4           -12.9528     1.3423 2791.1878  -9.650  < 2e-16 ***
## C5            19.8994     1.3486 2753.0711  14.755  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.012                            
## C2 -0.009 -0.009                     
## C3  0.023 -0.024  0.000              
## C4  0.008 -0.008  0.000 -0.008       
## C5  0.025  0.025 -0.025  0.000  0.000
tab_model(modA.2,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 50.39 0.39 49.63 – 51.16 128.75 <0.001
C1 -8.15 0.78 -9.67 – -6.62 -10.45 <0.001
C2 -17.99 1.16 -20.26 – -15.73 -15.55 <0.001
C3 -4.62 1.19 -6.96 – -2.29 -3.88 <0.001
C4 -12.95 1.34 -15.58 – -10.32 -9.65 <0.001
C5 19.90 1.35 17.26 – 22.54 14.76 <0.001
Random Effects
σ2 455.24
τ00 id 1.54
ICC 0.00
N id 1004
Observations 3006
Marginal R2 / Conditional R2 0.185 / 0.187
summary(modC.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27548.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1231 -0.6539 -0.0356  0.6461  2.1047 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0.0     0.00   
##  Residual             559.5    23.65   
## Number of obs: 3006, groups:  id, 1004
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   50.2170     0.4314 3005.0000   116.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
tab_model(modC.2,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 50.22 0.43 49.37 – 51.06 116.40 <0.001
Random Effects
σ2 559.47
τ00 id 0.00
N id 1004
Observations 3006
Marginal R2 / Conditional R2 0.000 / NA
anova(modC.2, modA.2)
## refitting model(s) with ML (instead of REML)

Risk

modA.3 <- lmer(Risk ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

modC.3 <- lmer(Risk ~ 1 + (1|id), data = L)

summary(modA.3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30939.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.94921 -0.55876  0.01162  0.51048  2.97133 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 329.8    18.16   
##  Residual             455.4    21.34   
## Number of obs: 3319, groups:  id, 1004
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   44.4194     0.6869 1017.0632  64.663  < 2e-16 ***
## C1             5.9265     0.8118 2645.8442   7.300 3.79e-13 ***
## C2             9.4518     1.1967 2620.9392   7.898 4.13e-15 ***
## C3            -7.7368     1.2733 2595.6429  -6.076 1.41e-09 ***
## C4             8.3421     1.4406 2612.5948   5.791 7.84e-09 ***
## C5             2.5476     1.2299 2412.7516   2.071   0.0384 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.044                            
## C2  0.031  0.049                     
## C3  0.013 -0.039  0.006              
## C4  0.005 -0.001  0.004 -0.016       
## C5 -0.065 -0.134  0.129  0.008 -0.007
tab_model(modA.3,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 44.42 0.69 43.07 – 45.77 64.66 <0.001
C1 5.93 0.81 4.33 – 7.52 7.30 <0.001
C2 9.45 1.20 7.11 – 11.80 7.90 <0.001
C3 -7.74 1.27 -10.23 – -5.24 -6.08 <0.001
C4 8.34 1.44 5.52 – 11.17 5.79 <0.001
C5 2.55 1.23 0.14 – 4.96 2.07 0.038
Random Effects
σ2 455.41
τ00 id 329.82
ICC 0.42
N id 1004
Observations 3319
Marginal R2 / Conditional R2 0.035 / 0.440
summary(modC.3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31126.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.69790 -0.57939  0.03569  0.51198  3.16194 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 331.9    18.22   
##  Residual             485.3    22.03   
## Number of obs: 3319, groups:  id, 1004
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  44.6050     0.6919 999.3441   64.47   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.3,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 44.61 0.69 43.25 – 45.96 64.47 <0.001
Random Effects
σ2 485.35
τ00 id 331.87
ICC 0.41
N id 1004
Observations 3319
Marginal R2 / Conditional R2 0.000 / 0.406
anova(modC.3, modA.3)
## refitting model(s) with ML (instead of REML)

Benefit

modA.4 <- lmer(Ben ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

modC.4 <- lmer(Ben ~ 1 + (1|id), data = L)

summary(modA.4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27808
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3345 -0.4773  0.0739  0.5582  2.6462 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 238.7    15.45   
##  Residual             463.2    21.52   
## Number of obs: 2996, groups:  id, 1003
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   60.3899     0.6270  999.7844  96.314  < 2e-16 ***
## C1            -6.6494     0.8415 2369.0189  -7.901 4.18e-15 ***
## C2            -7.1582     1.2462 2352.7388  -5.744 1.04e-08 ***
## C3             6.3360     1.2802 2351.7235   4.949 7.98e-07 ***
## C4           -10.4003     1.4478 2368.4324  -7.184 9.05e-13 ***
## C5            -4.9473     1.4516 2347.8427  -3.408 0.000665 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.007                            
## C2 -0.006 -0.014                     
## C3  0.016 -0.033  0.002              
## C4  0.006 -0.004  0.005 -0.017       
## C5  0.016  0.023 -0.032  0.010 -0.008
tab_model(modA.4,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.39 0.63 59.16 – 61.62 96.31 <0.001
C1 -6.65 0.84 -8.30 – -5.00 -7.90 <0.001
C2 -7.16 1.25 -9.60 – -4.71 -5.74 <0.001
C3 6.34 1.28 3.83 – 8.85 4.95 <0.001
C4 -10.40 1.45 -13.24 – -7.56 -7.18 <0.001
C5 -4.95 1.45 -7.79 – -2.10 -3.41 0.001
Random Effects
σ2 463.15
τ00 id 238.71
ICC 0.34
N id 1003
Observations 2996
Marginal R2 / Conditional R2 0.044 / 0.369
summary(modC.4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27994.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.86155 -0.44300  0.05094  0.59017  2.47464 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 232.2    15.24   
##  Residual             500.6    22.37   
## Number of obs: 2996, groups:  id, 1003
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  60.3521     0.6316 999.7847   95.55   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.4,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.35 0.63 59.11 – 61.59 95.55 <0.001
Random Effects
σ2 500.63
τ00 id 232.23
ICC 0.32
N id 1003
Observations 2996
Marginal R2 / Conditional R2 0.000 / 0.317
anova(modC.4, modA.4)
## refitting model(s) with ML (instead of REML)

Difference Benefit/Risk Scores

modA.5 <- lmer(BRDiff ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

modC.5 <- lmer(BRDiff ~ 1 + (1|id), data = L)

summary(modA.5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30825.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3908 -0.5246 -0.0378  0.5578  2.8665 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  367.7   19.18   
##  Residual             1452.6   38.11   
## Number of obs: 2993, groups:  id, 1003
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   15.6984     0.9238 1000.3810  16.993  < 2e-16 ***
## C1           -13.5195     1.4614 2515.2585  -9.251  < 2e-16 ***
## C2           -15.5764     2.1646 2491.4027  -7.196 8.17e-13 ***
## C3            13.8468     2.2252 2488.0575   6.223 5.72e-10 ***
## C4           -19.4601     2.5134 2511.0443  -7.742 1.40e-14 ***
## C5           -10.2906     2.5228 2484.1148  -4.079 4.66e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.009                            
## C2 -0.008 -0.013                     
## C3  0.019 -0.030  0.001              
## C4  0.007 -0.006  0.003 -0.014       
## C5  0.019  0.023 -0.029  0.007 -0.005
tab_model(modA.5,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 15.70 0.92 13.89 – 17.51 16.99 <0.001
C1 -13.52 1.46 -16.38 – -10.65 -9.25 <0.001
C2 -15.58 2.16 -19.82 – -11.33 -7.20 <0.001
C3 13.85 2.23 9.48 – 18.21 6.22 <0.001
C4 -19.46 2.51 -24.39 – -14.53 -7.74 <0.001
C5 -10.29 2.52 -15.24 – -5.34 -4.08 <0.001
Random Effects
σ2 1452.65
τ00 id 367.70
ICC 0.20
N id 1003
Observations 2993
Marginal R2 / Conditional R2 0.068 / 0.257
summary(modC.5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31083.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0684 -0.4196 -0.1273  0.5750  2.6013 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  357     18.89   
##  Residual             1599     39.99   
## Number of obs: 2993, groups:  id, 1003
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   15.5946     0.9439 1001.4498   16.52   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.5,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 15.59 0.94 13.74 – 17.45 16.52 <0.001
Random Effects
σ2 1599.27
τ00 id 356.98
ICC 0.18
N id 1003
Observations 2993
Marginal R2 / Conditional R2 0.000 / 0.182
anova(modC.5, modA.5)
## refitting model(s) with ML (instead of REML)

Combined Familiarity/Understanding Mean Scores

modA.6 <- lmer(FR ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

modC.6 <- lmer(FR ~ 1 + (1|id), data = L)

summary(modA.6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27138.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8457 -0.5009  0.0654  0.5426  3.3148 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 270.0    16.43   
##  Residual             351.5    18.75   
## Number of obs: 2986, groups:  id, 1004
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  6.369e+01  6.271e-01  9.978e+02 101.549  < 2e-16 ***
## C1          -4.554e+00  7.688e-01  2.474e+03  -5.923 3.59e-09 ***
## C2           1.780e+01  1.101e+00  2.316e+03  16.174  < 2e-16 ***
## C3           1.941e-01  1.171e+00  2.461e+03   0.166    0.868    
## C4           5.538e-18  1.188e+00  1.987e+03   0.000    1.000    
## C5          -6.948e+00  1.278e+00  2.306e+03  -5.437 5.97e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.041                            
## C2 -0.005 -0.011                     
## C3 -0.020  0.041  0.016              
## C4  0.000  0.000  0.000  0.000       
## C5  0.013  0.034 -0.026  0.018  0.000
tab_model(modA.6,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 63.69 0.63 62.46 – 64.91 101.55 <0.001
C1 -4.55 0.77 -6.06 – -3.05 -5.92 <0.001
C2 17.80 1.10 15.65 – 19.96 16.17 <0.001
C3 0.19 1.17 -2.10 – 2.49 0.17 0.868
C4 0.00 1.19 -2.33 – 2.33 0.00 1.000
C5 -6.95 1.28 -9.45 – -4.44 -5.44 <0.001
Random Effects
σ2 351.49
τ00 id 269.97
ICC 0.43
N id 1004
Observations 2986
Marginal R2 / Conditional R2 0.067 / 0.472
summary(modC.6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27445.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5675 -0.5080  0.0726  0.5561  2.7932 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 255.9    16.00   
##  Residual             404.8    20.12   
## Number of obs: 2986, groups:  id, 1004
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  63.6394     0.6298 996.7018     101   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.6,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 63.64 0.63 62.40 – 64.87 101.05 <0.001
Random Effects
σ2 404.84
τ00 id 255.85
ICC 0.39
N id 1004
Observations 2986
Marginal R2 / Conditional R2 0.000 / 0.387
anova(modC.6, modA.6)
## refitting model(s) with ML (instead of REML)

Familiarity

modA.7 <- lmer(Familiarity ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

modC.7 <- lmer(Familiarity ~ 1 + (1|id), data = L)

summary(modA.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Familiarity ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28753.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7016 -0.6524  0.1022  0.6685  2.4891 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 244.3    15.63   
##  Residual             680.0    26.08   
## Number of obs: 2996, groups:  id, 1004
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   57.7996     0.6862 1000.6565  84.226  < 2e-16 ***
## C1           -16.6408     1.0094 2445.6747 -16.485  < 2e-16 ***
## C2            -5.0384     1.4935 2428.5250  -3.374 0.000754 ***
## C3            -5.6872     1.5364 2422.1864  -3.702 0.000219 ***
## C4           -10.5014     1.7428 2445.4320  -6.025 1.94e-09 ***
## C5            -7.4767     1.7369 2415.4238  -4.305 1.74e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.011                            
## C2 -0.006 -0.013                     
## C3  0.015 -0.029  0.001              
## C4  0.007 -0.006  0.004 -0.017       
## C5  0.018  0.024 -0.032  0.008 -0.007
tab_model(modA.7,
          show.stat = T, show.se = T)
  Familiarity
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.80 0.69 56.45 – 59.15 84.23 <0.001
C1 -16.64 1.01 -18.62 – -14.66 -16.49 <0.001
C2 -5.04 1.49 -7.97 – -2.11 -3.37 0.001
C3 -5.69 1.54 -8.70 – -2.67 -3.70 <0.001
C4 -10.50 1.74 -13.92 – -7.08 -6.03 <0.001
C5 -7.48 1.74 -10.88 – -4.07 -4.30 <0.001
Random Effects
σ2 680.02
τ00 id 244.32
ICC 0.26
N id 1004
Observations 2996
Marginal R2 / Conditional R2 0.089 / 0.330
summary(modC.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Familiarity ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 29099
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1988 -0.6852  0.1375  0.6931  1.8970 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 220.1    14.84   
##  Residual             790.7    28.12   
## Number of obs: 2996, groups:  id, 1004
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   57.7845     0.6952 1000.7999   83.11   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.7,
          show.stat = T, show.se = T)
  Familiarity
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.78 0.70 56.42 – 59.15 83.11 <0.001
Random Effects
σ2 790.66
τ00 id 220.08
ICC 0.22
N id 1004
Observations 2996
Marginal R2 / Conditional R2 0.000 / 0.218
anova(modC.7, modA.7)
## refitting model(s) with ML (instead of REML)

Understanding

modA.8 <- lmer(Understanding ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

modC.8 <- lmer(Understanding ~ 1 + (1|id), data = L)

summary(modA.8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Understanding ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28235.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1222 -0.4857  0.1551  0.5938  2.5603 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 293.1    17.12   
##  Residual             519.5    22.79   
## Number of obs: 2999, groups:  id, 1004
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   64.9813     0.6824 1000.4267  95.226  < 2e-16 ***
## C1           -10.8116     0.8934 2354.1796 -12.101  < 2e-16 ***
## C2            -2.1528     1.3216 2337.6734  -1.629  0.10347    
## C3            -1.8419     1.3585 2330.2043  -1.356  0.17528    
## C4            -4.0505     1.5397 2355.2868  -2.631  0.00858 ** 
## C5            -6.0354     1.5376 2329.6665  -3.925 8.92e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.009                            
## C2 -0.006 -0.014                     
## C3  0.015 -0.033  0.002              
## C4  0.005 -0.004  0.005 -0.016       
## C5  0.017  0.025 -0.033  0.011 -0.008
tab_model(modA.8,
          show.stat = T, show.se = T)
  Understanding
Predictors Estimates std. Error CI Statistic p
(Intercept) 64.98 0.68 63.64 – 66.32 95.23 <0.001
C1 -10.81 0.89 -12.56 – -9.06 -12.10 <0.001
C2 -2.15 1.32 -4.74 – 0.44 -1.63 0.103
C3 -1.84 1.36 -4.51 – 0.82 -1.36 0.175
C4 -4.05 1.54 -7.07 – -1.03 -2.63 0.009
C5 -6.04 1.54 -9.05 – -3.02 -3.93 <0.001
Random Effects
σ2 519.49
τ00 id 293.05
ICC 0.36
N id 1004
Observations 2999
Marginal R2 / Conditional R2 0.041 / 0.387
summary(modC.8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Understanding ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28414.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7863 -0.4427  0.1491  0.5878  2.2837 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.5    16.84   
##  Residual             561.0    23.69   
## Number of obs: 2999, groups:  id, 1004
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   64.9741     0.6853 1000.4997   94.81   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.8,
          show.stat = T, show.se = T)
  Understanding
Predictors Estimates std. Error CI Statistic p
(Intercept) 64.97 0.69 63.63 – 66.32 94.81 <0.001
Random Effects
σ2 560.98
τ00 id 283.48
ICC 0.34
N id 1004
Observations 2999
Marginal R2 / Conditional R2 0.000 / 0.336
anova(modC.8, modA.8)
## refitting model(s) with ML (instead of REML)

Mixed Models

Support

Q.1: How do burger contrasts predict support?

#Do burger contrasts predict support? 
modA.9 <- lmer(Behav ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.9)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28169.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5456 -0.4179  0.0521  0.4301  3.3434 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 449.2    21.19   
##  Residual             431.8    20.78   
## Number of obs: 3008, groups:  id, 1003
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   56.4847     0.7747 1001.8181  72.908  < 2e-16 ***
## C1            -6.4914     0.8047 2201.0504  -8.066 1.18e-15 ***
## C2            -6.1986     1.2296 2292.4556  -5.041 4.99e-07 ***
## C3             5.1803     1.2795 2341.2427   4.049 5.32e-05 ***
## C4             0.2924     1.4180 2293.3067   0.206 0.836669    
## C5            -5.1045     1.4401 2316.5191  -3.545 0.000401 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.003                            
## C2 -0.020  0.006                     
## C3 -0.007 -0.057  0.027              
## C4 -0.017 -0.063  0.051  0.000       
## C5 -0.014  0.067 -0.029  0.064  0.074
tab_model(modA.9,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.48 0.77 54.97 – 58.00 72.91 <0.001
C1 -6.49 0.80 -8.07 – -4.91 -8.07 <0.001
C2 -6.20 1.23 -8.61 – -3.79 -5.04 <0.001
C3 5.18 1.28 2.67 – 7.69 4.05 <0.001
C4 0.29 1.42 -2.49 – 3.07 0.21 0.837
C5 -5.10 1.44 -7.93 – -2.28 -3.54 <0.001
Random Effects
σ2 431.78
τ00 id 449.18
ICC 0.51
N id 1003
Observations 3008
Marginal R2 / Conditional R2 0.022 / 0.521
confint(modA.9)
## Computing profile confidence intervals ...
##                 2.5 %    97.5 %
## .sig01      19.962311 22.470893
## .sigma      20.130427 21.412665
## (Intercept) 54.966128 58.003963
## C1          -8.067509 -4.915172
## C2          -8.606936 -3.790127
## C3           2.674390  7.686242
## C4          -2.484845  3.069674
## C5          -7.924868 -2.283917

Q.2: Does naturalness predict support, over and above burger contrasts?

#Does naturalness predict support? 
modA.10 <- lmer(Behav ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.10)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25168.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8393 -0.4549  0.0449  0.4905  3.1256 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 401.6    20.04   
##  Residual             413.7    20.34   
## Number of obs: 2697, groups:  id, 1003
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     54.86608    0.76821 1093.90157  71.421  < 2e-16 ***
## Naturalness.c    0.38839    0.02155 2147.25232  18.023  < 2e-16 ***
## C1              -3.20872    0.91118 1942.24470  -3.521 0.000439 ***
## C2               0.67094    1.26579 1984.39275   0.530 0.596131    
## C3               7.17041    1.41061 2064.02901   5.083 4.05e-07 ***
## C4               5.42802    1.91507 2091.24654   2.834 0.004636 ** 
## C5             -12.72932    1.47319 1998.79491  -8.641  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4    
## Naturlnss.c -0.119                                   
## C1          -0.137  0.206                            
## C2          -0.058  0.298  0.076                     
## C3          -0.126  0.085  0.174  0.056              
## C4          -0.195  0.157  0.294  0.094  0.310       
## C5           0.011 -0.284  0.018 -0.114  0.048  0.034
tab_model(modA.10,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.87 0.77 53.36 – 56.37 71.42 <0.001
Naturalness c 0.39 0.02 0.35 – 0.43 18.02 <0.001
C1 -3.21 0.91 -5.00 – -1.42 -3.52 <0.001
C2 0.67 1.27 -1.81 – 3.15 0.53 0.596
C3 7.17 1.41 4.40 – 9.94 5.08 <0.001
C4 5.43 1.92 1.67 – 9.18 2.83 0.005
C5 -12.73 1.47 -15.62 – -9.84 -8.64 <0.001
Random Effects
σ2 413.74
τ00 id 401.64
ICC 0.49
N id 1003
Observations 2697
Marginal R2 / Conditional R2 0.097 / 0.542
confint(modA.10)
## Computing profile confidence intervals ...
##                     2.5 %     97.5 %
## .sig01         18.8126988 21.3089627
## .sigma         19.6435140 21.0107228
## (Intercept)    53.3606674 56.3721977
## Naturalness.c   0.3461825  0.4305892
## C1             -4.9927247 -1.4246943
## C2             -1.8076880  3.1496554
## C3              4.4085408  9.9322837
## C4              1.6785146  9.1775222
## C5            -15.6137199 -9.8449348

Q.3: Does perceived benefit predict support, over and above perceived risk, naturalness, and burger contrasts?

modA.11 <- lmer(Behav ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 + C4 +  
##     C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 23048.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8391 -0.3659  0.0895  0.4452  4.9929 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  79.89    8.938  
##  Residual             242.68   15.578  
## Number of obs: 2691, groups:  id, 1002
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     56.20126    0.43445 1056.32411 129.362  < 2e-16 ***
## Naturalness.c    0.09444    0.01706 2429.95086   5.534 3.46e-08 ***
## Risk.c          -0.05006    0.01401 2450.02011  -3.573 0.000359 ***
## Benefit.c        0.80715    0.01436 2383.79904  56.202  < 2e-16 ***
## C1              -0.26934    0.68067 2093.89990  -0.396 0.692367    
## C2               1.77549    0.93697 2142.81124   1.895 0.058238 .  
## C3              -0.32842    1.04699 2285.11302  -0.314 0.753795    
## C4               9.10408    1.40188 2333.04733   6.494 1.02e-10 ***
## C5              -2.73598    1.11153 2188.32855  -2.461 0.013914 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c Bnft.c C1     C2     C3     C4    
## Naturlnss.c -0.167                                                 
## Risk.c      -0.045  0.283                                          
## Benefit.c    0.040 -0.214  0.226                                   
## C1          -0.171  0.146 -0.057  0.055                            
## C2          -0.063  0.263 -0.013  0.010  0.067                     
## C3          -0.162  0.136  0.097 -0.092  0.159  0.040              
## C4          -0.241  0.122 -0.029  0.037  0.298  0.076  0.285       
## C5           0.045 -0.335 -0.143  0.110  0.016 -0.104 -0.012  0.014
tab_model(modA.11,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.20 0.43 55.35 – 57.05 129.36 <0.001
Naturalness c 0.09 0.02 0.06 – 0.13 5.53 <0.001
Risk c -0.05 0.01 -0.08 – -0.02 -3.57 <0.001
Benefit c 0.81 0.01 0.78 – 0.84 56.20 <0.001
C1 -0.27 0.68 -1.60 – 1.07 -0.40 0.692
C2 1.78 0.94 -0.06 – 3.61 1.89 0.058
C3 -0.33 1.05 -2.38 – 1.72 -0.31 0.754
C4 9.10 1.40 6.36 – 11.85 6.49 <0.001
C5 -2.74 1.11 -4.92 – -0.56 -2.46 0.014
Random Effects
σ2 242.68
τ00 id 79.89
ICC 0.25
N id 1002
Observations 2691
Marginal R2 / Conditional R2 0.620 / 0.714
confint(modA.11)
## Computing profile confidence intervals ...
##                     2.5 %      97.5 %
## .sig01         7.96639981  9.87924404
## .sigma        15.02983125 16.10015419
## (Intercept)   55.34990497 57.05201768
## Naturalness.c  0.06103335  0.12784468
## Risk.c        -0.07812545 -0.02216429
## Benefit.c      0.77678432  0.83715971
## C1            -1.60166267  1.06306171
## C2            -0.05880171  3.61048875
## C3            -2.37960399  1.72196700
## C4             6.36006908 11.84832783
## C5            -4.91198833 -0.56030197

Q.4: Does perceived familiarity/understanding predict support, over and above perceived benefit, risk, naturalness, and burger contrasts?

#How does perceived benefit and naturalness predict behavioral intent?
modA.12 <- lmer(Behav ~ Naturalness.c + Risk.c + Benefit.c + FR.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Naturalness.c + Risk.c + Benefit.c + FR.c + C1 + C2 +  
##     C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 18524.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.8284 -0.4074  0.0962  0.4808  4.6953 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  37.96    6.161  
##  Residual             205.86   14.348  
## Number of obs: 2226, groups:  id, 1002
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     56.73467    0.48133 1724.49406 117.870  < 2e-16 ***
## Naturalness.c    0.09145    0.01681 2127.05776   5.439 5.97e-08 ***
## Risk.c          -0.06404    0.01301 1935.82128  -4.920 9.38e-07 ***
## Benefit.c        0.79644    0.01484 2084.54177  53.669  < 2e-16 ***
## FR.c             0.18381    0.01504 2180.78555  12.222  < 2e-16 ***
## C1              -0.33178    0.90432 2044.61149  -0.367  0.71374    
## C2              -1.08858    1.24579 2146.28489  -0.874  0.38232    
## C3              -1.69893    1.30566 2104.13184  -1.301  0.19333    
## C4               6.48938    2.14025 1902.17336   3.032  0.00246 ** 
## C5              -1.51689    1.02050 1859.29135  -1.486  0.13734    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c Bnft.c FR.c   C1     C2     C3     C4    
## Naturlnss.c -0.137                                                        
## Risk.c      -0.038  0.255                                                 
## Benefit.c    0.021 -0.154  0.198                                          
## FR.c        -0.001 -0.064 -0.029 -0.413                                   
## C1          -0.413  0.106 -0.024  0.029  0.040                            
## C2           0.145  0.226  0.012  0.107 -0.252  0.234                     
## C3          -0.511  0.091  0.083 -0.073  0.044  0.533  0.009              
## C4          -0.605  0.073 -0.008  0.040 -0.014  0.650  0.032  0.672       
## C5           0.042 -0.361 -0.142  0.067  0.087  0.006 -0.108 -0.011  0.003
tab_model(modA.12,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.73 0.48 55.79 – 57.68 117.87 <0.001
Naturalness c 0.09 0.02 0.06 – 0.12 5.44 <0.001
Risk c -0.06 0.01 -0.09 – -0.04 -4.92 <0.001
Benefit c 0.80 0.01 0.77 – 0.83 53.67 <0.001
FR c 0.18 0.02 0.15 – 0.21 12.22 <0.001
C1 -0.33 0.90 -2.11 – 1.44 -0.37 0.714
C2 -1.09 1.25 -3.53 – 1.35 -0.87 0.382
C3 -1.70 1.31 -4.26 – 0.86 -1.30 0.193
C4 6.49 2.14 2.29 – 10.69 3.03 0.002
C5 -1.52 1.02 -3.52 – 0.48 -1.49 0.137
Random Effects
σ2 205.86
τ00 id 37.96
ICC 0.16
N id 1002
Observations 2226
Marginal R2 / Conditional R2 0.721 / 0.764
confint(modA.12)
## Computing profile confidence intervals ...
##                     2.5 %      97.5 %
## .sig01         4.94048544  7.21599509
## .sigma        13.76295121 14.90318247
## (Intercept)   55.79290406 57.67654079
## Naturalness.c  0.05855217  0.12434102
## Risk.c        -0.08996558 -0.03822462
## Benefit.c      0.76680555  0.82597144
## FR.c           0.15438087  0.21322815
## C1            -2.10110693  1.43745142
## C2            -3.52589895  1.34896348
## C3            -4.25334137  0.85552522
## C4             2.30215141 10.67716744
## C5            -3.51618886  0.48046518

Naturalness

Q.1: How do burger contrasts predict naturalness perception?

#How do burger contrasts predict naturalness perception?
modA.13 <- lmer(Naturalness ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.13)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26923.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.92273 -0.65184 -0.03425  0.61938  3.08384 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   1.535   1.239  
##  Residual             455.241  21.336  
## Number of obs: 3006, groups:  id, 1004
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   50.3942     0.3914 1002.1123 128.753  < 2e-16 ***
## C1            -8.1457     0.7797 2793.3500 -10.447  < 2e-16 ***
## C2           -17.9940     1.1570 2769.4763 -15.552  < 2e-16 ***
## C3            -4.6214     1.1903 2759.6843  -3.883 0.000106 ***
## C4           -12.9528     1.3423 2791.1878  -9.650  < 2e-16 ***
## C5            19.8994     1.3486 2753.0711  14.755  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.012                            
## C2 -0.009 -0.009                     
## C3  0.023 -0.024  0.000              
## C4  0.008 -0.008  0.000 -0.008       
## C5  0.025  0.025 -0.025  0.000  0.000
tab_model(modA.13,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 50.39 0.39 49.63 – 51.16 128.75 <0.001
C1 -8.15 0.78 -9.67 – -6.62 -10.45 <0.001
C2 -17.99 1.16 -20.26 – -15.73 -15.55 <0.001
C3 -4.62 1.19 -6.96 – -2.29 -3.88 <0.001
C4 -12.95 1.34 -15.58 – -10.32 -9.65 <0.001
C5 19.90 1.35 17.26 – 22.54 14.76 <0.001
Random Effects
σ2 455.24
τ00 id 1.54
ICC 0.00
N id 1004
Observations 3006
Marginal R2 / Conditional R2 0.185 / 0.187

Q.2: Does understanding/familiarity (mean score) predict naturalness perception, over and above burger contrasts?

#Note: Understanding/familiarity mean score taken from two item measure. 
modA.14 <- lmer(Naturalness ~ FR.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.14)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ FR.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 21107.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1590 -0.6280 -0.0059  0.6176  3.5432 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  16.75    4.093  
##  Residual             413.12   20.325  
## Number of obs: 2373, groups:  id, 1004
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   50.21663    0.47709 1164.24753 105.256  < 2e-16 ***
## FR.c           0.13960    0.01715 1986.51242   8.139 6.93e-16 ***
## C1            -7.01528    0.93138 2312.76251  -7.532 7.12e-14 ***
## C2           -20.15574    1.60826 2348.79473 -12.533  < 2e-16 ***
## C3            -3.89582    1.29544 2339.72154  -3.007  0.00266 ** 
## C4           -11.57317    1.74088 1920.81597  -6.648 3.86e-11 ***
## C5            20.69235    1.30165 2096.94317  15.897  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##      (Intr) FR.c   C1     C2     C3     C4    
## FR.c  0.001                                   
## C1   -0.032  0.082                            
## C2    0.266 -0.182  0.256                     
## C3   -0.179  0.011  0.183 -0.006              
## C4   -0.275  0.003  0.281 -0.007  0.306       
## C5    0.019  0.079  0.027 -0.032  0.003  0.000
tab_model(modA.14,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 50.22 0.48 49.28 – 51.15 105.26 <0.001
FR c 0.14 0.02 0.11 – 0.17 8.14 <0.001
C1 -7.02 0.93 -8.84 – -5.19 -7.53 <0.001
C2 -20.16 1.61 -23.31 – -17.00 -12.53 <0.001
C3 -3.90 1.30 -6.44 – -1.36 -3.01 0.003
C4 -11.57 1.74 -14.99 – -8.16 -6.65 <0.001
C5 20.69 1.30 18.14 – 23.24 15.90 <0.001
Random Effects
σ2 413.12
τ00 id 16.75
ICC 0.04
N id 1004
Observations 2373
Marginal R2 / Conditional R2 0.168 / 0.200

Q.3: Does familiarity predict naturalness perception, over and above understanding and burger contrasts?

modA.15 <- lmer(Naturalness ~ Familiarity.c + Understanding.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.15)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Familiarity.c + Understanding.c + C1 + C2 + C3 +  
##     C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26595.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2970 -0.6663  0.0044  0.6304  3.5089 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  19.67    4.435  
##  Residual             409.00   20.224  
## Number of obs: 2990, groups:  id, 1004
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       50.44895    0.39577  948.34326 127.472  < 2e-16 ***
## Familiarity.c      0.13681    0.01449 2878.79040   9.444  < 2e-16 ***
## Understanding.c    0.07162    0.01554 2682.42159   4.608 4.25e-06 ***
## C1                -5.20537    0.77976 2783.44649  -6.676 2.96e-11 ***
## C2               -16.98873    1.11389 2673.32650 -15.252  < 2e-16 ***
## C3                -3.90280    1.14672 2662.97759  -3.403 0.000675 ***
## C4               -10.97047    1.30201 2708.18348  -8.426  < 2e-16 ***
## C5                21.17874    1.29694 2668.53375  16.330  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Fmlrt. Undrs. C1     C2     C3     C4    
## Familirty.c  0.000                                          
## Undrstndng.  0.000 -0.495                                   
## C1          -0.013  0.201  0.062                            
## C2          -0.007  0.049  0.004  0.008                     
## C3           0.019  0.060 -0.004 -0.004  0.004              
## C4           0.010  0.096 -0.016  0.017  0.007 -0.005       
## C5           0.024  0.041  0.029  0.043 -0.023  0.006  0.005
tab_model(modA.15,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 50.45 0.40 49.67 – 51.22 127.47 <0.001
Familiarity c 0.14 0.01 0.11 – 0.17 9.44 <0.001
Understanding c 0.07 0.02 0.04 – 0.10 4.61 <0.001
C1 -5.21 0.78 -6.73 – -3.68 -6.68 <0.001
C2 -16.99 1.11 -19.17 – -14.80 -15.25 <0.001
C3 -3.90 1.15 -6.15 – -1.65 -3.40 0.001
C4 -10.97 1.30 -13.52 – -8.42 -8.43 <0.001
C5 21.18 1.30 18.64 – 23.72 16.33 <0.001
Random Effects
σ2 409.00
τ00 id 19.67
ICC 0.05
N id 1004
Observations 2990
Marginal R2 / Conditional R2 0.237 / 0.272

Risk

Q.1: How do burger contrasts predict risk perception?

modA.16 <- lmer(Risk ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.16)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30939.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.94921 -0.55876  0.01162  0.51048  2.97133 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 329.8    18.16   
##  Residual             455.4    21.34   
## Number of obs: 3319, groups:  id, 1004
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   44.4194     0.6869 1017.0632  64.663  < 2e-16 ***
## C1             5.9265     0.8118 2645.8442   7.300 3.79e-13 ***
## C2             9.4518     1.1967 2620.9392   7.898 4.13e-15 ***
## C3            -7.7368     1.2733 2595.6429  -6.076 1.41e-09 ***
## C4             8.3421     1.4406 2612.5948   5.791 7.84e-09 ***
## C5             2.5476     1.2299 2412.7516   2.071   0.0384 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.044                            
## C2  0.031  0.049                     
## C3  0.013 -0.039  0.006              
## C4  0.005 -0.001  0.004 -0.016       
## C5 -0.065 -0.134  0.129  0.008 -0.007
tab_model(modA.16,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 44.42 0.69 43.07 – 45.77 64.66 <0.001
C1 5.93 0.81 4.33 – 7.52 7.30 <0.001
C2 9.45 1.20 7.11 – 11.80 7.90 <0.001
C3 -7.74 1.27 -10.23 – -5.24 -6.08 <0.001
C4 8.34 1.44 5.52 – 11.17 5.79 <0.001
C5 2.55 1.23 0.14 – 4.96 2.07 0.038
Random Effects
σ2 455.41
τ00 id 329.82
ICC 0.42
N id 1004
Observations 3319
Marginal R2 / Conditional R2 0.035 / 0.440

Q.2: Does naturalness predict risk perception, over and above burger contrasts?

modA.17 <- lmer(Risk ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.17)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27675.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8800 -0.5493  0.0168  0.5278  3.3519 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 247.5    15.73   
##  Residual             419.6    20.49   
## Number of obs: 3004, groups:  id, 1004
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     46.51704    0.62662 1015.11586  74.235  < 2e-16 ***
## Naturalness.c   -0.43977    0.01975 2612.03755 -22.268  < 2e-16 ***
## C1               3.20064    0.81950 2352.40531   3.906 9.66e-05 ***
## C2               0.60365    1.23617 2328.05312   0.488   0.6254    
## C3              -9.67707    1.22582 2320.33685  -7.894 4.46e-15 ***
## C4               2.89680    1.40397 2337.11854   2.063   0.0392 *  
## C5              14.18949    1.43527 2327.72386   9.886  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4    
## Naturlnss.c -0.124                                   
## C1          -0.033  0.197                            
## C2          -0.040  0.276  0.041                     
## C3           0.006  0.077 -0.019  0.023              
## C4          -0.017  0.174  0.032  0.053 -0.002       
## C5           0.049 -0.269 -0.030 -0.105 -0.010 -0.055
tab_model(modA.17,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 46.52 0.63 45.29 – 47.75 74.23 <0.001
Naturalness c -0.44 0.02 -0.48 – -0.40 -22.27 <0.001
C1 3.20 0.82 1.59 – 4.81 3.91 <0.001
C2 0.60 1.24 -1.82 – 3.03 0.49 0.625
C3 -9.68 1.23 -12.08 – -7.27 -7.89 <0.001
C4 2.90 1.40 0.14 – 5.65 2.06 0.039
C5 14.19 1.44 11.38 – 17.00 9.89 <0.001
Random Effects
σ2 419.64
τ00 id 247.53
ICC 0.37
N id 1004
Observations 3004
Marginal R2 / Conditional R2 0.155 / 0.469

Q.3: Does benefit predict risk perception, over and above burger contrasts?

modA.18 <- lmer(Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.18)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27553.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2328 -0.5024  0.0051  0.5075  3.9700 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 414.2    20.35   
##  Residual             353.9    18.81   
## Number of obs: 2993, groups:  id, 1003
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   44.7685     0.7293  941.2526  61.386  < 2e-16 ***
## Benefit.c     -0.4238     0.0173 2805.7194 -24.494  < 2e-16 ***
## C1             3.9575     0.7607 2172.5107   5.203 2.15e-07 ***
## C2             4.9718     1.1186 2156.4956   4.445 9.24e-06 ***
## C3            -4.9123     1.1478 2151.5246  -4.280 1.95e-05 ***
## C4             3.4597     1.3046 2162.5878   2.652  0.00806 ** 
## C5             3.4698     1.2978 2148.3517   2.674  0.00756 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) Bnft.c C1     C2     C3     C4    
## Benefit.c -0.001                                   
## C1        -0.006  0.151                            
## C2        -0.005  0.113  0.001                     
## C3         0.013 -0.098 -0.051 -0.008              
## C4         0.004  0.135  0.018  0.022 -0.032       
## C5         0.013  0.069  0.031 -0.026  0.007 -0.001
tab_model(modA.18,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 44.77 0.73 43.34 – 46.20 61.39 <0.001
Benefit c -0.42 0.02 -0.46 – -0.39 -24.49 <0.001
C1 3.96 0.76 2.47 – 5.45 5.20 <0.001
C2 4.97 1.12 2.78 – 7.17 4.44 <0.001
C3 -4.91 1.15 -7.16 – -2.66 -4.28 <0.001
C4 3.46 1.30 0.90 – 6.02 2.65 0.008
C5 3.47 1.30 0.93 – 6.01 2.67 0.008
Random Effects
σ2 353.87
τ00 id 414.23
ICC 0.54
N id 1003
Observations 2993
Marginal R2 / Conditional R2 0.171 / 0.618

Q.4: Does benefit predict risk perception, over and above naturalness and burger contrasts?

modA.19 <- lmer(Risk ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.19)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 27296.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7009 -0.5023  0.0214  0.5125  3.7111 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 336.5    18.34   
##  Residual             339.2    18.42   
## Number of obs: 2992, groups:  id, 1003
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     45.99534    0.67469  932.84282  68.172  < 2e-16 ***
## Naturalness.c   -0.31493    0.01917 2479.94864 -16.426  < 2e-16 ***
## Benefit.c       -0.32160    0.01758 2911.62821 -18.290  < 2e-16 ***
## C1               2.04713    0.75164 2172.57689   2.724  0.00651 ** 
## C2               0.33157    1.12910 2148.67917   0.294  0.76904    
## C3              -7.11117    1.12747 2165.63425  -6.307 3.43e-10 ***
## C4               0.75027    1.28460 2158.22296   0.584  0.55925    
## C5              10.16559    1.32882 2185.32793   7.650 2.99e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Bnft.c C1     C2     C3     C4    
## Naturlnss.c -0.112                                          
## Benefit.c    0.034 -0.313                                   
## C1          -0.024  0.160  0.091                            
## C2          -0.033  0.256  0.023  0.043                     
## C3           0.000  0.116 -0.128 -0.031  0.021              
## C4          -0.011  0.138  0.083  0.039  0.056 -0.015       
## C5           0.047 -0.304  0.156 -0.019 -0.101 -0.030 -0.042
tab_model(modA.19,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 46.00 0.67 44.67 – 47.32 68.17 <0.001
Naturalness c -0.31 0.02 -0.35 – -0.28 -16.43 <0.001
Benefit c -0.32 0.02 -0.36 – -0.29 -18.29 <0.001
C1 2.05 0.75 0.57 – 3.52 2.72 0.006
C2 0.33 1.13 -1.88 – 2.55 0.29 0.769
C3 -7.11 1.13 -9.32 – -4.90 -6.31 <0.001
C4 0.75 1.28 -1.77 – 3.27 0.58 0.559
C5 10.17 1.33 7.56 – 12.77 7.65 <0.001
Random Effects
σ2 339.15
τ00 id 336.50
ICC 0.50
N id 1003
Observations 2992
Marginal R2 / Conditional R2 0.210 / 0.604

Benefit

Q.1: How do burger contrasts predict perceived benefit?

#How do burger contrasts predict perceived benefit?
modA.20 <- lmer(Ben ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.20)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27808
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3345 -0.4773  0.0739  0.5582  2.6462 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 238.7    15.45   
##  Residual             463.2    21.52   
## Number of obs: 2996, groups:  id, 1003
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   60.3899     0.6270  999.7844  96.314  < 2e-16 ***
## C1            -6.6494     0.8415 2369.0189  -7.901 4.18e-15 ***
## C2            -7.1582     1.2462 2352.7388  -5.744 1.04e-08 ***
## C3             6.3360     1.2802 2351.7235   4.949 7.98e-07 ***
## C4           -10.4003     1.4478 2368.4324  -7.184 9.05e-13 ***
## C5            -4.9473     1.4516 2347.8427  -3.408 0.000665 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4    
## C1 -0.007                            
## C2 -0.006 -0.014                     
## C3  0.016 -0.033  0.002              
## C4  0.006 -0.004  0.005 -0.017       
## C5  0.016  0.023 -0.032  0.010 -0.008
tab_model(modA.20,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.39 0.63 59.16 – 61.62 96.31 <0.001
C1 -6.65 0.84 -8.30 – -5.00 -7.90 <0.001
C2 -7.16 1.25 -9.60 – -4.71 -5.74 <0.001
C3 6.34 1.28 3.83 – 8.85 4.95 <0.001
C4 -10.40 1.45 -13.24 – -7.56 -7.18 <0.001
C5 -4.95 1.45 -7.79 – -2.10 -3.41 0.001
Random Effects
σ2 463.15
τ00 id 238.71
ICC 0.34
N id 1003
Observations 2996
Marginal R2 / Conditional R2 0.044 / 0.369

Q.2: How does risk perception predict benefit, over and above burger contrasts?

#How does risk perception predict benefit, over and above burger contrasts?
modA.21 <- lmer(Ben ~ Risk.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.21)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27337.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5036 -0.4563  0.0628  0.5252  2.9538 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 346.2    18.61   
##  Residual             341.6    18.48   
## Number of obs: 2993, groups:  id, 1003
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   60.47669    0.67817  919.00276  89.176  < 2e-16 ***
## Risk.c        -0.38395    0.01618 2908.99314 -23.728  < 2e-16 ***
## C1            -4.04456    0.74453 2180.61806  -5.432 6.18e-08 ***
## C2            -4.16715    1.09654 2155.51124  -3.800 0.000149 ***
## C3             3.55610    1.12577 2159.60273   3.159 0.001606 ** 
## C4            -7.18956    1.27241 2159.36233  -5.650 1.81e-08 ***
## C5            -2.95722    1.27155 2151.98526  -2.326 0.020128 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr) Risk.c C1     C2     C3     C4    
## Risk.c -0.004                                   
## C1     -0.005 -0.147                            
## C2     -0.004 -0.120  0.002                     
## C3      0.013  0.110 -0.052 -0.011              
## C4      0.005 -0.100  0.012  0.018 -0.030       
## C5      0.014 -0.072  0.032 -0.025  0.005 -0.003
tab_model(modA.21,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.48 0.68 59.15 – 61.81 89.18 <0.001
Risk c -0.38 0.02 -0.42 – -0.35 -23.73 <0.001
C1 -4.04 0.74 -5.50 – -2.58 -5.43 <0.001
C2 -4.17 1.10 -6.32 – -2.02 -3.80 <0.001
C3 3.56 1.13 1.35 – 5.76 3.16 0.002
C4 -7.19 1.27 -9.68 – -4.69 -5.65 <0.001
C5 -2.96 1.27 -5.45 – -0.46 -2.33 0.020
Random Effects
σ2 341.63
τ00 id 346.19
ICC 0.50
N id 1003
Observations 2993
Marginal R2 / Conditional R2 0.179 / 0.592

Q.3: How does risk perception predict benefit, over and above naturalness and burger contrasts?

#How does risk perception predict benefit, over and above naturalness and burger contrasts?
modA.22 <- lmer(Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)

summary(modA.22)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 27219.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0229 -0.4473  0.0688  0.5333  2.9004 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 335.5    18.32   
##  Residual             328.0    18.11   
## Number of obs: 2992, groups:  id, 1003
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.62620    0.67139  945.55596  88.810  < 2e-16 ***
## Naturalness.c    0.20812    0.01934 2361.07102  10.759  < 2e-16 ***
## Risk.c          -0.31577    0.01712 2894.21391 -18.442  < 2e-16 ***
## C1              -2.83392    0.73888 2181.20842  -3.835 0.000129 ***
## C2              -1.20861    1.11100 2153.27043  -1.088 0.276778    
## C3               5.14392    1.11304 2170.29747   4.621 4.03e-06 ***
## C4              -5.19257    1.26076 2160.50132  -4.119 3.96e-05 ***
## C5              -7.41943    1.31360 2172.28671  -5.648 1.83e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c C1     C2     C3     C4    
## Naturlnss.c -0.116                                          
## Risk.c      -0.047  0.375                                   
## C1          -0.023  0.155 -0.076                            
## C2          -0.033  0.252 -0.013  0.042                     
## C3          -0.003  0.131  0.150 -0.031  0.022              
## C4          -0.012  0.147 -0.037  0.035  0.054 -0.010       
## C5           0.049 -0.316 -0.182 -0.019 -0.102 -0.037 -0.049
tab_model(modA.22,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.63 0.67 58.31 – 60.94 88.81 <0.001
Naturalness c 0.21 0.02 0.17 – 0.25 10.76 <0.001
Risk c -0.32 0.02 -0.35 – -0.28 -18.44 <0.001
C1 -2.83 0.74 -4.28 – -1.39 -3.84 <0.001
C2 -1.21 1.11 -3.39 – 0.97 -1.09 0.277
C3 5.14 1.11 2.96 – 7.33 4.62 <0.001
C4 -5.19 1.26 -7.66 – -2.72 -4.12 <0.001
C5 -7.42 1.31 -10.00 – -4.84 -5.65 <0.001
Random Effects
σ2 328.04
τ00 id 335.47
ICC 0.51
N id 1003
Observations 2992
Marginal R2 / Conditional R2 0.197 / 0.603

Moderators on Support

#Center moderator variables 

# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).
describe(L$Dem_Age)
## L$Dem_Age 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     5922      108       66        1    42.08    17.24       21       23 
##      .25      .50      .75      .90      .95 
##       30       40       53       65       70 
## 
## lowest : 13 18 19 20 21, highest: 78 79 81 82 83
describe(L$ATNS_Score)
## L$ATNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6012       18      313        1    62.48    19.38     34.2     42.4 
##      .25      .50      .75      .90      .95 
##     51.2     62.0     73.4     84.4     94.8 
## 
## lowest :   0.0   1.0   2.4   3.6   7.2, highest:  98.8  99.2  99.6  99.8 100.0
describe(L$AW_Score)
## L$AW_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6006       24      172    0.995    70.53     27.4     25.0     39.5 
##      .25      .50      .75      .90      .95 
##     52.0     73.5     92.5    100.0    100.0 
## 
## lowest :   0.0   1.0   2.0   2.5   3.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(L$CNS_Score)
## L$CNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6012       18      240        1    57.53    12.96     40.0     45.0 
##      .25      .50      .75      .90      .95 
##     50.6     56.6     61.8     71.8     80.2 
## 
## lowest :  18.0  20.0  21.8  22.2  22.6, highest:  98.0  98.8  99.6  99.8 100.0
describe(L$CCBelief_Score)
## L$CCBelief_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6006       24      275    0.997    72.51    25.71    31.75    44.75 
##      .25      .50      .75      .90      .95 
##    56.00    75.25    93.25   100.00   100.00 
## 
## lowest :   0.00   0.50   0.75   1.00   1.25, highest:  99.00  99.25  99.50  99.75 100.00
describe(L$DS_Score)
## L$DS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6006       24      237        1    57.55    23.19    20.67    32.67 
##      .25      .50      .75      .90      .95 
##    45.33    58.67    67.67    86.00    96.00 
## 
## lowest :   0.0000000   0.6666667   1.6666667   2.6666667   3.6666667
## highest:  98.0000000  98.3333333  99.3333333  99.6666667 100.0000000
describe(L$Collectivism_Score)
## L$Collectivism_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6018       12      292        1    66.53    23.13    30.25    40.00 
##      .25      .50      .75      .90      .95 
##    52.25    66.75    81.75    94.00   100.00 
## 
## lowest :   0.00   1.25   7.00   9.50  10.50, highest:  99.00  99.25  99.50  99.75 100.00
describe(L$Individualism_Score)
## L$Individualism_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6012       18      250    0.999    73.77    20.34    45.50    51.00 
##      .25      .50      .75      .90      .95 
##    60.50    75.00    88.00    98.75   100.00 
## 
## lowest :   0.00  11.50  22.75  25.00  27.75, highest:  99.00  99.25  99.50  99.75 100.00
describe(L$Ideology)  
## L$Ideology 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6018       12       14    0.949    1.785    1.154     -0.5      0.5 
##      .25      .50      .75      .90      .95 
##      1.5      2.0      2.5      3.0      3.5 
## 
## lowest : -1.0 -0.5  0.0  0.5  1.0, highest:  3.5  4.0  4.5  5.0  6.0
##                                                                             
## Value       -1.0  -0.5   0.0   0.5   1.0   1.5   2.0   2.5   3.0   3.5   4.0
## Frequency    150   162   210   480   474   852  2142   756   312   294    84
## Proportion 0.025 0.027 0.035 0.080 0.079 0.142 0.356 0.126 0.052 0.049 0.014
##                             
## Value        4.5   5.0   6.0
## Frequency     36    54    12
## Proportion 0.006 0.009 0.002
L$Age.c <- L$Dem_Age- 42.08
L$ATNS_Score.c <- L$ATNS_Score - 62.48
L$AW_Score.c <- L$AW_Score - 70.53
L$CNS_Score.c <- L$CNS_Score - 57.53
L$CCBelief_Score.c <- L$CCBelief_Score - 72.51
L$DS_Score.c <- L$DS_Score - 57.55
L$Collectivism_Score.c <- L$Collectivism_Score - 66.53
L$Individualism_Score.c <- L$Individualism_Score - 73.77
L$Ideology.c <- L$Ideology - 2.956

Age

Q.1 How does age predict support, over and above burger contrasts?

modA.55 <- lmer(Behav ~ Age.c + C1 + C2 + C3 + C4 + C5 + Age.c*C1 + Age.c*C2 + Age.c*C3 + Age.c*C4 + Age.c*C5 + (1|id), data = L)

summary(modA.55)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Age.c + C1 + C2 + C3 + C4 + C5 + Age.c * C1 + Age.c *  
##     C2 + Age.c * C3 + Age.c * C4 + Age.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27678.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9664 -0.4093  0.0473  0.4309  3.4142 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 428.8    20.71   
##  Residual             420.7    20.51   
## Number of obs: 2964, groups:  id, 986
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   56.44522    0.76522  982.04160  73.764  < 2e-16 ***
## Age.c         -0.35510    0.05063  993.17374  -7.014 4.29e-12 ***
## C1            -6.49084    0.80080 2167.79336  -8.105 8.69e-16 ***
## C2            -5.98785    1.22282 2258.69778  -4.897 1.04e-06 ***
## C3             5.18727    1.27292 2307.02771   4.075 4.76e-05 ***
## C4             0.43227    1.40950 2258.97827   0.307 0.759113    
## C5            -5.09932    1.43262 2279.79170  -3.559 0.000379 ***
## Age.c:C1      -0.27957    0.05347 2176.81886  -5.229 1.87e-07 ***
## Age.c:C2      -0.11679    0.08246 2283.91303  -1.416 0.156802    
## Age.c:C3      -0.12044    0.08564 2338.11895  -1.406 0.159753    
## Age.c:C4       0.41896    0.09311 2274.48879   4.500 7.15e-06 ***
## Age.c:C5      -0.14262    0.09551 2285.28739  -1.493 0.135545    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) Age.c  C1     C2     C3     C4     C5     Ag.:C1 Ag.:C2 Ag.:C3
## Age.c     0.008                                                               
## C1       -0.002  0.011                                                        
## C2       -0.020 -0.006  0.003                                                 
## C3       -0.007 -0.008 -0.058  0.027                                          
## C4       -0.017 -0.012 -0.067  0.050 -0.002                                   
## C5       -0.011 -0.002  0.069 -0.034  0.064  0.072                            
## Age.c:C1  0.011  0.003  0.015 -0.014  0.003  0.012 -0.006                     
## Age.c:C2 -0.006 -0.019 -0.014  0.045 -0.003  0.010 -0.012  0.010              
## Age.c:C3 -0.008 -0.003  0.002 -0.002  0.005  0.021  0.006 -0.085  0.029       
## Age.c:C4 -0.012 -0.030  0.012  0.009  0.020  0.031  0.013 -0.049  0.052  0.026
## Age.c:C5 -0.001 -0.017 -0.006 -0.012  0.006  0.013  0.053  0.056 -0.030  0.063
##          Ag.:C4
## Age.c          
## C1             
## C2             
## C3             
## C4             
## C5             
## Age.c:C1       
## Age.c:C2       
## Age.c:C3       
## Age.c:C4       
## Age.c:C5  0.080
tab_model(modA.55,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.45 0.77 54.94 – 57.95 73.76 <0.001
Age c -0.36 0.05 -0.45 – -0.26 -7.01 <0.001
C1 -6.49 0.80 -8.06 – -4.92 -8.11 <0.001
C2 -5.99 1.22 -8.39 – -3.59 -4.90 <0.001
C3 5.19 1.27 2.69 – 7.68 4.08 <0.001
C4 0.43 1.41 -2.33 – 3.20 0.31 0.759
C5 -5.10 1.43 -7.91 – -2.29 -3.56 <0.001
Age c * C1 -0.28 0.05 -0.38 – -0.17 -5.23 <0.001
Age c * C2 -0.12 0.08 -0.28 – 0.04 -1.42 0.157
Age c * C3 -0.12 0.09 -0.29 – 0.05 -1.41 0.160
Age c * C4 0.42 0.09 0.24 – 0.60 4.50 <0.001
Age c * C5 -0.14 0.10 -0.33 – 0.04 -1.49 0.136
Random Effects
σ2 420.71
τ00 id 428.82
ICC 0.50
N id 986
Observations 2964
Marginal R2 / Conditional R2 0.061 / 0.535

Q.2 How does naturalness predict support, over and above burger contrasts and age?

modA.56 <- lmer(Behav ~ Age.c + Naturalness.c + C1 + C2 + C3 + C4 + C5 + Age.c*C1 + Age.c*C2 + Age.c*C3 + Age.c*C4 + Age.c*C5 + Naturalness.c*Age.c + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.56)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Age.c + Naturalness.c + C1 + C2 + C3 + C4 + C5 + Age.c *  
##     C1 + Age.c * C2 + Age.c * C3 + Age.c * C4 + Age.c * C5 +  
##     Naturalness.c * Age.c + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 24712.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4621 -0.4423  0.0390  0.4996  3.8833 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 380.7    19.51   
##  Residual             401.5    20.04   
## Number of obs: 2656, groups:  id, 986
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.488e+01  7.566e-01  1.071e+03  72.531  < 2e-16 ***
## Age.c               -4.096e-01  5.000e-02  1.078e+03  -8.192 7.19e-16 ***
## Naturalness.c        3.674e-01  2.171e-02  2.105e+03  16.927  < 2e-16 ***
## C1                  -3.001e+00  9.082e-01  1.912e+03  -3.305 0.000968 ***
## C2                   6.458e-01  1.258e+00  1.952e+03   0.513 0.607712    
## C3                   7.129e+00  1.399e+00  2.031e+03   5.094 3.83e-07 ***
## C4                   5.207e+00  1.897e+00  2.057e+03   2.744 0.006121 ** 
## C5                  -1.229e+01  1.466e+00  1.965e+03  -8.384  < 2e-16 ***
## Age.c:C1            -8.372e-02  6.030e-02  1.914e+03  -1.388 0.165179    
## Age.c:C2             1.320e-02  8.412e-02  1.946e+03   0.157 0.875327    
## Age.c:C3            -4.563e-02  9.286e-02  2.053e+03  -0.491 0.623203    
## Age.c:C4             5.914e-01  1.236e-01  2.068e+03   4.783 1.85e-06 ***
## Age.c:C5            -2.225e-01  9.637e-02  1.959e+03  -2.309 0.021032 *  
## Age.c:Naturalness.c  5.755e-03  1.436e-03  2.144e+03   4.009 6.30e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.56,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.88 0.76 53.40 – 56.36 72.53 <0.001
Age c -0.41 0.05 -0.51 – -0.31 -8.19 <0.001
Naturalness c 0.37 0.02 0.32 – 0.41 16.93 <0.001
C1 -3.00 0.91 -4.78 – -1.22 -3.30 0.001
C2 0.65 1.26 -1.82 – 3.11 0.51 0.608
C3 7.13 1.40 4.38 – 9.87 5.09 <0.001
C4 5.21 1.90 1.49 – 8.93 2.74 0.006
C5 -12.29 1.47 -15.17 – -9.42 -8.38 <0.001
Age c * C1 -0.08 0.06 -0.20 – 0.03 -1.39 0.165
Age c * C2 0.01 0.08 -0.15 – 0.18 0.16 0.875
Age c * C3 -0.05 0.09 -0.23 – 0.14 -0.49 0.623
Age c * C4 0.59 0.12 0.35 – 0.83 4.78 <0.001
Age c * C5 -0.22 0.10 -0.41 – -0.03 -2.31 0.021
Age c * Naturalness c 0.01 0.00 0.00 – 0.01 4.01 <0.001
Random Effects
σ2 401.47
τ00 id 380.67
ICC 0.49
N id 986
Observations 2656
Marginal R2 / Conditional R2 0.139 / 0.558

Q3. Age predict naturalness?

modA.58 <- lmer(Naturalness ~ Age.c + C1 + C2 + C3 + C4 + C5 + Age.c*C1 + Age.c*C2 + Age.c*C3 + Age.c*C4 + Age.c*C5  + (1|id), data = L)

summary(modA.58)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Age.c + C1 + C2 + C3 + C4 + C5 + Age.c * C1 + Age.c *  
##     C2 + Age.c * C3 + Age.c * C4 + Age.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26450.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0119 -0.6569 -0.0309  0.6294  3.2144 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)   0.7477  0.8647 
##  Residual             449.7171 21.2065 
## Number of obs: 2956, groups:  id, 986
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   50.29756    0.39168  981.23577 128.416  < 2e-16 ***
## Age.c          0.06095    0.02588  986.91658   2.356 0.018689 *  
## C1            -8.03612    0.78181 2740.88617 -10.279  < 2e-16 ***
## C2           -18.20811    1.15913 2719.70113 -15.708  < 2e-16 ***
## C3            -4.50731    1.19361 2711.61493  -3.776 0.000163 ***
## C4           -12.63336    1.34517 2740.28219  -9.392  < 2e-16 ***
## C5            20.13145    1.35425 2704.53037  14.865  < 2e-16 ***
## Age.c:C1      -0.37879    0.05165 2763.03296  -7.333 2.94e-13 ***
## Age.c:C2      -0.13951    0.07789 2742.18721  -1.791 0.073396 .  
## Age.c:C3      -0.09625    0.07924 2694.21912  -1.215 0.224579    
## Age.c:C4      -0.18365    0.08627 2720.50610  -2.129 0.033362 *  
## Age.c:C5      -0.01252    0.09006 2704.64279  -0.139 0.889405    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) Age.c  C1     C2     C3     C4     C5     Ag.:C1 Ag.:C2 Ag.:C3
## Age.c     0.004                                                               
## C1       -0.011  0.034                                                        
## C2       -0.012 -0.006 -0.012                                                 
## C3        0.024  0.009 -0.024  0.000                                          
## C4        0.009  0.015 -0.009  0.000 -0.009                                   
## C5        0.028  0.003  0.028 -0.029  0.000  0.000                            
## Age.c:C1  0.034  0.012  0.004 -0.006 -0.010 -0.015  0.003                     
## Age.c:C2 -0.005 -0.001 -0.006  0.033  0.000  0.000 -0.003 -0.001              
## Age.c:C3  0.009  0.057 -0.009  0.000 -0.020 -0.014  0.000 -0.057  0.000       
## Age.c:C4  0.015  0.015 -0.015  0.000 -0.015 -0.042  0.000 -0.015  0.000 -0.015
## Age.c:C5  0.003  0.023  0.003 -0.003  0.000  0.000  0.043  0.023 -0.023  0.000
##          Ag.:C4
## Age.c          
## C1             
## C2             
## C3             
## C4             
## C5             
## Age.c:C1       
## Age.c:C2       
## Age.c:C3       
## Age.c:C4       
## Age.c:C5  0.000
tab_model(modA.58,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 50.30 0.39 49.53 – 51.07 128.42 <0.001
Age c 0.06 0.03 0.01 – 0.11 2.36 0.019
C1 -8.04 0.78 -9.57 – -6.50 -10.28 <0.001
C2 -18.21 1.16 -20.48 – -15.94 -15.71 <0.001
C3 -4.51 1.19 -6.85 – -2.17 -3.78 <0.001
C4 -12.63 1.35 -15.27 – -10.00 -9.39 <0.001
C5 20.13 1.35 17.48 – 22.79 14.87 <0.001
Age c * C1 -0.38 0.05 -0.48 – -0.28 -7.33 <0.001
Age c * C2 -0.14 0.08 -0.29 – 0.01 -1.79 0.073
Age c * C3 -0.10 0.08 -0.25 – 0.06 -1.21 0.225
Age c * C4 -0.18 0.09 -0.35 – -0.01 -2.13 0.033
Age c * C5 -0.01 0.09 -0.19 – 0.16 -0.14 0.889
Random Effects
σ2 449.72
τ00 id 0.75
ICC 0.00
N id 986
Observations 2956
Marginal R2 / Conditional R2 0.205 / 0.206

Animal Welfare

Q.1 How does concern for animal welfare predict support, over and above burger contrasts?
modA.25 <- lmer(Behav ~ AW_Score.c + C1 + C2 + C3 + C4 + C5 + AW_Score.c*C1 + AW_Score.c*C2 + AW_Score.c*C3 + AW_Score.c*C4 + AW_Score.c*C5 + (1|id), data = L)

summary(modA.25)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ AW_Score.c + C1 + C2 + C3 + C4 + C5 + AW_Score.c * C1 +  
##     AW_Score.c * C2 + AW_Score.c * C3 + AW_Score.c * C4 + AW_Score.c *  
##     C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28031.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9820 -0.4159  0.0569  0.4614  3.5325 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 408.9    20.22   
##  Residual             420.5    20.51   
## Number of obs: 3005, groups:  id, 1001
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    5.661e+01  7.464e-01  9.933e+02  75.835  < 2e-16 ***
## AW_Score.c     2.669e-01  3.051e-02  1.004e+03   8.747  < 2e-16 ***
## C1            -6.656e+00  7.943e-01  2.198e+03  -8.379  < 2e-16 ***
## C2            -6.424e+00  1.213e+00  2.294e+03  -5.297 1.29e-07 ***
## C3             4.781e+00  1.262e+00  2.346e+03   3.790 0.000155 ***
## C4             4.394e-01  1.401e+00  2.295e+03   0.314 0.753787    
## C5            -5.402e+00  1.420e+00  2.319e+03  -3.804 0.000146 ***
## AW_Score.c:C1  6.134e-03  3.263e-02  2.199e+03   0.188 0.850918    
## AW_Score.c:C2 -1.154e-01  5.008e-02  2.322e+03  -2.304 0.021302 *  
## AW_Score.c:C3  2.679e-01  5.255e-02  2.384e+03   5.098 3.71e-07 ***
## AW_Score.c:C4 -3.476e-01  5.808e-02  2.305e+03  -5.986 2.49e-09 ***
## AW_Score.c:C5 -7.985e-02  5.767e-02  2.314e+03  -1.384 0.166353    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) AW_Sc. C1     C2     C3     C4     C5     AW_S.:C1 AW_S.:C2
## AW_Score.c   0.002                                                            
## C1          -0.003  0.006                                                     
## C2          -0.020 -0.004  0.006                                              
## C3          -0.008  0.000 -0.054  0.027                                       
## C4          -0.017 -0.022 -0.063  0.050 -0.002                                
## C5          -0.014 -0.013  0.065 -0.027  0.063  0.073                         
## AW_Scr.c:C1  0.006 -0.011  0.006  0.003 -0.007  0.041 -0.010                  
## AW_Scr.c:C2 -0.004 -0.017  0.004  0.022 -0.001  0.013  0.029  0.016           
## AW_Scr.c:C3  0.000 -0.012 -0.008 -0.001 -0.012  0.045  0.006 -0.052    0.028  
## AW_Scr.c:C4 -0.022 -0.009  0.041  0.013  0.045 -0.016  0.007 -0.073    0.053  
## AW_Scr.c:C5 -0.013 -0.018 -0.011  0.028  0.006  0.007  0.026  0.062   -0.024  
##             AW_S.:C3 AW_S.:C4
## AW_Score.c                   
## C1                           
## C2                           
## C3                           
## C4                           
## C5                           
## AW_Scr.c:C1                  
## AW_Scr.c:C2                  
## AW_Scr.c:C3                  
## AW_Scr.c:C4 -0.030           
## AW_Scr.c:C5  0.057    0.070
tab_model(modA.25,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.61 0.75 55.14 – 58.07 75.83 <0.001
AW Score c 0.27 0.03 0.21 – 0.33 8.75 <0.001
C1 -6.66 0.79 -8.21 – -5.10 -8.38 <0.001
C2 -6.42 1.21 -8.80 – -4.05 -5.30 <0.001
C3 4.78 1.26 2.31 – 7.25 3.79 <0.001
C4 0.44 1.40 -2.31 – 3.19 0.31 0.754
C5 -5.40 1.42 -8.19 – -2.62 -3.80 <0.001
AW Score c * C1 0.01 0.03 -0.06 – 0.07 0.19 0.851
AW Score c * C2 -0.12 0.05 -0.21 – -0.02 -2.30 0.021
AW Score c * C3 0.27 0.05 0.16 – 0.37 5.10 <0.001
AW Score c * C4 -0.35 0.06 -0.46 – -0.23 -5.99 <0.001
AW Score c * C5 -0.08 0.06 -0.19 – 0.03 -1.38 0.166
Random Effects
σ2 420.52
τ00 id 408.93
ICC 0.49
N id 1001
Observations 3005
Marginal R2 / Conditional R2 0.082 / 0.535
Q.2 Does animal welfare depend on naturalness in predicting support, over and above burger contrasts?
modA.26 <- lmer(Behav ~ AW_Score.c + Naturalness.c + AW_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + AW_Score.c*C1 + AW_Score.c*C2 + AW_Score.c*C3 + AW_Score.c*C4 + AW_Score.c*C5 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.26)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ AW_Score.c + Naturalness.c + AW_Score.c * Naturalness.c +  
##     C1 + C2 + C3 + C4 + C5 + AW_Score.c * C1 + AW_Score.c * C2 +  
##     AW_Score.c * C3 + AW_Score.c * C4 + AW_Score.c * C5 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 25075.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6831 -0.4372  0.0584  0.5032  3.1340 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 369.2    19.21   
##  Residual             404.6    20.11   
## Number of obs: 2695, groups:  id, 1001
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               5.503e+01  7.448e-01  1.090e+03  73.890  < 2e-16 ***
## AW_Score.c                2.548e-01  3.047e-02  1.101e+03   8.363  < 2e-16 ***
## Naturalness.c             3.779e-01  2.170e-02  2.183e+03  17.410  < 2e-16 ***
## C1                       -3.426e+00  9.029e-01  1.947e+03  -3.794 0.000153 ***
## C2                        2.625e-01  1.254e+00  1.988e+03   0.209 0.834211    
## C3                        6.773e+00  1.396e+00  2.073e+03   4.851 1.32e-06 ***
## C4                        5.272e+00  1.892e+00  2.097e+03   2.786 0.005388 ** 
## C5                       -1.274e+01  1.456e+00  2.001e+03  -8.754  < 2e-16 ***
## AW_Score.c:Naturalness.c -2.841e-04  8.072e-04  2.272e+03  -0.352 0.724921    
## AW_Score.c:C1            -1.352e-02  3.776e-02  1.960e+03  -0.358 0.720299    
## AW_Score.c:C2            -3.607e-02  5.130e-02  2.024e+03  -0.703 0.482067    
## AW_Score.c:C3             2.264e-01  5.811e-02  2.101e+03   3.896 0.000101 ***
## AW_Score.c:C4            -3.001e-01  7.819e-02  2.137e+03  -3.838 0.000128 ***
## AW_Score.c:C5            -1.239e-01  5.876e-02  1.985e+03  -2.109 0.035111 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.26,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 55.03 0.74 53.57 – 56.49 73.89 <0.001
AW Score c 0.25 0.03 0.20 – 0.31 8.36 <0.001
Naturalness c 0.38 0.02 0.34 – 0.42 17.41 <0.001
C1 -3.43 0.90 -5.20 – -1.66 -3.79 <0.001
C2 0.26 1.25 -2.20 – 2.72 0.21 0.834
C3 6.77 1.40 4.04 – 9.51 4.85 <0.001
C4 5.27 1.89 1.56 – 8.98 2.79 0.005
C5 -12.74 1.46 -15.60 – -9.89 -8.75 <0.001
AW Score c * Naturalness
c
-0.00 0.00 -0.00 – 0.00 -0.35 0.725
AW Score c * C1 -0.01 0.04 -0.09 – 0.06 -0.36 0.720
AW Score c * C2 -0.04 0.05 -0.14 – 0.06 -0.70 0.482
AW Score c * C3 0.23 0.06 0.11 – 0.34 3.90 <0.001
AW Score c * C4 -0.30 0.08 -0.45 – -0.15 -3.84 <0.001
AW Score c * C5 -0.12 0.06 -0.24 – -0.01 -2.11 0.035
Random Effects
σ2 404.55
τ00 id 369.18
ICC 0.48
N id 1001
Observations 2695
Marginal R2 / Conditional R2 0.149 / 0.555

Aversion to Tampering with Nature

Q.1 How does aversion to tampering with nature predict support, over and above burger contrasts?

modA.23 <- lmer(Behav ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + (1|id), data = L)

summary(modA.23)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + ATNS_Score.c *  
##     C1 + ATNS_Score.c * C2 + ATNS_Score.c * C3 + ATNS_Score.c *  
##     C4 + ATNS_Score.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28124.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5218 -0.3930  0.0439  0.4277  3.3857 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 456.5    21.37   
##  Residual             419.8    20.49   
## Number of obs: 3007, groups:  id, 1002
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       56.51938    0.77734  998.95409  72.709  < 2e-16 ***
## ATNS_Score.c       0.02073    0.04486 1006.01573   0.462 0.644066    
## C1                -6.51128    0.79495 2188.56906  -8.191 4.36e-16 ***
## C2                -6.55557    1.21602 2277.88893  -5.391 7.73e-08 ***
## C3                 5.16168    1.26371 2325.12260   4.085 4.57e-05 ***
## C4                 0.19965    1.40048 2277.86144   0.143 0.886651    
## C5                -5.01140    1.42432 2300.31014  -3.518 0.000443 ***
## ATNS_Score.c:C1   -0.28971    0.04638 2207.30709  -6.247 5.01e-10 ***
## ATNS_Score.c:C2   -0.22090    0.07142 2287.78167  -3.093 0.002006 ** 
## ATNS_Score.c:C3    0.05207    0.07430 2360.48116   0.701 0.483489    
## ATNS_Score.c:C4    0.14716    0.08090 2272.15851   1.819 0.069050 .  
## ATNS_Score.c:C5   -0.25028    0.08229 2319.94653  -3.041 0.002381 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) ATNS_Sc. C1     C2     C3     C4     C5     ATNS_S.:C1
## ATNS_Scor.c  0.002                                                       
## C1          -0.002 -0.004                                                
## C2          -0.020  0.006    0.005                                       
## C3          -0.008 -0.005   -0.057  0.027                                
## C4          -0.018 -0.011   -0.064  0.052  0.000                         
## C5          -0.013 -0.021    0.068 -0.031  0.065  0.075                  
## ATNS_Sc.:C1 -0.004 -0.004    0.008  0.026  0.006  0.014 -0.027           
## ATNS_Sc.:C2  0.006 -0.010    0.026 -0.002  0.000 -0.004  0.046  0.033    
## ATNS_Sc.:C3 -0.005 -0.008    0.006  0.000 -0.009  0.021  0.003 -0.067    
## ATNS_Sc.:C4 -0.011 -0.017    0.014 -0.004  0.020  0.008  0.005 -0.058    
## ATNS_Sc.:C5 -0.022 -0.020   -0.027  0.046  0.003  0.006 -0.017  0.060    
##             ATNS_S.:C2 ATNS_S.:C3 ATNS_S.:C4
## ATNS_Scor.c                                 
## C1                                          
## C2                                          
## C3                                          
## C4                                          
## C5                                          
## ATNS_Sc.:C1                                 
## ATNS_Sc.:C2                                 
## ATNS_Sc.:C3  0.029                          
## ATNS_Sc.:C4  0.052      0.013               
## ATNS_Sc.:C5 -0.010      0.077      0.077
tab_model(modA.23,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.52 0.78 55.00 – 58.04 72.71 <0.001
ATNS Score c 0.02 0.04 -0.07 – 0.11 0.46 0.644
C1 -6.51 0.79 -8.07 – -4.95 -8.19 <0.001
C2 -6.56 1.22 -8.94 – -4.17 -5.39 <0.001
C3 5.16 1.26 2.68 – 7.64 4.08 <0.001
C4 0.20 1.40 -2.55 – 2.95 0.14 0.887
C5 -5.01 1.42 -7.80 – -2.22 -3.52 <0.001
ATNS Score c * C1 -0.29 0.05 -0.38 – -0.20 -6.25 <0.001
ATNS Score c * C2 -0.22 0.07 -0.36 – -0.08 -3.09 0.002
ATNS Score c * C3 0.05 0.07 -0.09 – 0.20 0.70 0.483
ATNS Score c * C4 0.15 0.08 -0.01 – 0.31 1.82 0.069
ATNS Score c * C5 -0.25 0.08 -0.41 – -0.09 -3.04 0.002
Random Effects
σ2 419.85
τ00 id 456.55
ICC 0.52
N id 1002
Observations 3007
Marginal R2 / Conditional R2 0.033 / 0.537

Q.2 Does aversion to tampering with nature depend on naturalness in predicting support, over and above burger contrasts?

modA.24 <- lmer(Behav ~ ATNS_Score.c + Naturalness.c + C1 + C2 + C3 + C4 + C5 + Naturalness.c*ATNS_Score.c + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.24)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ ATNS_Score.c + Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     Naturalness.c * ATNS_Score.c + ATNS_Score.c * C1 + ATNS_Score.c *  
##     C2 + ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c *  
##     C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25127.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8873 -0.4293  0.0546  0.4777  3.0596 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 413.6    20.34   
##  Residual             397.5    19.94   
## Number of obs: 2696, groups:  id, 1002
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 5.497e+01  7.724e-01  1.089e+03  71.171  < 2e-16
## ATNS_Score.c                1.072e-02  4.447e-02  1.085e+03   0.241 0.809493
## Naturalness.c               3.787e-01  2.184e-02  2.130e+03  17.342  < 2e-16
## C1                         -3.166e+00  8.990e-01  1.925e+03  -3.522 0.000438
## C2                          4.718e-01  1.247e+00  1.964e+03   0.378 0.705260
## C3                          7.090e+00  1.390e+00  2.040e+03   5.102 3.66e-07
## C4                          5.310e+00  1.891e+00  2.064e+03   2.808 0.005039
## C5                         -1.261e+01  1.449e+00  1.974e+03  -8.707  < 2e-16
## ATNS_Score.c:Naturalness.c  3.215e-03  1.061e-03  2.135e+03   3.031 0.002471
## ATNS_Score.c:C1            -2.216e-01  5.260e-02  1.936e+03  -4.214 2.63e-05
## ATNS_Score.c:C2             4.177e-03  7.386e-02  1.981e+03   0.057 0.954909
## ATNS_Score.c:C3             3.756e-02  7.975e-02  2.065e+03   0.471 0.637735
## ATNS_Score.c:C4             1.975e-01  1.049e-01  2.058e+03   1.883 0.059809
## ATNS_Score.c:C5            -4.186e-01  8.210e-02  1.991e+03  -5.098 3.75e-07
##                               
## (Intercept)                ***
## ATNS_Score.c                  
## Naturalness.c              ***
## C1                         ***
## C2                            
## C3                         ***
## C4                         ** 
## C5                         ***
## ATNS_Score.c:Naturalness.c ** 
## ATNS_Score.c:C1            ***
## ATNS_Score.c:C2               
## ATNS_Score.c:C3               
## ATNS_Score.c:C4            .  
## ATNS_Score.c:C5            ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.24,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.97 0.77 53.46 – 56.49 71.17 <0.001
ATNS Score c 0.01 0.04 -0.08 – 0.10 0.24 0.809
Naturalness c 0.38 0.02 0.34 – 0.42 17.34 <0.001
C1 -3.17 0.90 -4.93 – -1.40 -3.52 <0.001
C2 0.47 1.25 -1.97 – 2.92 0.38 0.705
C3 7.09 1.39 4.37 – 9.81 5.10 <0.001
C4 5.31 1.89 1.60 – 9.02 2.81 0.005
C5 -12.61 1.45 -15.45 – -9.77 -8.71 <0.001
ATNS Score c *
Naturalness c
0.00 0.00 0.00 – 0.01 3.03 0.002
ATNS Score c * C1 -0.22 0.05 -0.32 – -0.12 -4.21 <0.001
ATNS Score c * C2 0.00 0.07 -0.14 – 0.15 0.06 0.955
ATNS Score c * C3 0.04 0.08 -0.12 – 0.19 0.47 0.638
ATNS Score c * C4 0.20 0.10 -0.01 – 0.40 1.88 0.060
ATNS Score c * C5 -0.42 0.08 -0.58 – -0.26 -5.10 <0.001
Random Effects
σ2 397.46
τ00 id 413.59
ICC 0.51
N id 1002
Observations 2696
Marginal R2 / Conditional R2 0.110 / 0.564

Climate Change Belief

Q.1 How does climate change belief predict support, over and above burger contrasts?
modA.29 <- lmer(Behav ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + (1|id), data = L)

summary(modA.29)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## Behav ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + CCBelief_Score.c *  
##     C1 + CCBelief_Score.c * C2 + CCBelief_Score.c * C3 + CCBelief_Score.c *  
##     C4 + CCBelief_Score.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28002.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3112 -0.4142  0.0688  0.4565  3.4842 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 391.4    19.78   
##  Residual             421.1    20.52   
## Number of obs: 3005, groups:  id, 1001
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)           56.52893    0.73457  994.53161  76.955  < 2e-16 ***
## CCBelief_Score.c       0.32077    0.03148  989.79798  10.191  < 2e-16 ***
## C1                    -6.46715    0.79374 2204.66417  -8.148 6.15e-16 ***
## C2                    -6.34413    1.21279 2302.80453  -5.231 1.84e-07 ***
## C3                     5.01424    1.25983 2357.16564   3.980 7.10e-05 ***
## C4                    -0.06310    1.39741 2305.18428  -0.045 0.963988    
## C5                    -5.42516    1.41970 2330.21733  -3.821 0.000136 ***
## CCBelief_Score.c:C1    0.04844    0.03390 2189.13546   1.429 0.153142    
## CCBelief_Score.c:C2   -0.15864    0.05305 2315.53363  -2.990 0.002818 ** 
## CCBelief_Score.c:C3    0.21620    0.05455 2342.64680   3.964 7.60e-05 ***
## CCBelief_Score.c:C4   -0.39110    0.05883 2297.29214  -6.648 3.71e-11 ***
## CCBelief_Score.c:C5   -0.04432    0.05973 2329.22207  -0.742 0.458191    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CCBl_S. C1     C2     C3     C4     C5     CCB_S.:C1
## CCBlf_Scr.c  0.006                                                     
## C1          -0.002 -0.002                                              
## C2          -0.019 -0.008   0.005                                      
## C3          -0.007 -0.010  -0.055  0.026                               
## C4          -0.018 -0.010  -0.061  0.050  0.000                        
## C5          -0.013 -0.013   0.065 -0.029  0.063  0.072                 
## CCBlf_S.:C1 -0.002 -0.006   0.015 -0.012  0.015  0.010 -0.011          
## CCBlf_S.:C2 -0.009  0.002  -0.012  0.000  0.001  0.008  0.020  0.049   
## CCBlf_S.:C3 -0.010  0.014   0.015  0.000  0.014  0.015  0.015 -0.083   
## CCBlf_S.:C4 -0.010 -0.010   0.009  0.008  0.016  0.034  0.003 -0.051   
## CCBlf_S.:C5 -0.014 -0.009  -0.011  0.020  0.016  0.003  0.033  0.071   
##             CCB_S.:C2 CCB_S.:C3 CCB_S.:C4
## CCBlf_Scr.c                              
## C1                                       
## C2                                       
## C3                                       
## C4                                       
## C5                                       
## CCBlf_S.:C1                              
## CCBlf_S.:C2                              
## CCBlf_S.:C3  0.020                       
## CCBlf_S.:C4  0.048    -0.021             
## CCBlf_S.:C5 -0.030     0.047     0.078
tab_model(modA.29,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.53 0.73 55.09 – 57.97 76.95 <0.001
CCBelief Score c 0.32 0.03 0.26 – 0.38 10.19 <0.001
C1 -6.47 0.79 -8.02 – -4.91 -8.15 <0.001
C2 -6.34 1.21 -8.72 – -3.97 -5.23 <0.001
C3 5.01 1.26 2.54 – 7.48 3.98 <0.001
C4 -0.06 1.40 -2.80 – 2.68 -0.05 0.964
C5 -5.43 1.42 -8.21 – -2.64 -3.82 <0.001
CCBelief Score c * C1 0.05 0.03 -0.02 – 0.11 1.43 0.153
CCBelief Score c * C2 -0.16 0.05 -0.26 – -0.05 -2.99 0.003
CCBelief Score c * C3 0.22 0.05 0.11 – 0.32 3.96 <0.001
CCBelief Score c * C4 -0.39 0.06 -0.51 – -0.28 -6.65 <0.001
CCBelief Score c * C5 -0.04 0.06 -0.16 – 0.07 -0.74 0.458
Random Effects
σ2 421.13
τ00 id 391.39
ICC 0.48
N id 1001
Observations 3005
Marginal R2 / Conditional R2 0.097 / 0.532
Q.2 Does climate change belief depend on perception sof naturalness in predicting support, over and above burger contrasts?
modA.30 <- lmer(Behav ~ CCBelief_Score.c + Naturalness.c + CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.30)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ CCBelief_Score.c + Naturalness.c + CCBelief_Score.c *  
##     Naturalness.c + C1 + C2 + C3 + C4 + C5 + CCBelief_Score.c *  
##     C1 + CCBelief_Score.c * C2 + CCBelief_Score.c * C3 + CCBelief_Score.c *  
##     C4 + CCBelief_Score.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25039.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6866 -0.4357  0.0620  0.5055  3.1245 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 354.1    18.82   
##  Residual             405.2    20.13   
## Number of obs: 2694, groups:  id, 1001
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     5.496e+01  7.344e-01  1.092e+03  74.837
## CCBelief_Score.c                3.083e-01  3.134e-02  1.066e+03   9.836
## Naturalness.c                   3.768e-01  2.182e-02  2.195e+03  17.267
## C1                             -3.252e+00  9.007e-01  1.951e+03  -3.611
## C2                              2.690e-01  1.253e+00  1.994e+03   0.215
## C3                              6.964e+00  1.393e+00  2.082e+03   5.000
## C4                              5.042e+00  1.889e+00  2.109e+03   2.669
## C5                             -1.282e+01  1.458e+00  2.015e+03  -8.789
## CCBelief_Score.c:Naturalness.c -9.168e-05  8.636e-04  2.314e+03  -0.106
## CCBelief_Score.c:C1             4.947e-02  3.887e-02  1.978e+03   1.273
## CCBelief_Score.c:C2            -6.842e-02  5.406e-02  1.999e+03  -1.266
## CCBelief_Score.c:C3             1.621e-01  5.999e-02  2.084e+03   2.703
## CCBelief_Score.c:C4            -3.505e-01  7.825e-02  2.150e+03  -4.479
## CCBelief_Score.c:C5            -1.387e-01  6.028e-02  1.972e+03  -2.301
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c                < 2e-16 ***
## Naturalness.c                   < 2e-16 ***
## C1                             0.000313 ***
## C2                             0.830060    
## C3                             6.23e-07 ***
## C4                             0.007668 ** 
## C5                              < 2e-16 ***
## CCBelief_Score.c:Naturalness.c 0.915462    
## CCBelief_Score.c:C1            0.203243    
## CCBelief_Score.c:C2            0.205775    
## CCBelief_Score.c:C3            0.006930 ** 
## CCBelief_Score.c:C4            7.89e-06 ***
## CCBelief_Score.c:C5            0.021502 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.30,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.96 0.73 53.52 – 56.40 74.84 <0.001
CCBelief Score c 0.31 0.03 0.25 – 0.37 9.84 <0.001
Naturalness c 0.38 0.02 0.33 – 0.42 17.27 <0.001
C1 -3.25 0.90 -5.02 – -1.49 -3.61 <0.001
C2 0.27 1.25 -2.19 – 2.73 0.21 0.830
C3 6.96 1.39 4.23 – 9.70 5.00 <0.001
C4 5.04 1.89 1.34 – 8.75 2.67 0.008
C5 -12.82 1.46 -15.68 – -9.96 -8.79 <0.001
CCBelief Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -0.11 0.915
CCBelief Score c * C1 0.05 0.04 -0.03 – 0.13 1.27 0.203
CCBelief Score c * C2 -0.07 0.05 -0.17 – 0.04 -1.27 0.206
CCBelief Score c * C3 0.16 0.06 0.04 – 0.28 2.70 0.007
CCBelief Score c * C4 -0.35 0.08 -0.50 – -0.20 -4.48 <0.001
CCBelief Score c * C5 -0.14 0.06 -0.26 – -0.02 -2.30 0.021
Random Effects
σ2 405.21
τ00 id 354.08
ICC 0.47
N id 1001
Observations 2694
Marginal R2 / Conditional R2 0.164 / 0.554

Collectivism

Q.1 How does collectivism predict support, over and above burger contrasts?
modA.33 <- lmer(Behav ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 +(1|id), data = L)

summary(modA.33)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## Behav ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + Collectivism_Score.c *  
##     C1 + Collectivism_Score.c * C2 + Collectivism_Score.c * C3 +  
##     Collectivism_Score.c * C4 + Collectivism_Score.c * C5 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 28101.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4490 -0.4202  0.0486  0.4310  3.5493 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 414.7    20.36   
##  Residual             428.5    20.70   
## Number of obs: 3007, groups:  id, 1002
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               56.51681    0.75167 1001.72085  75.189  < 2e-16 ***
## Collectivism_Score.c       0.30187    0.03683 1005.18595   8.196 7.55e-16 ***
## C1                        -6.52985    0.80108 2206.93271  -8.151 5.96e-16 ***
## C2                        -6.22912    1.22353 2301.14728  -5.091 3.85e-07 ***
## C3                         5.04230    1.27209 2352.75612   3.964 7.60e-05 ***
## C4                         0.33719    1.41119 2304.51279   0.239 0.811172    
## C5                        -5.20822    1.43266 2327.49337  -3.635 0.000284 ***
## Collectivism_Score.c:C1   -0.13331    0.03921 2197.11612  -3.400 0.000686 ***
## Collectivism_Score.c:C2   -0.06726    0.06120 2326.13188  -1.099 0.271845    
## Collectivism_Score.c:C3    0.01090    0.06368 2370.51535   0.171 0.864155    
## Collectivism_Score.c:C4    0.13297    0.06755 2284.97843   1.969 0.049114 *  
## Collectivism_Score.c:C5   -0.08155    0.06966 2325.62037  -1.171 0.241866    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Cll_S. C1     C2     C3     C4     C5     C_S.:C1 C_S.:C2
## Cllctvsm_S.  0.005                                                          
## C1          -0.003 -0.002                                                   
## C2          -0.019 -0.003  0.005                                            
## C3          -0.007 -0.010 -0.056  0.027                                     
## C4          -0.018 -0.007 -0.062  0.050  0.000                              
## C5          -0.014 -0.013  0.065 -0.029  0.063  0.073                       
## Cllct_S.:C1 -0.003 -0.004  0.014 -0.001  0.014  0.000 -0.017                
## Cllct_S.:C2 -0.003 -0.010 -0.001 -0.011 -0.004  0.000  0.023  0.034         
## Cllct_S.:C3 -0.010  0.012  0.014 -0.004  0.001  0.010  0.009 -0.092   0.035 
## Cllct_S.:C4 -0.007 -0.035  0.000  0.000  0.010  0.040  0.009 -0.021   0.051 
## Cllct_S.:C5 -0.014 -0.025 -0.018  0.022  0.008  0.009  0.017  0.049  -0.004 
##             C_S.:C3 C_S.:C4
## Cllctvsm_S.                
## C1                         
## C2                         
## C3                         
## C4                         
## C5                         
## Cllct_S.:C1                
## Cllct_S.:C2                
## Cllct_S.:C3                
## Cllct_S.:C4  0.029         
## Cllct_S.:C5  0.061   0.080
tab_model(modA.33,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.52 0.75 55.04 – 57.99 75.19 <0.001
Collectivism Score c 0.30 0.04 0.23 – 0.37 8.20 <0.001
C1 -6.53 0.80 -8.10 – -4.96 -8.15 <0.001
C2 -6.23 1.22 -8.63 – -3.83 -5.09 <0.001
C3 5.04 1.27 2.55 – 7.54 3.96 <0.001
C4 0.34 1.41 -2.43 – 3.10 0.24 0.811
C5 -5.21 1.43 -8.02 – -2.40 -3.64 <0.001
Collectivism Score c * C1 -0.13 0.04 -0.21 – -0.06 -3.40 0.001
Collectivism Score c * C2 -0.07 0.06 -0.19 – 0.05 -1.10 0.272
Collectivism Score c * C3 0.01 0.06 -0.11 – 0.14 0.17 0.864
Collectivism Score c * C4 0.13 0.07 0.00 – 0.27 1.97 0.049
Collectivism Score c * C5 -0.08 0.07 -0.22 – 0.06 -1.17 0.242
Random Effects
σ2 428.52
τ00 id 414.67
ICC 0.49
N id 1002
Observations 3007
Marginal R2 / Conditional R2 0.067 / 0.526
Q.2 Does collectivism depend on perceptions of naturalness in predicting support, over and above burger contrasts?
modA.34 <- lmer(Behav ~ Collectivism_Score.c + Naturalness.c + Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 +(1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.34)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Collectivism_Score.c + Naturalness.c + Collectivism_Score.c *  
##     Naturalness.c + C1 + C2 + C3 + C4 + C5 + Collectivism_Score.c *  
##     C1 + Collectivism_Score.c * C2 + Collectivism_Score.c * C3 +  
##     Collectivism_Score.c * C4 + Collectivism_Score.c * C5 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 25094.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1037 -0.4242  0.0598  0.4864  3.2406 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 365.9    19.13   
##  Residual             408.2    20.21   
## Number of obs: 2696, groups:  id, 1002
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         5.486e+01  7.430e-01  1.096e+03  73.831
## Collectivism_Score.c                2.966e-01  3.641e-02  1.101e+03   8.147
## Naturalness.c                       3.999e-01  2.156e-02  2.163e+03  18.553
## C1                                 -3.109e+00  9.055e-01  1.953e+03  -3.434
## C2                                  7.186e-01  1.255e+00  1.994e+03   0.572
## C3                                  7.000e+00  1.397e+00  2.078e+03   5.009
## C4                                  5.611e+00  1.897e+00  2.106e+03   2.958
## C5                                 -1.294e+01  1.462e+00  2.010e+03  -8.852
## Collectivism_Score.c:Naturalness.c -8.183e-04  9.234e-04  2.096e+03  -0.886
## Collectivism_Score.c:C1            -1.648e-01  4.480e-02  1.932e+03  -3.680
## Collectivism_Score.c:C2            -1.087e-02  6.291e-02  1.988e+03  -0.173
## Collectivism_Score.c:C3             8.588e-02  7.032e-02  2.111e+03   1.221
## Collectivism_Score.c:C4             1.741e-01  9.336e-02  2.085e+03   1.864
## Collectivism_Score.c:C5            -1.602e-01  7.084e-02  1.994e+03  -2.261
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c               1.01e-15 ***
## Naturalness.c                       < 2e-16 ***
## C1                                 0.000608 ***
## C2                                 0.567117    
## C3                                 5.94e-07 ***
## C4                                 0.003130 ** 
## C5                                  < 2e-16 ***
## Collectivism_Score.c:Naturalness.c 0.375603    
## Collectivism_Score.c:C1            0.000240 ***
## Collectivism_Score.c:C2            0.862849    
## Collectivism_Score.c:C3            0.222132    
## Collectivism_Score.c:C4            0.062404 .  
## Collectivism_Score.c:C5            0.023865 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.34,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.86 0.74 53.40 – 56.32 73.83 <0.001
Collectivism Score c 0.30 0.04 0.23 – 0.37 8.15 <0.001
Naturalness c 0.40 0.02 0.36 – 0.44 18.55 <0.001
C1 -3.11 0.91 -4.88 – -1.33 -3.43 0.001
C2 0.72 1.26 -1.74 – 3.18 0.57 0.567
C3 7.00 1.40 4.26 – 9.74 5.01 <0.001
C4 5.61 1.90 1.89 – 9.33 2.96 0.003
C5 -12.94 1.46 -15.81 – -10.08 -8.85 <0.001
Collectivism Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -0.89 0.376
Collectivism Score c * C1 -0.16 0.04 -0.25 – -0.08 -3.68 <0.001
Collectivism Score c * C2 -0.01 0.06 -0.13 – 0.11 -0.17 0.863
Collectivism Score c * C3 0.09 0.07 -0.05 – 0.22 1.22 0.222
Collectivism Score c * C4 0.17 0.09 -0.01 – 0.36 1.86 0.062
Collectivism Score c * C5 -0.16 0.07 -0.30 – -0.02 -2.26 0.024
Random Effects
σ2 408.24
τ00 id 365.86
ICC 0.47
N id 1002
Observations 2696
Marginal R2 / Conditional R2 0.145 / 0.549

Connectedness to Nature

Q.1 How does connectedness to nature predict support, over and above burger contrasts?
modA.27 <- lmer(Behav ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + (1|id), data = L)

summary(modA.27)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + CNS_Score.c *  
##     C1 + CNS_Score.c * C2 + CNS_Score.c * C3 + CNS_Score.c *  
##     C4 + CNS_Score.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28144.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3227 -0.4325  0.0614  0.4358  3.9903 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 447.7    21.16   
##  Residual             427.1    20.67   
## Number of obs: 3007, groups:  id, 1002
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      56.46505    0.77311  999.72255  73.037  < 2e-16 ***
## CNS_Score.c       0.16056    0.06219  998.43670   2.582 0.009972 ** 
## C1               -6.57168    0.80105 2193.95159  -8.204 3.92e-16 ***
## C2               -6.27999    1.22553 2284.09903  -5.124 3.24e-07 ***
## C3                5.13715    1.27314 2333.97435   4.035 5.64e-05 ***
## C4                0.53765    1.41180 2286.98531   0.381 0.703365    
## C5               -4.99429    1.43317 2309.97720  -3.485 0.000502 ***
## CNS_Score.c:C1   -0.01532    0.06419 2189.05591  -0.239 0.811415    
## CNS_Score.c:C2   -0.17692    0.10139 2282.15224  -1.745 0.081127 .  
## CNS_Score.c:C3    0.30285    0.10194 2322.76919   2.971 0.003001 ** 
## CNS_Score.c:C4   -0.43609    0.11205 2269.92617  -3.892 0.000102 ***
## CNS_Score.c:C5   -0.14688    0.11227 2309.28277  -1.308 0.190895    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CNS_Sc. C1     C2     C3     C4     C5     CNS_S.:C1
## CNS_Score.c -0.003                                                     
## C1          -0.002  0.009                                              
## C2          -0.018  0.013   0.007                                      
## C3          -0.007  0.008  -0.056  0.027                               
## C4          -0.017  0.002  -0.064  0.051 -0.001                        
## C5          -0.014  0.009   0.066 -0.029  0.064  0.075                 
## CNS_Scr.:C1  0.009 -0.001  -0.001  0.031 -0.016  0.004  0.007          
## CNS_Scr.:C2  0.013  0.012   0.029  0.046 -0.002  0.005 -0.006  0.079   
## CNS_Scr.:C3  0.007 -0.005  -0.016 -0.002 -0.013  0.006 -0.004 -0.066   
## CNS_Scr.:C4  0.002 -0.027   0.004  0.005  0.005 -0.041 -0.008 -0.031   
## CNS_Scr.:C5  0.009 -0.039   0.008 -0.005 -0.004 -0.009 -0.026  0.031   
##             CNS_S.:C2 CNS_S.:C3 CNS_S.:C4
## CNS_Score.c                              
## C1                                       
## C2                                       
## C3                                       
## C4                                       
## C5                                       
## CNS_Scr.:C1                              
## CNS_Scr.:C2                              
## CNS_Scr.:C3  0.017                       
## CNS_Scr.:C4  0.046     0.009             
## CNS_Scr.:C5  0.016     0.060     0.086
tab_model(modA.27,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.47 0.77 54.95 – 57.98 73.04 <0.001
CNS Score c 0.16 0.06 0.04 – 0.28 2.58 0.010
C1 -6.57 0.80 -8.14 – -5.00 -8.20 <0.001
C2 -6.28 1.23 -8.68 – -3.88 -5.12 <0.001
C3 5.14 1.27 2.64 – 7.63 4.04 <0.001
C4 0.54 1.41 -2.23 – 3.31 0.38 0.703
C5 -4.99 1.43 -7.80 – -2.18 -3.48 <0.001
CNS Score c * C1 -0.02 0.06 -0.14 – 0.11 -0.24 0.811
CNS Score c * C2 -0.18 0.10 -0.38 – 0.02 -1.74 0.081
CNS Score c * C3 0.30 0.10 0.10 – 0.50 2.97 0.003
CNS Score c * C4 -0.44 0.11 -0.66 – -0.22 -3.89 <0.001
CNS Score c * C5 -0.15 0.11 -0.37 – 0.07 -1.31 0.191
Random Effects
σ2 427.09
τ00 id 447.68
ICC 0.51
N id 1002
Observations 3007
Marginal R2 / Conditional R2 0.032 / 0.527
Q.2 Does connectedness to nature depend on perceptions of naturalness in predicting support, over and above burger contrasts?
modA.28 <- lmer(Behav ~ CNS_Score.c + Naturalness.c + CNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.28)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ CNS_Score.c + Naturalness.c + CNS_Score.c * Naturalness.c +  
##     C1 + C2 + C3 + C4 + C5 + CNS_Score.c * C1 + CNS_Score.c *  
##     C2 + CNS_Score.c * C3 + CNS_Score.c * C4 + CNS_Score.c *      C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25154.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7550 -0.4457  0.0476  0.4859  3.2084 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 400.9    20.02   
##  Residual             408.7    20.22   
## Number of obs: 2696, groups:  id, 1002
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                5.489e+01  7.667e-01  1.091e+03  71.594  < 2e-16 ***
## CNS_Score.c                8.013e-02  6.261e-02  1.140e+03   1.280 0.200891    
## Naturalness.c              3.715e-01  2.211e-02  2.169e+03  16.801  < 2e-16 ***
## C1                        -3.301e+00  9.071e-01  1.935e+03  -3.639 0.000281 ***
## C2                         5.986e-01  1.263e+00  1.978e+03   0.474 0.635599    
## C3                         6.964e+00  1.404e+00  2.056e+03   4.960 7.61e-07 ***
## C4                         5.549e+00  1.906e+00  2.082e+03   2.911 0.003643 ** 
## C5                        -1.234e+01  1.468e+00  1.994e+03  -8.406  < 2e-16 ***
## CNS_Score.c:Naturalness.c  4.440e-03  1.451e-03  2.157e+03   3.060 0.002241 ** 
## CNS_Score.c:C1             1.877e-01  7.735e-02  1.975e+03   2.427 0.015315 *  
## CNS_Score.c:C2             3.800e-02  1.059e-01  2.014e+03   0.359 0.719823    
## CNS_Score.c:C3             3.729e-01  1.153e-01  2.054e+03   3.234 0.001240 ** 
## CNS_Score.c:C4            -9.741e-02  1.616e-01  2.117e+03  -0.603 0.546652    
## CNS_Score.c:C5            -2.389e-01  1.131e-01  1.971e+03  -2.112 0.034829 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.28,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.89 0.77 53.39 – 56.39 71.59 <0.001
CNS Score c 0.08 0.06 -0.04 – 0.20 1.28 0.201
Naturalness c 0.37 0.02 0.33 – 0.41 16.80 <0.001
C1 -3.30 0.91 -5.08 – -1.52 -3.64 <0.001
C2 0.60 1.26 -1.88 – 3.08 0.47 0.636
C3 6.96 1.40 4.21 – 9.72 4.96 <0.001
C4 5.55 1.91 1.81 – 9.29 2.91 0.004
C5 -12.34 1.47 -15.22 – -9.46 -8.41 <0.001
CNS Score c * Naturalness
c
0.00 0.00 0.00 – 0.01 3.06 0.002
CNS Score c * C1 0.19 0.08 0.04 – 0.34 2.43 0.015
CNS Score c * C2 0.04 0.11 -0.17 – 0.25 0.36 0.720
CNS Score c * C3 0.37 0.12 0.15 – 0.60 3.23 0.001
CNS Score c * C4 -0.10 0.16 -0.41 – 0.22 -0.60 0.547
CNS Score c * C5 -0.24 0.11 -0.46 – -0.02 -2.11 0.035
Random Effects
σ2 408.71
τ00 id 400.91
ICC 0.50
N id 1002
Observations 2696
Marginal R2 / Conditional R2 0.105 / 0.548

Disgust Sensitivity

Q.1 How does sensitivity to disgust predict support, over and above burger contrasts?
modA.31 <- lmer(Behav ~ DS_Score.c + C1 + C2 + C3 + C4 + C5 + DS_Score.c*C1 + DS_Score.c*C2 + DS_Score.c*C3 + DS_Score.c*C4 + DS_Score.c*C5 + (1|id), data = L)

summary(modA.31)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ DS_Score.c + C1 + C2 + C3 + C4 + C5 + DS_Score.c * C1 +  
##     DS_Score.c * C2 + DS_Score.c * C3 + DS_Score.c * C4 + DS_Score.c *  
##     C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28151
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5669 -0.4227  0.0461  0.4341  3.3359 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 450.8    21.23   
##  Residual             429.8    20.73   
## Number of obs: 3005, groups:  id, 1001
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     56.47957    0.77603  998.46933  72.780  < 2e-16 ***
## DS_Score.c       0.03734    0.03745 1013.09436   0.997 0.318949    
## C1              -6.49844    0.80411 2195.72507  -8.082 1.04e-15 ***
## C2              -6.31338    1.22827 2283.04312  -5.140 2.98e-07 ***
## C3               5.11769    1.27787 2333.74039   4.005 6.40e-05 ***
## C4               0.22164    1.41666 2285.86708   0.156 0.875692    
## C5              -5.15453    1.43820 2307.52211  -3.584 0.000345 ***
## DS_Score.c:C1   -0.09285    0.03901 2189.66639  -2.380 0.017385 *  
## DS_Score.c:C2   -0.16936    0.05859 2295.97763  -2.890 0.003883 ** 
## DS_Score.c:C3    0.03162    0.06243 2368.29181   0.506 0.612607    
## DS_Score.c:C4   -0.03941    0.07047 2307.18688  -0.559 0.576012    
## DS_Score.c:C5   -0.09112    0.07029 2317.05333  -1.296 0.195025    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DS_Sc. C1     C2     C3     C4     C5     DS_S.:C1 DS_S.:C2
## DS_Score.c  -0.001                                                            
## C1          -0.003  0.002                                                     
## C2          -0.019  0.005  0.005                                              
## C3          -0.008 -0.005 -0.057  0.028                                       
## C4          -0.018 -0.008 -0.064  0.052  0.000                                
## C5          -0.014 -0.012  0.067 -0.029  0.064  0.074                         
## DS_Scr.c:C1  0.003 -0.010 -0.018  0.021  0.017  0.029 -0.013                  
## DS_Scr.c:C2  0.005 -0.035  0.022  0.004 -0.013 -0.004  0.021 -0.019           
## DS_Scr.c:C3 -0.005 -0.023  0.018 -0.013 -0.023  0.013  0.018 -0.038    0.043  
## DS_Scr.c:C4 -0.009 -0.032  0.030 -0.004  0.013 -0.025  0.002 -0.046    0.062  
## DS_Scr.c:C5 -0.011 -0.037 -0.011  0.020  0.017  0.001  0.003  0.037    0.018  
##             DS_S.:C3 DS_S.:C4
## DS_Score.c                   
## C1                           
## C2                           
## C3                           
## C4                           
## C5                           
## DS_Scr.c:C1                  
## DS_Scr.c:C2                  
## DS_Scr.c:C3                  
## DS_Scr.c:C4  0.016           
## DS_Scr.c:C5  0.066    0.085
tab_model(modA.31,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.48 0.78 54.96 – 58.00 72.78 <0.001
DS Score c 0.04 0.04 -0.04 – 0.11 1.00 0.319
C1 -6.50 0.80 -8.08 – -4.92 -8.08 <0.001
C2 -6.31 1.23 -8.72 – -3.91 -5.14 <0.001
C3 5.12 1.28 2.61 – 7.62 4.00 <0.001
C4 0.22 1.42 -2.56 – 3.00 0.16 0.876
C5 -5.15 1.44 -7.97 – -2.33 -3.58 <0.001
DS Score c * C1 -0.09 0.04 -0.17 – -0.02 -2.38 0.017
DS Score c * C2 -0.17 0.06 -0.28 – -0.05 -2.89 0.004
DS Score c * C3 0.03 0.06 -0.09 – 0.15 0.51 0.613
DS Score c * C4 -0.04 0.07 -0.18 – 0.10 -0.56 0.576
DS Score c * C5 -0.09 0.07 -0.23 – 0.05 -1.30 0.195
Random Effects
σ2 429.77
τ00 id 450.77
ICC 0.51
N id 1001
Observations 3005
Marginal R2 / Conditional R2 0.026 / 0.524
Q.2 Does sensitivity to disgust depend on perceptions of naturalness in predicting support, over and above burger contrasts?
modA.32 <- lmer(Behav ~ DS_Score.c + Naturalness.c + DS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + DS_Score.c*C1 + DS_Score.c*C2 + DS_Score.c*C3 + DS_Score.c*C4 + DS_Score.c*C5 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.32)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ DS_Score.c + Naturalness.c + DS_Score.c * Naturalness.c +  
##     C1 + C2 + C3 + C4 + C5 + DS_Score.c * C1 + DS_Score.c * C2 +  
##     DS_Score.c * C3 + DS_Score.c * C4 + DS_Score.c * C5 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 25164.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8474 -0.4537  0.0466  0.4897  3.0125 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 401.1    20.03   
##  Residual             411.3    20.28   
## Number of obs: 2695, groups:  id, 1001
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               5.491e+01  7.683e-01  1.091e+03  71.474  < 2e-16 ***
## DS_Score.c                6.661e-02  3.737e-02  1.133e+03   1.782 0.074949 .  
## Naturalness.c             3.904e-01  2.159e-02  2.139e+03  18.084  < 2e-16 ***
## C1                       -3.273e+00  9.125e-01  1.938e+03  -3.587 0.000343 ***
## C2                        4.446e-01  1.265e+00  1.978e+03   0.351 0.725340    
## C3                        6.969e+00  1.410e+00  2.055e+03   4.942 8.35e-07 ***
## C4                        4.873e+00  1.918e+00  2.083e+03   2.541 0.011120 *  
## C5                       -1.281e+01  1.470e+00  1.990e+03  -8.711  < 2e-16 ***
## DS_Score.c:Naturalness.c -1.732e-03  9.205e-04  2.128e+03  -1.882 0.060020 .  
## DS_Score.c:C1            -1.827e-01  4.641e-02  1.957e+03  -3.936 8.59e-05 ***
## DS_Score.c:C2            -1.395e-01  6.005e-02  1.973e+03  -2.323 0.020302 *  
## DS_Score.c:C3            -6.191e-02  6.943e-02  2.096e+03  -0.892 0.372663    
## DS_Score.c:C4            -1.598e-01  9.555e-02  2.095e+03  -1.673 0.094503 .  
## DS_Score.c:C5            -5.428e-02  7.147e-02  1.983e+03  -0.759 0.447646    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.32,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.91 0.77 53.41 – 56.42 71.47 <0.001
DS Score c 0.07 0.04 -0.01 – 0.14 1.78 0.075
Naturalness c 0.39 0.02 0.35 – 0.43 18.08 <0.001
C1 -3.27 0.91 -5.06 – -1.48 -3.59 <0.001
C2 0.44 1.27 -2.04 – 2.93 0.35 0.725
C3 6.97 1.41 4.20 – 9.73 4.94 <0.001
C4 4.87 1.92 1.11 – 8.63 2.54 0.011
C5 -12.81 1.47 -15.69 – -9.92 -8.71 <0.001
DS Score c * Naturalness
c
-0.00 0.00 -0.00 – 0.00 -1.88 0.060
DS Score c * C1 -0.18 0.05 -0.27 – -0.09 -3.94 <0.001
DS Score c * C2 -0.14 0.06 -0.26 – -0.02 -2.32 0.020
DS Score c * C3 -0.06 0.07 -0.20 – 0.07 -0.89 0.373
DS Score c * C4 -0.16 0.10 -0.35 – 0.03 -1.67 0.094
DS Score c * C5 -0.05 0.07 -0.19 – 0.09 -0.76 0.448
Random Effects
σ2 411.30
τ00 id 401.13
ICC 0.49
N id 1001
Observations 2695
Marginal R2 / Conditional R2 0.102 / 0.545

Individualism

Q.1 How does individualism predict support, over and above burger contrasts?
modA.35 <- lmer(Behav ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + (1|id), data = L)

summary(modA.35)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## Behav ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + Individualism_Score.c *  
##     C1 + Individualism_Score.c * C2 + Individualism_Score.c *  
##     C3 + Individualism_Score.c * C4 + Individualism_Score.c *  
##     C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28131
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6014 -0.4157  0.0604  0.4267  3.2460 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 436      20.88   
##  Residual             431      20.76   
## Number of obs: 3005, groups:  id, 1001
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                56.50183    0.76667  998.92178  73.697  < 2e-16 ***
## Individualism_Score.c       0.19797    0.04281 1008.77202   4.624 4.25e-06 ***
## C1                         -6.48859    0.80431 2198.40643  -8.067 1.17e-15 ***
## C2                         -6.26771    1.22872 2289.44096  -5.101 3.66e-07 ***
## C3                          5.26494    1.27778 2340.78004   4.120 3.91e-05 ***
## C4                          0.22734    1.41664 2291.10346   0.160 0.872520    
## C5                         -5.06142    1.43891 2314.37646  -3.518 0.000444 ***
## Individualism_Score.c:C1   -0.13079    0.04501 2190.17353  -2.906 0.003701 ** 
## Individualism_Score.c:C2    0.03641    0.06854 2320.41194   0.531 0.595326    
## Individualism_Score.c:C3    0.12591    0.07295 2365.50819   1.726 0.084483 .  
## Individualism_Score.c:C4    0.10737    0.07918 2294.87325   1.356 0.175212    
## Individualism_Score.c:C5   -0.09453    0.08134 2317.00765  -1.162 0.245299    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ind_S. C1     C2     C3     C4     C5     I_S.:C1 I_S.:C2
## Indvdlsm_S.  0.003                                                          
## C1          -0.002 -0.001                                                   
## C2          -0.020  0.004  0.005                                            
## C3          -0.008  0.002 -0.056  0.027                                     
## C4          -0.018 -0.010 -0.063  0.051  0.000                              
## C5          -0.014 -0.013  0.066 -0.029  0.064  0.073                       
## Indvd_S.:C1 -0.002 -0.008  0.008  0.014 -0.010  0.011 -0.021                
## Indvd_S.:C2  0.004 -0.036  0.013  0.002 -0.008  0.000  0.022 -0.014         
## Indvd_S.:C3  0.002  0.000 -0.010 -0.009  0.009  0.019  0.005 -0.072   0.040 
## Indvd_S.:C4 -0.010 -0.035  0.011  0.000  0.018  0.007  0.006 -0.027   0.066 
## Indvd_S.:C5 -0.013 -0.023 -0.021  0.022  0.004  0.007 -0.004  0.056  -0.003 
##             I_S.:C3 I_S.:C4
## Indvdlsm_S.                
## C1                         
## C2                         
## C3                         
## C4                         
## C5                         
## Indvd_S.:C1                
## Indvd_S.:C2                
## Indvd_S.:C3                
## Indvd_S.:C4  0.027         
## Indvd_S.:C5  0.064   0.079
tab_model(modA.35,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.50 0.77 55.00 – 58.01 73.70 <0.001
Individualism Score c 0.20 0.04 0.11 – 0.28 4.62 <0.001
C1 -6.49 0.80 -8.07 – -4.91 -8.07 <0.001
C2 -6.27 1.23 -8.68 – -3.86 -5.10 <0.001
C3 5.26 1.28 2.76 – 7.77 4.12 <0.001
C4 0.23 1.42 -2.55 – 3.01 0.16 0.873
C5 -5.06 1.44 -7.88 – -2.24 -3.52 <0.001
Individualism Score c *
C1
-0.13 0.05 -0.22 – -0.04 -2.91 0.004
Individualism Score c *
C2
0.04 0.07 -0.10 – 0.17 0.53 0.595
Individualism Score c *
C3
0.13 0.07 -0.02 – 0.27 1.73 0.084
Individualism Score c *
C4
0.11 0.08 -0.05 – 0.26 1.36 0.175
Individualism Score c *
C5
-0.09 0.08 -0.25 – 0.06 -1.16 0.245
Random Effects
σ2 431.03
τ00 id 435.96
ICC 0.50
N id 1001
Observations 3005
Marginal R2 / Conditional R2 0.038 / 0.522
Q.2 Does individualism depend on perceptions of naturalness in predicting support, over and above burger contrasts?
modA.36 <- lmer(Behav ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.36)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25126.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6047 -0.4307  0.0578  0.4914  2.9939 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 389.2    19.73   
##  Residual             408.3    20.21   
## Number of obs: 2695, groups:  id, 1001
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          5.483e+01  7.594e-01  1.092e+03  72.206
## Individualism_Score.c                1.518e-01  4.242e-02  1.102e+03   3.578
## Naturalness.c                        3.895e-01  2.281e-02  2.202e+03  17.074
## C1                                  -2.971e+00  9.071e-01  1.941e+03  -3.276
## C2                                   8.220e-01  1.259e+00  1.980e+03   0.653
## C3                                   7.418e+00  1.402e+00  2.063e+03   5.291
## C4                                   5.809e+00  1.905e+00  2.090e+03   3.050
## C5                                  -1.295e+01  1.465e+00  1.995e+03  -8.842
## Individualism_Score.c:Naturalness.c  2.177e-03  1.150e-03  2.237e+03   1.893
## Individualism_Score.c:C1            -1.437e-02  5.051e-02  1.946e+03  -0.284
## Individualism_Score.c:C2             2.005e-01  6.895e-02  1.987e+03   2.908
## Individualism_Score.c:C3             2.274e-01  7.948e-02  2.085e+03   2.861
## Individualism_Score.c:C4             3.708e-01  1.056e-01  2.088e+03   3.513
## Individualism_Score.c:C5            -2.755e-01  8.109e-02  1.975e+03  -3.397
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c               0.000361 ***
## Naturalness.c                        < 2e-16 ***
## C1                                  0.001073 ** 
## C2                                  0.513829    
## C3                                  1.34e-07 ***
## C4                                  0.002321 ** 
## C5                                   < 2e-16 ***
## Individualism_Score.c:Naturalness.c 0.058513 .  
## Individualism_Score.c:C1            0.776131    
## Individualism_Score.c:C2            0.003673 ** 
## Individualism_Score.c:C3            0.004262 ** 
## Individualism_Score.c:C4            0.000453 ***
## Individualism_Score.c:C5            0.000696 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.36,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.83 0.76 53.34 – 56.32 72.21 <0.001
Individualism Score c 0.15 0.04 0.07 – 0.23 3.58 <0.001
Naturalness c 0.39 0.02 0.34 – 0.43 17.07 <0.001
C1 -2.97 0.91 -4.75 – -1.19 -3.28 0.001
C2 0.82 1.26 -1.65 – 3.29 0.65 0.514
C3 7.42 1.40 4.67 – 10.17 5.29 <0.001
C4 5.81 1.90 2.07 – 9.54 3.05 0.002
C5 -12.95 1.46 -15.82 – -10.08 -8.84 <0.001
Individualism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.89 0.058
Individualism Score c *
C1
-0.01 0.05 -0.11 – 0.08 -0.28 0.776
Individualism Score c *
C2
0.20 0.07 0.07 – 0.34 2.91 0.004
Individualism Score c *
C3
0.23 0.08 0.07 – 0.38 2.86 0.004
Individualism Score c *
C4
0.37 0.11 0.16 – 0.58 3.51 <0.001
Individualism Score c *
C5
-0.28 0.08 -0.43 – -0.12 -3.40 0.001
Random Effects
σ2 408.25
τ00 id 389.23
ICC 0.49
N id 1001
Observations 2695
Marginal R2 / Conditional R2 0.118 / 0.548

Political Ideology

Q.1 How does ideology predict support, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.37 <- lmer(Behav ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + (1|id), data = L)

summary(modA.37)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + Ideology.c * C1 +  
##     Ideology.c * C2 + Ideology.c * C3 + Ideology.c * C4 + Ideology.c *  
##     C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28140.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6265 -0.4199  0.0565  0.4312  3.3608 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 447.5    21.15   
##  Residual             432.0    20.78   
## Number of obs: 3007, groups:  id, 1002
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     54.7566     1.1382  998.8284  48.108  < 2e-16 ***
## Ideology.c      -1.4829     0.7109  992.4019  -2.086 0.037238 *  
## C1              -6.7146     1.1822 2190.4367  -5.680 1.53e-08 ***
## C2              -6.8995     1.7657 2261.4164  -3.908 9.60e-05 ***
## C3               5.8702     1.9157 2360.6238   3.064 0.002207 ** 
## C4              -2.0718     2.1048 2291.9477  -0.984 0.325065    
## C5              -6.9879     2.1202 2321.3533  -3.296 0.000996 ***
## Ideology.c:C1   -0.2251     0.7386 2198.5176  -0.305 0.760531    
## Ideology.c:C2   -0.6187     1.1112 2257.3697  -0.557 0.577767    
## Ideology.c:C3    0.5754     1.2069 2366.4176   0.477 0.633577    
## Ideology.c:C4   -1.9463     1.2800 2266.6762  -1.521 0.128490    
## Ideology.c:C5   -1.6006     1.3156 2312.7229  -1.217 0.223895    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Idlgy. C1     C2     C3     C4     C5     Id.:C1 Id.:C2
## Ideology.c   0.733                                                        
## C1          -0.011 -0.010                                                 
## C2          -0.026 -0.019 -0.013                                          
## C3          -0.007  0.001 -0.063  0.029                                   
## C4          -0.014 -0.006 -0.073  0.045  0.007                            
## C5          -0.017 -0.006  0.050 -0.025  0.077  0.080                     
## Idelgy.c:C1 -0.010 -0.008  0.732 -0.011 -0.056 -0.059  0.040              
## Idelgy.c:C2 -0.018 -0.019 -0.011  0.717  0.020  0.029 -0.025  0.001       
## Idelgy.c:C3  0.000  0.008 -0.055  0.021  0.744  0.006  0.064 -0.083  0.025
## Idelgy.c:C4 -0.007 -0.005 -0.060  0.030  0.006  0.739  0.056 -0.082  0.042
## Idelgy.c:C5 -0.007  0.002  0.040 -0.025  0.065  0.055  0.734  0.074 -0.048
##             Id.:C3 Id.:C4
## Ideology.c               
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## Idelgy.c:C1              
## Idelgy.c:C2              
## Idelgy.c:C3              
## Idelgy.c:C4  0.004       
## Idelgy.c:C5  0.088  0.065
tab_model(modA.37,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.76 1.14 52.52 – 56.99 48.11 <0.001
Ideology c -1.48 0.71 -2.88 – -0.09 -2.09 0.037
C1 -6.71 1.18 -9.03 – -4.40 -5.68 <0.001
C2 -6.90 1.77 -10.36 – -3.44 -3.91 <0.001
C3 5.87 1.92 2.11 – 9.63 3.06 0.002
C4 -2.07 2.10 -6.20 – 2.06 -0.98 0.325
C5 -6.99 2.12 -11.15 – -2.83 -3.30 0.001
Ideology c * C1 -0.23 0.74 -1.67 – 1.22 -0.30 0.761
Ideology c * C2 -0.62 1.11 -2.80 – 1.56 -0.56 0.578
Ideology c * C3 0.58 1.21 -1.79 – 2.94 0.48 0.634
Ideology c * C4 -1.95 1.28 -4.46 – 0.56 -1.52 0.128
Ideology c * C5 -1.60 1.32 -4.18 – 0.98 -1.22 0.224
Random Effects
σ2 431.97
τ00 id 447.51
ICC 0.51
N id 1002
Observations 3007
Marginal R2 / Conditional R2 0.026 / 0.521
Q.2 Does ideology depend on perceptions of naturalness in predicting support, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.38 <- lmer(Behav ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + (1|id), data = L)

summary(modA.38)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 + Ideology.c *  
##     C4 + Ideology.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25142.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7800 -0.4433  0.0485  0.4906  3.1291 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 398.5    19.96   
##  Residual             414.2    20.35   
## Number of obs: 2696, groups:  id, 1002
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                52.57968    1.12541 1083.02344  46.720  < 2e-16 ***
## Ideology.c                 -1.93546    0.69882 1055.81089  -2.770  0.00571 ** 
## Naturalness.c               0.40296    0.03157 2135.82332  12.764  < 2e-16 ***
## C1                         -2.00928    1.32707 1925.97722  -1.514  0.13017    
## C2                          0.36414    1.81278 1964.61048   0.201  0.84082    
## C3                          8.53962    2.09465 2078.07832   4.077 4.74e-05 ***
## C4                          5.03251    2.81187 2098.19979   1.790  0.07364 .  
## C5                        -14.28212    2.15750 1996.79917  -6.620 4.61e-11 ***
## Ideology.c:Naturalness.c    0.01207    0.02211 2131.96046   0.546  0.58517    
## Ideology.c:C1               0.95706    0.80954 1913.60990   1.182  0.23726    
## Ideology.c:C2              -0.27343    1.14477 1957.53397  -0.239  0.81125    
## Ideology.c:C3               1.12498    1.31132 2089.30297   0.858  0.39105    
## Ideology.c:C4              -0.33589    1.70259 2072.75754  -0.197  0.84363    
## Ideology.c:C5              -1.32200    1.36668 1996.61648  -0.967  0.33351    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.38,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.58 1.13 50.37 – 54.79 46.72 <0.001
Ideology c -1.94 0.70 -3.31 – -0.57 -2.77 0.006
Naturalness c 0.40 0.03 0.34 – 0.46 12.76 <0.001
C1 -2.01 1.33 -4.61 – 0.59 -1.51 0.130
C2 0.36 1.81 -3.19 – 3.92 0.20 0.841
C3 8.54 2.09 4.43 – 12.65 4.08 <0.001
C4 5.03 2.81 -0.48 – 10.55 1.79 0.074
C5 -14.28 2.16 -18.51 – -10.05 -6.62 <0.001
Ideology c * Naturalness
c
0.01 0.02 -0.03 – 0.06 0.55 0.585
Ideology c * C1 0.96 0.81 -0.63 – 2.54 1.18 0.237
Ideology c * C2 -0.27 1.14 -2.52 – 1.97 -0.24 0.811
Ideology c * C3 1.12 1.31 -1.45 – 3.70 0.86 0.391
Ideology c * C4 -0.34 1.70 -3.67 – 3.00 -0.20 0.844
Ideology c * C5 -1.32 1.37 -4.00 – 1.36 -0.97 0.333
Random Effects
σ2 414.25
τ00 id 398.51
ICC 0.49
N id 1002
Observations 2696
Marginal R2 / Conditional R2 0.102 / 0.542

Sex

Q.1 Does sex (male, female, other) predict support, over and above burger contrasts?
modA.57 <- lmer(Behav ~ MF + OMF + C1 + C2 + C3 + C4 + C5 + MF*C1 + MF*C2 + MF*C3 + MF*C4 + MF*C5 + OMF*C1 + OMF*C2 + OMF*C3 + OMF*C4 + OMF*C5 + (1|id), data = L)

summary(modA.57)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ MF + OMF + C1 + C2 + C3 + C4 + C5 + MF * C1 + MF * C2 +  
##     MF * C3 + MF * C4 + MF * C5 + OMF * C1 + OMF * C2 + OMF *  
##     C3 + OMF * C4 + OMF * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28063.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6195 -0.4252  0.0557  0.4323  3.2875 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 443.9    21.07   
##  Residual             429.6    20.73   
## Number of obs: 3007, groups:  id, 1002
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   53.84667    3.70670 1031.13005  14.527  < 2e-16 ***
## MF            -4.84423    1.59151 1001.89794  -3.044 0.002397 ** 
## OMF           -9.92590   11.03434 1031.59446  -0.900 0.368572    
## C1            -2.53818    3.91045 2120.18284  -0.649 0.516359    
## C2            -6.37885    5.12377 2182.27759  -1.245 0.213282    
## C3             5.97442    8.38780 2270.49369   0.712 0.476368    
## C4            -3.25814    6.15648 2126.77950  -0.529 0.596707    
## C5            -0.09899    5.30080 2091.03248  -0.019 0.985103    
## MF:C1         -4.19362    1.66210 2190.94000  -2.523 0.011703 *  
## MF:C2         -2.54312    2.56534 2292.75153  -0.991 0.321623    
## MF:C3          9.01028    2.60710 2329.54749   3.456 0.000558 ***
## MF:C4         -2.66922    2.94311 2289.54489  -0.907 0.364535    
## MF:C5         -3.35420    2.98925 2318.99337  -1.122 0.261940    
## OMF:C1        10.74660   11.64271 2119.10552   0.923 0.356096    
## OMF:C2        -1.79947   15.20990 2179.92415  -0.118 0.905834    
## OMF:C3         4.85545   25.06190 2270.01353   0.194 0.846398    
## OMF:C4       -11.77530   18.29271 2123.63752  -0.644 0.519829    
## OMF:C5        14.15451   15.69028 2084.88737   0.902 0.367098    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.57,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.85 3.71 46.58 – 61.11 14.53 <0.001
MF -4.84 1.59 -7.96 – -1.72 -3.04 0.002
OMF -9.93 11.03 -31.56 – 11.71 -0.90 0.368
C1 -2.54 3.91 -10.21 – 5.13 -0.65 0.516
C2 -6.38 5.12 -16.43 – 3.67 -1.24 0.213
C3 5.97 8.39 -10.47 – 22.42 0.71 0.476
C4 -3.26 6.16 -15.33 – 8.81 -0.53 0.597
C5 -0.10 5.30 -10.49 – 10.29 -0.02 0.985
MF * C1 -4.19 1.66 -7.45 – -0.93 -2.52 0.012
MF * C2 -2.54 2.57 -7.57 – 2.49 -0.99 0.322
MF * C3 9.01 2.61 3.90 – 14.12 3.46 0.001
MF * C4 -2.67 2.94 -8.44 – 3.10 -0.91 0.365
MF * C5 -3.35 2.99 -9.22 – 2.51 -1.12 0.262
OMF * C1 10.75 11.64 -12.08 – 33.58 0.92 0.356
OMF * C2 -1.80 15.21 -31.62 – 28.02 -0.12 0.906
OMF * C3 4.86 25.06 -44.28 – 54.00 0.19 0.846
OMF * C4 -11.78 18.29 -47.64 – 24.09 -0.64 0.520
OMF * C5 14.15 15.69 -16.61 – 44.92 0.90 0.367
Random Effects
σ2 429.65
τ00 id 443.91
ICC 0.51
N id 1002
Observations 3007
Marginal R2 / Conditional R2 0.033 / 0.525
Q.2 Does sex (male, female, other) depend on perceptions of naturalness in predicting support, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.58 <- lmer(Behav ~ MF*Naturalness.c + OMF*Naturalness.c + C1 + C2 + C3 + C4 + C5 + MF*C1 + MF*C2 + MF*C3 + MF*C4 + MF*C5 + OMF*C1 + OMF*C2 + OMF*C3 + OMF*C4 + OMF*C5 + (1|id), data = L)

summary(modA.58)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Behav ~ MF * Naturalness.c + OMF * Naturalness.c + C1 + C2 +  
##     C3 + C4 + C5 + MF * C1 + MF * C2 + MF * C3 + MF * C4 + MF *  
##     C5 + OMF * C1 + OMF * C2 + OMF * C3 + OMF * C4 + OMF * C5 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25068
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9107 -0.4423  0.0442  0.4960  3.2116 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 396.2    19.91   
##  Residual             412.8    20.32   
## Number of obs: 2696, groups:  id, 1002
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         53.20209    3.67749 1142.13661  14.467  < 2e-16 ***
## MF                  -4.44874    1.57785 1093.19363  -2.819  0.00490 ** 
## Naturalness.c        0.37745    0.13023 1948.89038   2.898  0.00379 ** 
## OMF                 -6.83760   10.94752 1142.91859  -0.625  0.53237    
## C1                  -0.58446    4.45518 1840.60996  -0.131  0.89564    
## C2                   2.62482    6.28533 2124.44283   0.418  0.67627    
## C3                   1.60844    9.35563 2224.21513   0.172  0.86351    
## C4                   0.12976   10.35459 1989.95423   0.013  0.99000    
## C5                  -5.64993    5.26892 1815.91704  -1.072  0.28372    
## MF:Naturalness.c     0.02755    0.04450 2122.03562   0.619  0.53589    
## Naturalness.c:OMF   -0.01230    0.38878 1947.18838  -0.032  0.97477    
## MF:C1               -4.49877    1.87588 1932.85067  -2.398  0.01657 *  
## MF:C2               -0.97801    2.62919 1976.75982  -0.372  0.70995    
## MF:C3                6.16965    2.88382 2053.58019   2.139  0.03252 *  
## MF:C4               -4.41843    3.93265 2080.37769  -1.124  0.26134    
## MF:C5               -3.97041    3.06572 1997.53137  -1.295  0.19544    
## OMF:C1               6.56286   13.26645 1839.23832   0.495  0.62087    
## OMF:C2               5.53018   18.71800 2126.60948   0.295  0.76768    
## OMF:C3             -15.05530   27.95555 2225.54244  -0.539  0.59026    
## OMF:C4             -17.54279   30.87652 1988.85300  -0.568  0.56999    
## OMF:C5              20.13253   15.58219 1810.72928   1.292  0.19651    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 21 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.58,
          show.stat = T, show.se = T)
  Behav
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.20 3.68 45.99 – 60.41 14.47 <0.001
MF -4.45 1.58 -7.54 – -1.35 -2.82 0.005
Naturalness c 0.38 0.13 0.12 – 0.63 2.90 0.004
OMF -6.84 10.95 -28.30 – 14.63 -0.62 0.532
C1 -0.58 4.46 -9.32 – 8.15 -0.13 0.896
C2 2.62 6.29 -9.70 – 14.95 0.42 0.676
C3 1.61 9.36 -16.74 – 19.95 0.17 0.864
C4 0.13 10.35 -20.17 – 20.43 0.01 0.990
C5 -5.65 5.27 -15.98 – 4.68 -1.07 0.284
MF * Naturalness c 0.03 0.04 -0.06 – 0.11 0.62 0.536
Naturalness c * OMF -0.01 0.39 -0.77 – 0.75 -0.03 0.975
MF * C1 -4.50 1.88 -8.18 – -0.82 -2.40 0.017
MF * C2 -0.98 2.63 -6.13 – 4.18 -0.37 0.710
MF * C3 6.17 2.88 0.51 – 11.82 2.14 0.032
MF * C4 -4.42 3.93 -12.13 – 3.29 -1.12 0.261
MF * C5 -3.97 3.07 -9.98 – 2.04 -1.30 0.195
OMF * C1 6.56 13.27 -19.45 – 32.58 0.49 0.621
OMF * C2 5.53 18.72 -31.17 – 42.23 0.30 0.768
OMF * C3 -15.06 27.96 -69.87 – 39.76 -0.54 0.590
OMF * C4 -17.54 30.88 -78.09 – 43.00 -0.57 0.570
OMF * C5 20.13 15.58 -10.42 – 50.69 1.29 0.196
Random Effects
σ2 412.77
τ00 id 396.22
ICC 0.49
N id 1002
Observations 2696
Marginal R2 / Conditional R2 0.108 / 0.545